

Institute of Structural Engineering [1 Group Risk and Safety

10th International Conference on Applications of Statistics and Probability in Civil Engineering

Overview	Introduction	Concept of robustness	Risk assessment	Results	Conclusions	

Introduction

- Robustness is generally accepted as a characteristic of a good system design
- Objective quantification of robustness is needed
- Robustness is interpreted here as damage tolerance:

The consequences of structural failure should not be disproportional to the effect causing the failure

Overview Introduction Concept of robustness Risk assessment Results Conclusions

Concept for the quantification of robustness

 $I_{Rob} = \frac{Direct \ Risk}{Direct \ Risk + Indirect \ Risk}$

The Index of Robustness

 $I_{Rob} = \frac{Direct \ Risk}{Direct \ Risk + Indirect \ Risk}$

- Assumes values between zero and one
- Measures relative risk only
- Dependent upon the probability of damage occurrence
- Dependent upon consequences
- Is more than a characteristic of the structure

Risk Assessment

- This concept is applied to a V-column overpass consisting of:
 - pre-stressed box girder
 - columns
 - tension elements
- The risk due to vehicle impact is calculated by using influence diagrams

02.08.2007

Highway

Direct Consequences

- fatalities / LQI
- repair costs
- property damage
- clean up costs

- fatalities / LQI
- clean up costs
- rebuild costs
- property damage
- user costs

Indirect Consequences

- fatalities / LQI
- clean up costs
- rebuild costs
- property damage
- user costs

Introduction

Concept of robustness

Risk assessment Results

Conclusions

Measures to increase the robustness – Structural performance

- Increase reliability of components – vulnerability of one member is reduced
- Expected value of the indirect consequences decreases faster than direct consequences

Measures to increase the robustness – Structural performance

- Increase reliability of components – increase of the damage tolerance.
- The index is converging to an upper limit.

Measures to increase the robustness – System performance

- Reduction of consequences
- Indirect risk increases disproportional to the average daily traffic

Measures to increase the robustness – System performance

- Increase the redundancy of the roadway network
- Affects mainly the risk due to user costs
- User costs have a large influence on the decision making in roadway networks

Conclusions

- The proposed index of robustness is applicable to complex and realistic systems.
- It accounts consistently for different robustness related aspects
- It is shown that influence diagrams have a large potential for the risk assessment of rare events
- The site and object specific character of rare events can be accounted for by implementing specific information in the network.
- Further work is necessary to set criteria's for acceptable values of the index of robustness.

10th International Conference on Applications of Statistics and Probability in Civil Engineering

Thank you for your attention