

ASRANet Colloquium Barcelona 6 July 2004

Computational Aspects of Generic Risk Based Inspection Planning

Daniel Straub & Michael Havbro Faber

Swiss Federal Institute of Technology, ETH Zürich

Deterioration of Steel Structures – Need for RBI

- Structures deteriorate
- Structures are unique
- → Assessement of deterioration and the planning of inspections must be based on physical models

 Presented approaches have been succesfully applied for structures subject to fatigue, other applications (corrosion) are envisged.

Probabilistic Deterioration Modelling

- Quantitative deterioration models:
 - Defect size as a function of time
 - E.g. for fatigue crack growth:

$$\frac{\mathrm{d}\,a}{\mathrm{d}\,t} = C_P \cdot \Delta K_{eff}^{m_{FM}} \cdot V$$

 Probabilistic description of deterioration mechanisms

Inspections

 Inspections reduce the uncertainty in the deterioration model:

Inspections

- Inspections reduce the uncertainty in the deterioration model:
- Probability updating: (Bayes' law)

$$f_X''(x|z) = \frac{L(z|x) \cdot f_X'(x)}{\int\limits_{\Omega_X} L(z|x) \cdot f_X'(x) \cdot dx}$$

Inspections

- Inspections reduce the uncertainty in the deterioration model:
- Probability updating: (Bayes' law)

$$f_X''(x|z) = \frac{L(z|x) \cdot f_X'(x)}{\int\limits_{\Omega_X} L(z|x) \cdot f_X'(x) \cdot dx}$$

 Calculations performed with simulation techniques or structural reliability analysis

$$P(F|M) = \frac{P(F \cap M)}{P(M)}$$

Risk Based Inspection Planning

Decision tree simplified:

Risk Based Inspection Planning - Results

• Inspection strategies (times):

Risk Based Inspection Planning – Results

 Optimal inspection strategies

$$\mathbf{E}[C_{R}(\underline{\mathbf{e}},d,T_{SL})] = \sum_{t=t_{1}}^{t_{n_{Insp}}} \left| \begin{array}{c} \left(1-p_{F}(\underline{\mathbf{e}},d,t)\right) \left(1-\sum_{i=1}^{t-1}p_{R}(\underline{\mathbf{e}},d,i)\right) \cdot \\ p_{R}(\underline{\mathbf{e}},d,t) \left(C_{R}+\mathbf{E}[C_{R}(\underline{\mathbf{e}},d,T_{SL}-t)]\right) \frac{1}{(1+r)^{t}} \right] \right|$$

Computing the (conditional) probabilities

- Problem: Evaluation of the conditional probabilities of failure and repair.
- Conditional on inspection outcomes (no-detection at the different inspections)

or

• Using FORM / SORM

Computing the (conditional) probabilities FORM/SORM vs Monte Carlo Simulation

• For a typical inspection plan (50 yrs) with different thresholds, approx. :

	FORM / SORM	Crude MCS
Number of LSF calls	10 ⁴	10 ⁸
Equality constraints	Can be considered	Only approximate, if at all

Computing the (conditional) probabilities FORM/SORM vs Monte Carlo Simulation

 For a typical inspection plan (50 yrs) with different thresholds, approx. :

	FORM / SORM	Crude MCS
Number of LSF calls	104	10 ⁸
Equality constraints	Can be considered	Only approximate, if at all
Engineer's time	5min – 2h (experienced engineer !)	5min

MCS for inspection planning

- In the inspection planning phase no defect measurements are considered (no equality constraints)
- Annual failure probabilities in the range of 10⁻³ to 10⁻⁵
- Accuracy: The probability of predicting the first inspection in the wrong year:

MCS for inspection planning

• Typically $N_{Sim} = 2 \ 10^6$

Problem of large computation times is addressed by the generic approach

Generic Approaches – Principle

- Calculate inspection plans for generic representations of structural details
- Defined in terms of simple indicators, the generic parameters.
 Examples are:
 - Detail type
 - Environment
 - Geometrical properties (thickness)
 - Loading characteristics
 - Fatigue Design Factor *FDF* (Resulting from standard deterministic fatigue evaluations)
 - Quality of fatigue calculations
 - Initial quality control

Generic Approaches

• Fatigue Design Factor *FDF* (Resulting from standard deterministic fatigue evaluations)

Generic Approaches – Principle

Interpolation in the generic approach

1. Evaluate the decision tree for the specific cost model for all generic representations

$$\mathbf{E}[C_{R}(\underline{\mathbf{e}},d,T_{SL})] = \sum_{t=t_{1}}^{t_{n_{Insp}}} \left[(1-p_{F}(\underline{\mathbf{e}},d,t)) \left(1-\sum_{i=1}^{t-1}p_{R}(\underline{\mathbf{e}},d,i)\right) \cdot p_{R}(\underline{\mathbf{e}},d,t) \left(C_{R}+\mathbf{E}[C_{R}(\underline{\mathbf{e}},d,T_{SL}-t)]\right) \frac{1}{(1+r)^{t}} \right]$$

Interpolation in the generic approach

- 1. Evaluate the decision tree for the specific cost model for all generic representations
- 2. Interpolate the calcualated expected cost and the inspection times seperately

Interpolation in the generic approach

• Linear interpolation (multi-dimensional)

Design of the generic database

and identically for expected costs...

Verification of the generic database

• Comparison between direct calculations and the inspection plans obtained using the generic approach.

Direct:

Generic approach:

Verification of the generic database

Compare expected cost:

H 4 + HI\ Parameter Input \Total Cost / Inspection Plans / Inspection Plans Threshold E-2 / Inspection Plans Threshold E-3 / Inspection Plans Threshold E-3

Relevance: Application of the generic approach

Relevance: Combining RBI with monitoring

 Generic RBI allows to update the inspection planning with monitoring outcomes

Relevance: Application of the generic approach to structural systems

- The computational efficiency of the generic approach allows to consider entire strucutural systems:
- *Systems*: The individual hot spots (details) and their functional and stochastic inter-dependancies

- How to quantify the value of an inspection of a dependent hot spot?
 - The change of the reliability after the inspection is described by a new FDF

 How to quantify the value of an inspection of a dependent hot spot?

- The outcome of the inspections is unknown (the posterior FDF of the non-inspected element is unknown)
- The Expected Value of Sample Information can be calculated by integration of the Conditional Value of Sample Information:

$$EVSI = \int_{Z} f_{Z}(z) \cdot CVSI(z) \cdot dz$$

 Benefit of a hot spot with FDF = 2 from inspection of a dependent hot spot

Inspection strategies for systems with high reliability of the individual elements

Conclusions

- Applying MCS for Risk Based Inspection planning is efficient with respect to the required man-days
- The generic approach ensures that the RBI can be efficiently included in the daily asset integrity management procedures of the owner and operators of structures
- The generic approach facilitates the consistent planning of inspections for entire structural systems

