





### On the Assessment of Robustness II

Numerical Investigations

Matthias Schubert, Daniel Straub, Jack W. Baker, Michael H. Faber

Institute of Structural Engineering IBK Chair of Risk and Safety ETH - Zürich



Eidgenossische Technische Hochschule Zürich Swiss Federal Institute of Technology Zürich



Effect on robustness

ness Discussion

Conclusion

#### Overview

- Introduction
- Structural systems & exposures
- Effect on robustness of
  - Number of elements / load variability
  - Failure consequences
  - Load redistribution
  - Extraordinary loads / repair
- Conditional robustness
- Discussion
- Conclusion







## Introduction

- Codes provide instructions for design of the components
- Robustness is recommended by the codes
- Robustness is related to
  - redundancy
  - ductility
  - reliability
  - behavior after damage







Effect on robustness

ess Discussion

Conclusion



# **Structural Systems**

- Parallel system with *n* elements
- Subjected to different types of exposures
- Perfect ductile / brittle
- Load distribution after component failure
- Element damage / system failure
- The one element case represents series systems

- The systems are kept generalized

















#### Exposures







Discussion

Conclusion

#### Number of components – ductile material

- The greater the number of components, the more robust
- One component No robustness
- One component Series system







ess Discussion

Conclusion

## Load variability – ductile material

- Higher CoV leads to less robustness
- Higher Cov increases the probability that the system fails if one component is damaged
- Here uncorrelated resistance is assumed – Correlation has the same effect as reducing the number of components







### Load variability – brittle material

- No residual carrying capacity
- Cascading system failure
- The robustness is close to zero
- Indirect risks are dominating
- Probabilities for damage states are low – or failure consequences high





Effect on robustness

Discussion

Conclusion

## Failure Consequences

- The higher the indirect consequences, the lower the robustness
  - Increase the robustness with
    - effective egress routes
    - decisions in rescue action
    - effective warning systems
- Effect of increasing the damage consequences
  - The robustness is related to reliability





Eidgenossische Technische Hochschule Zürich Swiss Federal Institute of Technology Zürich



Overview Introduction

Structural Systems

Effect on robustness

Discussion (

Conclusion



## Load redistribution

- How is the load carried by the structure? Tie together or accept local failure?
- Load redistribution might increase system failure
- Indirect consequences occur in the case of local failure
- In some cases it is better to tie the structure together – but not in all cases.
- This robustness assessment can help to identify the proper strategy





Overview Introduction

Structural Systems

Effect on robustness

S Discussion

Conclusion

#### Extraordinary loads / repair actions







Effect on robustness

ustness Discussion

Conclusion

## Extraordinary loads / repair actions



- Random load in time + accidental loss of one component
- The structure is more robust when damage can be detected
- The robustness is also affected by actions such as monitoring and repair
- Imperfect damage detection or partial repairs can easily be included





# **Conditional robustness**

- Loss of one component is assumed
- Information about structural performance
- Other damage states can be investigated
- Useful if the triggering event or the probability is unknown
- Different CoV and system properties are investigated
- Different strategies can be investigated to identify highest robustness







## Discussion

- This first study of general systems showed the potentials of the index
- Further work:
  - Identification of index values that indicate acceptable robustness
  - Application for decision making, to identify efficient action
  - Investigation of local failure consequences
  - Identification of simplified design guidelines for codes





Structural Systems

Effect on robustness

Discussion

Conclusion



## Conclusions

- The index shows that system robustness is increased by
  - Increasing redundancy
  - Lowering variability in the load
  - Increasing ductility
  - Decreasing failure consequences
- The index accounts for actions such as evacuations and repair
- The index accounts for the time when actions are taken







#### On the Assessment of Robustness II

Numerical Investigations

Thank you for your attention