Risk and Safety in Engineering

Prof. Dr. Michael Havbro Faber
Swiss Federal Institute of Technology
ETH Zurich, Switzerland

Contents of Today's Lecture

- The organisation of the lecture practical stuff
- Why risk and safety in engineering?
- Decision problems in engineering
- Examples
- The lecture program

Organisation of the Lecture

- Course webpage address is: http://www.ibk.ethz.ch/fa/education/ws_safety/index
- Available on course webpage:
 - Lecture notes for the entire course (non-printable version)
 - Exercises
 - Exercise Solutions
- Print edition of lecture notes for the entire course is available for a cost of CHF 45.
- PowerPoint presentations for each lecture will be uploaded on the webpage the latest one day before the respective lecture.
- Support will be available you are welcome to contact Prof. Michael Faber in room HIL E 23.3 or contact Harikrishna Narasimhan in room HIL E 13.1 or by email (harikrishna@ibk.baug.ethz.ch)

Examination

- The exam for the course is an oral examination
 - the emphasis of the exam is to ensure that a fundamental understanding of the area of risk and safety in engineering is acquired by the students
- The confirmation (or "testat") for admission to the examination is fulfilled by attending the lectures of the course.
- Doctoral students need to take the oral examination in order to get credit points for this course.

- What do engineers do ?
 - Plan, design, build, maintain and decommission

<u>Infrastructure</u>

Roads, water supply systems, tunnels, sewage systems, waste deposits, power supply systems, channels

Structures

houses, hospitals, schools, industry buildings, dams, power plants, wind turbines, offshore platforms

- Safeguard people environment assets

SUSTAINABLE DEVELOPMENT!

from natural and man made hazards

• What do engineers do?

Is what we are doing of any relevance for society?

Examples of what we help to develop

Golden Gate Bridge - USA

Øresund bridge - Denmark

Examples of what we help to develop

Big Dig Boston/USA

Examples of what we help to develop

Hoover Dam - USA

Examples of what we help to develop

Hong Kong Island - China

Helping to control risks due to natural hazards

Helping to control risks due to natural hazards

Earthquakes

Helping to control risks due to degradation

Corrosion

Fatigue

Helping to control risks due to accidents

Fires

Explosions

Helping to control risks due to lack of knowledge

Over load

Design error

Helping to control risks due to malevolence

Bomb explosions

Airplane impacts

What are engineers working with ?

Real problems - the real world - nature Concrete Gravity **Dynamics** Ice Waves New materials **Snow** Soil Temperature Rocks Water Waste **Chemicals** Air Electricity Wind Steel

How do engineers work with the real world?

We model the real world to the "best" of our knowledge

How do engineers use knowledge ?

In a perfectly known world

How do engineers establish knowledge ?

How do engineers use knowledge ?

Uncertainty

WHY?

Models are not precise

Data are not sufficient

Natural variability

Experience is subjective

How do engineers make decisions

All activities are associated with uncertainties

Activities could be:

- Transport
- Work
- Sport

but also

- Production of energy
- Exploitation of resources
- Construction and operation of production and infrastructure projects
- Research and development

Every day we must make decisions in regard to activities associated with uncertainties

Every one of these activities is associated with uncertainties We all have an opinion regarding the associated risks We have gut feelings!

Disasters and accidents have always occurred Some examples

Tacoma Narrows, Washington, 1940

Fort Mayer, Virginia, 1908

Open questions

- did we realise the risks?
- are the consequences acceptable?

Disasters and accidents have always occurred Some examples

Kobe, 1995

Open questions

- did we realise the risks?
- are the consequences acceptable?

Swiss Federal Institute of Technology

Disasters and accidents have always occurred

Some examples

Minneapolis, Minnesota, 2007

Open questions

- did we realise the risks?
- are the consequences acceptable?

New York, 2001

Swiss Federal Institute of Technology

Disasters and accidents have always occurred

Some examples

Open questions

- did we realise the risks?
- are the consequences acceptable?

Hurricane Katrina, New Orleans, 2005

Swiss Federal Institute of Technology

Risk assessment, within the framework of decision analysis, provides a basis for rational decision making subject to uncertain and / or incomplete information

Thereby we can take into account, in a consistent manner, the prevailing uncertainties and quantify their effect on risks

Thus we may find answers to the following questions

- How large is the risk associated with a given activity?
- How may we reduce and / or mitigate risks?
- How much does it cost to reduce and / or mitigate risks?
- What risks can we accept what can we afford ?

Definition of Risk

Risk is a characteristic of an activity relating to all possible events n_E which may follow as a result of the activity

The risk contribution R_{E_i} from the event E_i is defined through the product between

the event probability P_{E_i}

and

the consequences of the event C_{E_i}

The risk associated with a given activity R_A may then be written as

$$R_{A} = \sum_{i=1}^{n_{E}} R_{E_{i}} = \sum_{i=1}^{n_{E}} P_{E_{i}} \cdot C_{E_{i}}$$

Uncertainties must be considered in the decision making throughout all phases of the life of an engineering facility

Example – Decommissioning of the Frigg Field

• The Frigg Field – built 1972-1978

- TCP2

- TP1

- CDP1

According to international conventions the structures must be decommissioned

Each structure:

Weight: 250000 t

Costs: 200 - 600 million CHF

None of the platforms were designed for decommissioning!

Structural Design

Exceptional structures are often associated with structures of "Extreme Dimensions"

Concept drawing of the Troll platform

Structural Design

or associated with structures fulfilling "New and Innovative Purposes"

Concept drawing of Floating Production, Storage and Offloading unit

Illustrations of the ARIANE 5 rocket

Before

During

After

Optimal allocation of available resources for risk reduction

- strengthening
- rebuilding

in regard to possible earthquakes Damage reduction/Control

Emergency help and rescue

After quake hazards

Rehabilitation of infrastructure functionality

Condition assessment and updating of reliability and risks

Optimal allocation of resources for rebuilding and strengthening

Inspection and Maintenance Planning

Due to

- operational loading
- environmental exposure

structures will always to some degree be exposed to degradation processes such as

- fatigue
- corrosion
- scour
- wear

Inspection and Maintenance Planning

For industrial facilities inspection and maintenance is also an important issue with regard to:

reduction of production downtime

safety of workers

safeguarding the environment

Inspection and Maintenance Planning

For industrial facilities inspection and maintenance is also an important issue with regard to:

reduction of production downtime

safety of workers

safeguarding the environment

New emerging challenges have necessitated exceptional requirements with regard to construction management and safety

The Risk Based Decision Process

Swiss Federal Institute of Technology

The Risk Based Decision Process

Risk assessment supports decision making subject to uncertainties

The theoretical basis for risk based decision making is the theory of decision analysis

The main task is to optimally manage risks in terms of life safety, economic losses as well as potential damages to the environment

The Risk Based Decision Process

The risk assessment can be categorized according to the degree of detail

Level 1:

Analysis of the probabilities of occurence of critical events

Level 2:

Analysis of the probabilities of occurence of critical events and the corresponding consequences

Level 3:

As for level 2, but with consideration of human errors as well as potential loss of lives – if relevant

Categorization of risk assessments is usefull!

Documents to what detail the risk assessment was performed!

Life Quality

- Demographical indicators
 - Gross domestic product (GDP) per capita

Life Quality

- Demographical indicators
 - Life expectancy at birth

Life Quality

Life quality can be assessed through the

"Human Development Index" (UNO) or "Life Quality Index" (JCSS)

as a function of GDP, life expectancy, free time,...

GDP and life expectancy are important components

10-20% of the GDP is reinvested into life saving activities

Maintenance of infrastructure costs around 10-15 per cent of the available GDP

Cost efficiency is of tremendous importance!

Based on statistical information the contribution to life risks of different activites may be assessed

Activity/course	Number of fatalities
	per hour per 10 ⁸ persons
Mountaineering (international)	2700
Aviation transport (international)	120
Deep sea travling	59
Auto traffic	56
Mining (coal)	21
Construction work	7.7
Manufacturing/production	2.0
Accidents at home	2.1
Accidents at home (healthy persons)	0.7
Fires at home	0.1
Structural failures	0.002

Accidents account only for 4% of all deaths

Illness such as heart failure, cancer and strokes account for 58%

Causes of death	probability/year	probability/lifetime
Transport Accidents	1.66E-04	1.28E-02
- Pedestrian	2.13E-05	1.64E-03
- Pedal cyclist	2.78E-06	2.14E-04
- Motorcycle rider	1.07E-05	8.24E-04
- Car occupant	5.24E-05	4.05E-03
- Occupant of heavy transport vehicle	1.31E-06	1.01E-04
- Bus occupant	1.30E-07	1.00E-05
- Animal rider or occupant of animal-drawn vehicle	4.07E-07	3.14E-05
- Occupant of railway train or railway vehicle	9.12E-08	7.04E-06
- Air and space transport accidents	3.22E-06	2.49E-04
Non-transport Accidents	1.90E-04	1.47E-02
- Falls	5.27E-05	4.07E-03
- Struck by or against another person	1.58E-07	1.22E-05
- Accidental drowning and submersion	1.15E-05	8.88E-04
- Exposure to electric current, radiation,		
temperature, and pressure	1.51E-06	1.17E-04
- Exposure to smoke, fire and flames	1.16E-05	8.96E-04
- Uncontrolled fire in building or structure	9.38E-06	7.24E-04
- Contact with venomous animals and plants	2.14E-07	1.65E-05
- Earthquake and other earth movements	9.82E-08	7.58E-06
- Storm	1.89E-07	1.46E-05
- Flood	1.23E-07	9.48E-06
- Lightning	1.54E-07	1.19E-05
- Alcohol	1.06E-06	8.20E-05
- Narcotics and hallucinogens	2.28E-05	1.76E-03
Intentional self-harm	1.07E-04	8.26E-03
Assault	7.12E-05	5.49E-03
Legal intervention	1.39E-06	1.07E-04
Operations of war	5.96E-08	4.60E-06
Complications of medical and surgical care	1.06E-05	8.18E-04

Occupational risks

Occupation sector	% of employees	Fatalities per 100,000 employed
Private industry	90	4.2
- Agriculture, forestry and fishing	14	22.7
- Mining	2	23.5
- oil and gas exploitation	1	23.1
- Construction	20	12.2
- Manufacturing	10	3.1
- Transportation and public utilities	16	11.3
- Wholesale trade	4	4.0
- Retail trade	9	2.1
- Finance, insurance, and real estate	2	1.0
- Services	12	1.7
Government	10	2.7
- Federal (including resident armed forces)	2	3.0
Total	100	4.0

Natural disasters

Victims 1	Insured losses 2,3		Event	Country
300 000	_		Storm and flood catastrophe	Bangladesh
250 000	_	28.07.1976	Earthquake in Tangshan (8.2 Richter scale)	China
138 000	3	29.04.1991	Tropical cyclone Gorky	Bangladesh
60 000	_	31.05.1970	Earthquake (7.7 Richter scale)	Peru
50 000	156	21.06.1990	Earthquake in Gilan	Iran
25 000	_	07.12.1988	Earthquake in Armenia	Armenia, ex-USSR
25 000	_	16.09.1978	Earthquake in Tabas	Iran
23 000	_	13.11.1985	Volcanic eruption on Nevado del Ruiz	Colombia
22 000	233	04.02.1976	Earthquake (7.4 Richter scale)	Guatemala
19 118	1063	17.08.1999	Earthquake in Izmit	Turkey
15 000	100	26.01.2001	Earthquake (moment magnitude 7.7) in Gujarat	India, Pakistan
15 000	106	29.10.1999	Cyclone 05B devastates Orissa state	India, Bangladesh
15 000	_	01.09.1978	Flooding following monsoon rains in northern parts	India
15 000	530	19.09.1985	Earthquake (8.1 Richter scale)	Mexico
15 000	_	11.08.1979	Dyke burst in Morvi	India
10 800	_	31.10.1971	Flooding in Bay of Bengal and Orissa state	India
10 000	234	15.12.1999	Flooding, mudslides, landslides	V enezuela, Colombia

Malevolence - terrorism

Victims ¹	Insured losses ²	Date	Event	Country
at least 3000	19 000	11.09.2001	Terror attack against WTC, Pentagon and other buildings	USA
300	_	23.10.1983	83 Bombing of US Marine barracks and French paratrooper base in Beirut Lebar	
300	6	12.03.1993	Series of 13 bomb attacks in Mumbai	India
270	138	21.12.1988	PanAm Boeing 747 crashes at Lockerbie due to bomb explosion	UK
253	_	07.08.1998	.1998 Two simultaneous bomb attacks on US embassy complex in Nairobi Kei	
166	145	19.04.1995	95 Bomb attack on government building in Oklahoma City US	
127	45	23.11.1996	Hijacked Ethiopian Airlines Boeing 767-260 Indiaditched at sea	
118	_	13.09.1999	Bomb explosion destroys apartment block in Moscow Russia	
100	_	04.06.1991	Arson in arms warehouse in Addis Ababa	Ethiopia
100	6	31.01.1999	Bomb attack on Ceylinco House in Colombo	Sri Lanka

¹Dead or missing ² Excluding liability losses; in USD m, at 2001 price level

Any activity carries a risk potential

It is important that this potential is fully understood

Only when the risk potential is fully understood can rational decisions be identified and implemented

Case where the risk potential was not fully appreciated

The Tjörn bridge in Sweden

Just after construction

Case where the risk potential was not fully appreciated

The Tjörn bridge in Sweden

A few weeks later

Failures in structural engineering

Failures in structural engineering

Failures in structural engineering

Primary causes of structural failure

Poor construction procedures

Inadequate connection elements

Inadequate load behavior

Unclear contract information

Contravention of instructions

Unforeseeable events

Errors in design calculations

Reliance on construction accuracy

Complexity of project system

Aim of the lecture

- General introduction to risk and safety in engineering
- Basics and principles of risk based decision analysis
- Theory and technical aspects of risk assessment
- Methods of reliability analysis and introduction to the JCSS probabilistic model code
- Introduction to time variant and systems reliability analysis and assessment of structural robustness
- Illustration of computer tools for risk and reliability analysis
- Applications for design, assessment and maintenance planning
- Understanding of engineering optimization and risk acceptance

Organisation of the Lecture

DATE	SUBJECT	DATE	SUBJECT
16.09.09	Introduction and overviewLife quality, risks and decision makingHazards and causes of failures	04.11.09	The JCSS probabilistic model code - Probabilistic modeling of resistances - Probabilistic modeling of loads
23.09.09	Review of probability theory and statistics - Uncertainties in engineering modeling - Basic data analysis - Random variables and processes - Engineering model building	11.11.09	Systems reliability analysis and robustness - Series and parallel system analysis - Structural systems analysis - Robustness assessment of structures
30.09.09	Engineering decision analysis - Prior decision analysis - Posterior decision analysis - Pre-posterior decision analysis	18.11.09	Time variant reliability analysis The Poisson and the Normal processes The first excursion problem and mean out crossing rates Approximations in time variant reliability analysis
07.10.09	Risk assessment in civil engineering - Procedures of risk assessment - Scenario identification and analysis - System representation - Probabilities and consequences	25.11.09	 - Treatment of non ergodic variables and random sequences Bayesian Probabilistic Nets (BPN) in risk assessment - Basic theory of BPN - Application of BPN in risk assessment - Application of BPN in large scale risk management
14.10.09	 Multi scale indicator based risk assessment Classical reliability analysis Failure rate data The reliability function Updating of failure rates based on data Failure rate functions and the bath-tub curve 	02.12.09	Reliability based structural design and assessment - Safety formats of design codes - Calibration of design codes - Reliability updating - Assessment of existing structures (and SIA 269)
21.10.09	Structural reliability analysis - First and Second Order Reliability Methods - Monte Carlo and importance sampling	09.12.09	 Risk based inspection and maintenance planning The basic problem Modeling of degradation processes Inspection quality and the PoD concept
28.10.09	Software tools for reliability analysis - Presentation of the COMREL program - Exercises in the PC-lab	16.12.09	 Generic approaches to inspection planning Optimal decision making and risk acceptance criteria Optimality in engineering decision making The ALARP principle for acceptability The Life Quality Index and acceptable life safety Societal life saving costs and willingness to pay

