

IFIP WG 7.5 Reliability and Optimization of Structural Systems, Mexico, Toluca, August 06-09, 2008

SYSTEM EFFECTS IN PORTFOLIO LOSS ESTIMATION

Matthias Schubert ETH Zürich, Institute of Structural Engineering, Group Risk & Safety

Michael H. Faber ETH Zürich, Institute of Structural Engineering, Group Risk & Safety

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zürich

Institute of Structural Engineering [2 Group Risk and Safety

Overview

- Introduction
- Dependencies in portfolios
- Hierarchical model formulation
- System effects in portfolios
- Conclusions

Introduction

- Decision makers and stake holders managing portfolios of assets (road authorities, rail companies, etc.) need an overview of their risks for strategic planning.
- The aggregation of risks and the loss estimation are crucial requirements for the management.
- Loss estimation is influenced by two factors: expected value and the variance of losses.
- In principle decision-makers are faced with three questions:

Introduction

 How large is the probability of a total loss of the the portfolio?

 How large is the probability that a certain budget is exceeded?

• Are there dependencies and nonlinearities in the portfolio which lead to an increase of the risk?

Dependencies in Portfolios

Geographic locations lead to common aleatoric effects:

- Floods, earthquakes, strong winds, avalanches,...

- common economic conditions.

Dependencies in Portfolios

• Best practices lead to common epistemic effects.

The set of available models is restricted; same models are used for the design for same failure modes. Design codes, standards, common procedures, ...

The models are imperfect – the same effect realizes in the same models.

→ All common effects introduce dependencies in the model and have to be considered explicitly in a portfolio model.

Introduction Overview

Dependencies Hierarchical model System effects

Conclusions

Dependencies in Portfolios

Overview Introduction De

Dependencies Hierarchic

Hierarchical model System effects

Conclusions

Dependencies in Portfolios

Overview Introduction

Dependencies Hierarch

Hierarchical model System effects (

Conclusions

Dependencies in Portfolios

Overview Introduction Dependencies Hierarchical model

System effects

Conclusions

Hierarchical model formulation

Homogeneous portfolios:

- Number of assets.
- Identical failure probabilities.
- Uniform dependency structure.

Overview Introduction Dependencies Hierarchical model

System effects

Conclusions

Geographic Location A

Hierarchical model formulation

- Number of assets.
- Different external conditions.
- Nonuniform dependency structure.

Geographic Location B

Conclusions

Hierarchical model formulation

Hierarchical model formulation

Advantages:

 Existing sub-models can be used; dependencies are modeled on a higher hierarchical level.

• Hierarchical approach utilize causal relations among components.

• Failure probabilities of assets can be assessed conditionally independent.

Hierarchical model formulation

• Loss distribution function $p_N(n)$ can be assessed *almost* independent from the size a homogeneous portfolio:

$$p_N(n) = \int_{\boldsymbol{\theta}} {\binom{k}{n}} (p_F(F | \boldsymbol{\theta}))^n (1 - p_F(F | \boldsymbol{\theta}))^{k - n} f_{\boldsymbol{\theta}}(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

 Inhomogeneous portfolios can be divided into a set of homogeneous portfolios; each treated as a conditionally independent random variable:

$$p_N(n) = \Pr(N_1 + N_2 = n) = \int_{\boldsymbol{\Theta}} \sum_{i=0}^n \Pr(N_1 = i \mid \boldsymbol{\Theta}) \Pr(N_2 = n - i \mid \boldsymbol{\Theta}) f_{\boldsymbol{\Theta}}(\boldsymbol{\Theta}) d\boldsymbol{\Theta}$$

System Effects

- Homogeneous portfolio with 12 identical assets and subjected to an identical variant load.
- Distinct tail of the loss distribution.
 Expected loss is identical nonlinearity of consequences will increase the expected losses.

Homogeneous portfolio

- Two effects are observable: systematic effects and unsystematic effects.
- Unsystematic effects vanish with the number of assets in the portfolio; systematic effects remain.

Homogeneous portfolio

- Two effects are observable: systematic effects and unsystematic effects.
- Unsystematic effects vanish with the number of assets in the portfolio; systematic effects remain.

 Increasing the number of assets does not decrease the probability for large losses

Inhomogeneous portfolio

- Inhomogeneous portfolio; different geographical location, different variant loads.
- The probability that half of the portfolio is lost is decreased. Adding assets from the same population does not change significantly the probability of large losses.

Risk reduction measure

- Risk reduction: Reduction of epistemic uncertainties in a portfolio.
- Two positive effects: Expected number of failures is decreased; Dependency is decreased.
- Might become rational to improve the best practice.

Conclusions

- Hierarchical approach for the modeling of portfolio losses is presented.
- Allows using conditional independence among assets in the portfolio.
- Different sources of common causes (geographical, best practices) lead to large variance in the loss distribution function.
- Especially for the aggregation of risks of importance; neglecting such common causes lead to sub optimal decisions if consequences behave nonlinear.

IFIP WG 7.5 Reliability and Optimization of Structural Systems, Mexico, Toluca, August 06-09, 2008

SYSTEM EFFECTS IN PORTFOLIO LOSS ESTIMATION

Thank you for your attention