

ICOSSAR 05 Roma, Italia 19-23 June 2005

X_1 X_2 X_3

Natural hazards risk assessment using Bayesian networks

Daniel Straub

Civil, Environmental & Geomatic Engineering Department

Swiss Federal Institute of Technology (ETH Zürich)

Problem statement

- Experienced damages from natural hazards increase worldwide
- (Financial) resources for protection are limited
- Suitable tools are required for risk assessment & management
- A risk assessment (& management) framework and tool should have the following properties:
 - Include entire systems & networks with dependent elements
 - It should allow for combining different models and data
 - It should be applicable to different types of hazards
 - Easy to understand and communicate

Contents

- Presentation of a general framework
- Short introduction to Bayesian networks (BN)
- Demonstration of the capabilities of BN for natural hazards risk assessment

A general framework

A general framework

• Multidisciplinary:

Bayesian networks

- Probabilistic models based on directed acyclic graphs
- Represent the joint probability distribution of a set of variables
- Efficient due to the factoring of the joint probability distribution into conditional (local) distributions given the parents

here:

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1)$$
general:

$$P(\mathbf{x}) = P(x_1, \dots, x_n) = \prod_{i=1}^{n} P(x_i|pa_i)$$

i=1

Bayesian networks

 Facilitates updating when additional information (evidence) is available

• BN are (in general) restricted to variables with discrete states

Example – Rockfall hazard risk rating system

Example – Rockfall hazard risk rating system

- A typical rating system from the literature:
- Nine indicators are considered for rockfall risk along a road:
 - Slope height
 - Ditch effectiveness
 - Average vehicle risk (the traffic volume)
 - Decision sight distance
 - Roadway width
 - Slope Mass Ratio (A description of the geological character)
 - Block size / Volume of rock-fall per event
 - Annual rainfall and freezing periods
 - Observed rock-fall frequency
- Each indicator has 4 intervals
- Points are assigned for each indicator: 3, 9, 27 or 81
- The points from all indicators are summed up

Example – Rockfall hazard risk rating system

	Category		Rating criteria by score							
		Points 3	Points 9	Points 27	Points 81					
-	Slope height	7.5 m	15 m	22.5 m	> 30 m					
	Ditch effectiveness	Good catchment	Moderate catchment	Limited catchment	No catchment					
	Average vehicle risk (% of time)	25%	50%	75%	100%					
Geologic characteristics Case 2 Case 1	Decision sight distance (% of design value)	Adequate (100%)	Moderate (80%)	Limited (60%)	Very limited (40%)					
	Roadway width (including paved shoulders)	13.20 m	10.80 m	8.40 m	6 m					
	Structural condition	Discontinuous joints, favorable orientation	Discontinuous joints, random orientation	Discontinuous joints, adverse orientation	Continuous joints, adverse orientation					
	Friction	Rough, irregular	Undulating	Planar	Clay infilling or slickensided					
	Structural condition Difference in erosion rates	Few differential erosion features Small	Occasional erosion features Moderate	Many erosion features Large	Major erosion features Extreme					
	Block size	0.3 cm	0.6 m	0.9 m	1.20 m					
	Volume of rockfall per event	$2.3 \mathrm{m}^3$	$4.6 {\rm m}^3$	$6.9\mathrm{m}^3$	$9.2 \mathrm{m}^3$					
	Climate and presence of water on slope	Climate and presence of Low to moderate material precipitation; water on slope precipitation; no freezing periods; no water on slope water on slope		High precipitation or long freezing periods or continual water on slope and long freezing periods	High precipitation and long freezing periods or continual					
	Rockfall history	Rockfall history Few falls Occasional falls			Constant falls					

ETH

Example – BN for hazard rating

• Use the same indicators to model the rockfall risk using a BN

A part of the net – exposure

- The causal relations are correctly modelled
- As a consequence, the dependencies between indicators is consistently accounted for
- The node rock-fall frequency has five states, each representing a different exceedance frequency curve

A part of the net – exposure

 The node "Volume of detached rocks" (child of rock-fall frequency)

Daily probability of rock detachement

Curve 1	Curve 2	Curve 3	Curve 4	Curve 5
0.97	0.99	0.99	0.999	0.999839
0.017	0.0047	0.0076	6.30E-04	1.00E-04
0.01	0.004	0.002	3.00E-04	5.00E-05
0.002	0.001	3.00E-04	5.00E-05	1.00E-05
0.001	3.00E-04	1.00E-04	2.00E-05	1.00E-06

Table 1. Investigated cases.

Cases:	А	В	С	D	E	F	G	J
Slope height	1	4	2	1	2	3	3	4
Ditch effect.	1	4	2	2	1	3	4	4
Vehicles	1	1	2	1	4	3	3	4
Sight distance	1	1	2	3	3	3	3	4
Roadway width	1	1	2	2	2	3	2	4
SMR	1	1	2	2	4	3	2	4
Block size	1	1	2	1	4	3	1	4
Rain & Freezing	1	1	2	1	4	3	1	4
Observed freq.	1	1	2	2	4	3	4	4

• Results for some example cases:

• Results for some example cases:

Table 1. Investigated of	cases.
--------------------------	--------

	Cases:	А	В	С	D	E	F	G	J
	Slope height	1	4	2	1	2	3	3	4
vuinerab. J	Ditch effect.	1	4	2	2	1	3	4	4
	Vehicles	1	1	2	1	4	3	3	4
	Sight distance	1	1	2	3	3	3	3	4
	Roadway width	1	1	2	2	2	3	2	4
	SMR	1	1	2	2	4	3	2	4
	Block size	1	1	2	1	4	3	1	4
	Rain & Freezing	1	1	2	1	4	3	1	4
	Observed freq.	1	1	2	2	4	3	4	4

• Results for some example cases:

Table 1. Investigated of	cases.
--------------------------	--------

	Cases:	А	В	С	D	E	F	G	J
	Slope height	1	4	2	1	2	3	3	4
vuinerab. J	Ditch effect.	1	4	2	2	1	3	4	4
	Vehicles	1	1	2	1	4	3	3	4
	Sight distance	1	1	2	3	3	3	3	4
	Roadway width	1	1	2	2	2	3	2	4
	SMR	1	1	2	2	4	3	2	4
	Block size	1	1	2	1	4	3	1	4
	Rain & Freezing	1	1	2	1	4	3	1	4
	Observed freq.	1	1	2	2	4	3	4	4

Discussion & conclusions

- The BN provides a simple but consistent model for risk
 assessment
- The BN can consistently include contradicting information
- The BN can cope with the unavailability of indicators
- Different levels of detailing can be incorporated into a common model – e.g. an improved geological model could be included in the example
- The net can be extended to include mitigation actions for optimisation purposes
- The net can be easily extended to model an entire road link

Thank you for your attention!

 X_1

*X*₃

 X_2

Questions?