

Interdisciplinary Workshop on Rockfall Protection, June 23-25, 2008 in Morschach, Switzerland

CHARACTERIZATION OF DESIGN IMPACT LOADS FOR ROCK-FALL PROTECTION

Matthias Schubert ETH Zürich, Institute for Structural Engineering, Group Risk & Safety

Michael H. Faber ETH Zürich, Institute for Structural Engineering, Group Risk & Safety

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zürich

Introduction System Exposure Overview Trajectory Analysis Load model Resistance Conclusions

Overview

- Introduction
- Modeling of the exposure
- Uncertainties in the rock-fall • model
- Determination of impact design loads
- Conclusions

Introduction

- Infrastructures and buildings in mountainous regions are exposed to gravitative natural hazards.
- These risks are addressed through a variety of protection measures.
- Significant costs associated with such measures decisions should be made on a consistent scientific basis.
- A proper modeling of the processes, the performance of protection structure and the associated uncertainties is crucial.

Overview	Introduction	System Exposure	Trajectory Analysis	Load model	Resistance	Conclusions
----------	--------------	-----------------	---------------------	------------	------------	-------------

Detachment of a stone

System Exposures

- The relevant parameter is the volume of a detached rock volume V or rock mass.
- Rock-fall is an uncertain process impossible to predict the time and extend of the next event.
- The relevant rock-fall parameter can be described as a random variable *V*.
- Typically described by its annual exceedance frequency $H_V(v) = E [N(v)].$

Overview Introduction System Exposure Trajectory Analysis Load model Resistance Conclusions

Uncertainties in rock-fall exposure

Useful to distinguish between:

• Aleatoric uncertainties (randomness)

• Epistemic uncertainties (knowledge)

7

Uncertainties in rock-fall exposure

Volume $v[m^3]$

8

Uncertainties in rock-fall exposure

• The exceedance frequency can be described by , e.g.:

 $H_{v}(v|\theta) = a v^{-b}$

• Include the epistemic uncertainties by modeling the parameters (A,B) as a random vector $\theta = [a,b]^T$

$$f_{\Theta}(\theta) \qquad \Theta \sim LN(\mu_{a'}\mu_{b'}\sigma_{a'}\sigma_{b'},\rho_{a,b})$$

• The unconditional exceedance frequency can be calculated:

$$H_{V}(v) = \int_{\Theta} H_{V}(v|\theta) f_{\Theta}(\theta) \,\mathrm{d}\theta$$

Overview Introduction System Exposure

Trajectory Analysis

lysis Load model

Resistance Conclusions

Uncertainties in rock-fall exposure

Modeling of the rock-fall exposure

- For protection structures the maximum annual rock-fall event is of interest.
- Derivation of the distribution $f_V(v)$ of the maximum annual rock-fall event from the exceedance frequency $H_V(v)$:

Overview	Introduction	System Exposure	Trajectory Analysis	Load model	Resistance	Conclusions	
----------	--------------	-----------------	---------------------	------------	------------	-------------	--

Falling process of a stone

Uncertainties in rock-fall trajectory

Once a rock is released its trajectory is mainly determined by the topography, its mode of motion and its material characteristics.

Aleatoric uncertainties in falling process.

Trajectory models use Monte-Carlo-Simulations.

Introduction System Exposure Trajectory Analysis Conclusions Overview Load model Resistance

Uncertainties in rock-fall trajectory

Epistemic uncertainties in the trajectory analysis due to model assumptions (2D,3D, lumped mass assumption, impact model, simplification of the slope, etc.).

Overview	Introduction	System Exposure	Trajectory Analysis	Load model	Resistance	Conclusions	
----------	--------------	-----------------	---------------------	------------	------------	-------------	--

Determination of the impact load

Characterization of the load

The joint distribution of the maximum annual energy (or velocity) and volume is then calculated by:

Overview	Introduction	System Exposure	Trajectory Analysis	Load model	Resistance	Conclusions	

Resistance of the protection structure

Failure probability of protection structures

• How can a design load be determined?

- Code based design
- Reliability based approach, target reliability
- Risk based approach

Overview Introduction System Exposure Trajectory Analysis Load model Resistance Conclusions System resistance:

Code design of protection structures

e.g. code based design for a protection gallery:

$$S = X_2 C_k 2.8 \text{ c}^{-0.5} (3V/(4\pi))^{7/30} M_E^{-0.4} \tan(\varphi) E^{-0.6}$$

 X_2 $\sim LN(1.0.2)$ Model uncertainty C_k $\sim N(1.2, 0.2)$ Constr. coefficient ~ N(0.75,0.15) layer thickness С ~ N(30000,7000) Y-modulus soil M_E $tan(\phi)$ $\sim N(0.5773, 0.05)$ friction angle V,E $\sim f_{VE}(v,e)$ joint distribution of the energy and stone volume

System resistance: Failure probability of protection structures

Probability of failure of a protection structure can be calculated:

$$Pr(F) = \iint_{0}^{\infty} \int_{0}^{\infty} Pr(F|e,v) f_{E}(e|v) f_{V}(v) de dv$$

- FORM, SORM, simulation techniques
- Stochastic FEM (response surface, sensitivity based approach)
- Development of vulnerability curves for pre-fabricated protection structures.

Energy *e* | *rockfall* [*kJ*]

Conclusions

- Methodology for the assessment of design loads is presented
- Generic methodology: different models applicable; part wise exchangeability.
- Facilitates the design according to codes.
- Facilitates the risk assessment and a risk based design.

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zürich

CHARACTERIZATION OF DESIGN IMPACT LOADS FOR ROCK-FALL PROTECTION

Thank you for your attention!

Contact: Matthias Schubert schubert@ibk.baug.ethz.ch