

Institute of Structural Engineering [1 Group Risk and Safety

6th International PhD Symposium in Civil Engineering 2006

Probabilistic Assessment of the Robustness of Structural Systems

Matthias Schubert

Institute of Structural Engineering IBK Chair of Risk and Safety ETH - Zurich

Introduction

- Robustness is generally accepted as a characteristic of a good system design
- Objective quantification of robustness is needed
- A risk-based method for measuring robustness is proposed here
- Robustness is interpreted here as damage tolerance: "the consequences of structural failure should not be disproportional to the effect causing the failure"

Introduction

Desirable properties for a measure of robustness:

- General applicable to systems
- Allows for ranking of alternative systems
- Provides a criterion for identifying acceptable robustness

Consequences

The Index of Robustness

- Dependent upon the probability of damage occurrence
- Dependent upon consequences
- Depend upon the exposure
- Dependent upon post damage actions
- Is more than a characteristic of the structure

Framework Index of Robustness Deterioration

ration Conclusion

Effect of deterioration on the robustness

- Endogenous or exogenous effects might reduce the resistance over time
- The probability of failure and the probability of damage changes in time
- Intuitively, the robustness decreases over time

k Index of Robustness

Deterioration Conclusion

Effect of deterioration on the robustness

Structural System

- Parallel system with ten members
- Structural components are perfectly ductile
- Uniform redistribution of the load
- Marginal component failure probability 10⁻³
- Initial resistance ~ LN(1.715,CoV=0.07)
- Time dependent degradation function (Faber and Melchers, 2001)

 $R(t) = R_0 \cdot \psi(t_a)$

k Index of Robustness

Deterioration Conclusion

Effect of deterioration on the robustness

Exposure

- Dead load ~ N(0.3,Cov=0.1)
- Live load ~ W(0.7,Cov=0.3)

Consequences

- Damage consequences for a single component is equal to one
- Failure consequences are 100 times the damage consequences

Deterioration Conclusion

Effect of deterioration on the robustness

- Initial system is highly redundant
- The system seems to be robust
- The robustness decreases rapidly over time
- High robustness of the initial system compared to deteriorated system

Framework Index of Robustness

Deterioration Conclusion

Effect of deterioration on the robustness

$$I_{Rob}(t) = \frac{\sum_{i} P_{D,i}(t) \cdot C_{Dir}}{\sum_{i} P_{D,i}(t) \cdot C_{Dir} + P_{F}(t) \cdot C_{Ind}} \approx \frac{P_{D,1}(t) \cdot C_{Dir}}{P_{D,1}(t) \cdot C_{Dir} + P_{F}(t) \cdot C_{Ind}} = \frac{C_{Dir}}{C_{Dir} + \frac{P_{F}(t)}{P_{D,1}(t)} \cdot C_{Ind}}$$

 Deterioration leads to a disproportional increase of the failure probability

Index of Robustness

Deterioration Conclusion

Effect of inspections and repair actions

- High deterioration is assumed
- Inspection every 25 years
- Perfect repair actions are assumed

Effect of inspections and repair actions

- Repair and maintenance actions can increase the robustness
- The robustness can be kept above a certain level
- Robustness calculations can help to identify repair and maintenance strategies.

Conclusions

- The framework is based on risk assessment and decision theory
- The index of robustness facilitates the quantification of robustness
- It allows for the implementation of different mitigation measures over the life time of structural systems
- By implementing inspection and repair actions the robustness of a system can be controlled
- Further research is necessary to develop factors for a code based design including direct and indirect consequences.

6th International PhD Symposium in Civil Engineering 2006

Probabilistic Assessment of the Robustness of Structural Systems

Matthias Schubert

Thank you for your attention