

Seminars on Aspects of

Integral Risk Management in Engineering

15. December 2009

The distribution of the maximum for a stationary Gaussian process

Tuesday, 15. December 2009 17:00 – 18:15, HIL E 6 ETH Zürich, Hönggerberg, 8093 Zürich Karl Breitung

Munich

A classical problem of extreme value theory is the derivation of maximum distributions for stochastic processes. A standard example is the stationary Gaussian process x(t). Till now the general form of the asymptotic maximum distribution is not completely known.

Assuming that the process has mean 0 and variance 1 and its autocorrelation function r(t) has near zero the form $r(t) = 1 - |t|^{\alpha} + o(|t|^{\alpha}), t \rightarrow 0$, with $0 < \alpha \le 2$, the distribution of the maximum is $P(\max x(t) > u) \approx u^{2/\alpha} \Phi(-u) H_{\alpha}, u \rightarrow \infty$, where $\Phi(.)$ is the standard normal integral and H_{α} (called Pickands constant) is a constant depending only on α . This constant H_{α} is known only for $\alpha = 1$ and $\alpha = 2$. Here a simple derivation for this result is given and then the value of H_{α} is derived for all values $0 < \alpha \le 2$.