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• Loads on Structures 

 
Loads are uncertain due to: 

 
  - Random variations in space 

 and time  

  

  - Model uncertainties 

  

  - Statistical uncertainties  

Probabilistic Modelling of Loads 



• Loads on Structures 

 
It is often useful to characterize 

loads as: 

 

  - Permanent or variable 

  

  - Fixed or free 

  

  - Static or dynamic 

 

Probabilistic Modelling of Loads 



• Loads on Structures 
 
The probabilistic modelling 
includes the following steps: 
 

 - specifying the definition of the 
random variables used to 
represent the uncertainties in the 
loading 

  

 - selecting a suitable distribution 
type to represent the random 
variable 

  

 - assigning the distribution 
parameters of the selected 
distribution. 

Probabilistic Modelling of Loads 



• Loads on Structures 

 
Permanent loads: 

 

Probabilistic Modelling of Loads 

 
V

G dV 

Density 

Material COV 

Construction Steel 0.01 

Concrete 0.04 

Timber 
- sawn beam or strut 
- laminated beam, planed 

 

0.12 

0.10 

 



• Loads on Structures 

 
Live floor loads: 

 

 

 

 m is the overall mean value for a 

given use category 

 

V is a zero mean random variable 

 

U(x,y) is a zero mean random field 

 

Probabilistic Modelling of Loads 

( , ) ( , )W x y m V U x y  



• Loads on Structures 

 
Wind loads 

Probabilistic Modelling of Loads 

a g r a eref ref
w = c c c Q c c Q

d a e ref
w = c c c Q

Smaller rigid structures 

Taller flexible structures 

 

 

cr: roughness factor 

cg: gust factor 

ca: aero-dynamic shape factor 

cd: dynamic factor 

ce: exposure factor 

r: 1.25 kg/m3 
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• Loads on Structures 

 
Wind loads 

Probabilistic Modelling of Loads 

cr: roughness factor 

cg: gust factor 

ca: aero-dynamic shape factor 

cd: dynamic factor 

ce: exposure factor 

r: 1.25 kg/m3 

2 2 2 2

a r ref
w c c Q

V V V V  

2 2 2 2 2

d a r ref
w c c c Q

V V V V V    Dynamic sensitive 

Rigid 

Wind load can be assumed to 

be Log-Normal distributed 



• Loads on Structures 

 
Snow loads 

Probabilistic Modelling of Loads 

Sr: Snow load on roof 

Sg: Snow load on ground 

r: ground to roof conversion factor  

k: location factor (1.25 coastal, 1,5 inland) 

h: altitude in meters 

hr: reference altitude (300 meters) 

r: 1.25 kg/m3 

r

h

h

r gS = S  r  k

 gS d     dr 

Typically the snow load is modelled by a Gamma or a Gumbel distribution 



Stochastic Processes 

Random variables represent random events, e.g. properties of objects 
 
If we look at random events over time we speak about random processes 
to represent these. 
 
Very often we speak implicitly about random processes in structural 
engineering 
 
Examples: 
 
 Earthquake with a return period of 475 years 

 
 100 yearly flood 

 
 Maximum loads during the lifecycle of a structure 
 
 
 
 
 



Stochastische Prozesse 

• In many engineering problems we need to be 
able to describe the random variations in 
time more specifically: 
 
The occurrences of events at random  
discrete points in time (rock-fall, 
earthquakes, accidents, queues, failures, 
etc.)  
- Poisson process, exponential and  
  Gamma distribution 
 
The random values of events occurring 
continuously in time (wind pressures, wave 
loads, temperatures, etc.) 
- Continuous random processes (Normal  
process) 

Discrete event of flood 

Continuous stress  

variations due to waves 



Bernoulli Trial and Binomialdistribution 

• A sequence of experiments with two possible exclusive 
outcomes is called Bernoulli Trial. 

• The outcomes are typically called success and failure. 
 
Example:  
 
Cars in a street;  leave road: failure, probability   p  
 
   straight: success, probability   1- p  
 
 Probability that two of five cars leave the road? 
 
Probability that none(of 5) leaves: 
 
Probability that two (of 5) leave:  
 
Binomialdistribution:   
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Bernoulli Trial and Binomialdistribution 

• A sequence of experiments with two possible exclusive outcomes is 
called Bernoulli Trial. 

• The outcomes are typically called success and failure. 
 
Example:  
 
Cars in a street;  leave road: failure, probability   p  
 
   straight: success, probability   1- p  
 
 Probability that two of five cars leave the road? 
 
Probability that none(of 5) leaves: 
 
Probability that two (of 5) leave:  
 
Binomialdistribution:   
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Bernoulli Trial and Binomialdistribution 

• Example:  
 

Cars in a street;  leave road: failure, probability   p = 0.3  
 

     
•  Binomialdistribution:   
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Bernoulli Trial and Binomialdistribution 

• Example:  
 

Cars in a street;  leave road: failure, probability   p = 0.3  
 

•      
•  Binomialdistribution:   
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Poissondistribution - Poissonprocess 

In practice the number of trials is often not possible to estimate (very large or 

unknown) 
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Poissondistribution - Poissonprocess 

 

Poissondistrbution: 

 

 

Moments: 
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 E X u  Var X u

 Frequency u = 3 per Minute.  



What about the number of events in 10 Minutes:  

3 per Minute -> 30 per 10 Minutes 

 

u can be skaled over time:  

 

 

Poissondistribution: 

 

  

The sequence of events that might be described with a Poisson 

Distribution is called Poisson Process. 
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Poissondistribution - Poissonprocess 



• The Poisson counting process is one of the most 
commonly applied families of probability distributions 
applied in reliability theory 
 
Requirements: 
 
1) the probability of one event in the interval (t,t+Dt[ 
 is asymptotically proportional to Dt. 
2) the probability of more than one event in the 
 interval (t,t+Dt[ is 0 for Dt→0.  
3) events in disjoint intervals are mutually 
 independent. 

 
 

Poissondistribution - Poissonprocess 



Random Processes 

• Continuous random processes 
 
A continuous random process is a random process which 
has realizations continuously over time and for which the 
realizations belong to a continuous sample space. 

 
 
 

 

20

21

22

23

24

25

26

27

0 10 30

Time (days)

W
at

er
 l

ev
el

20 40 50 60 70 80 90 100

28

29

30

Realization of continuous scalar valued random process 

Variations of;  

water levels 

wind speed 

rain fall 
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Random Processes 

Realisation of a continuous process 

– Water level. 

 

 

 
 



Random Processes 

• Continuous random processes 
 
The mean value of the possible realizations of a random 
process is given as: 
 
 
 
 
 
 
 
The correlation between realizations at any two points in 
time is given as: 
 

 
 
 

 ( ) ( ) ( ; )X Xt E X t x f x t dx




  

Function of time ! 

 1 2 1 2 1 2 1 2 1 2 1 2( , ) ( ) ( ) ( , ; , )XX XXR t t E X t X t x x f x x t t dx dx

 

 

   

Auto-correlation function – refers to a scalar valued random process 



• Properties 

  A random process is said to be 
strictly stationary if all its 
moments are invariant to a shift 
in time. 

 

 A random process is said to be 
strictly ergodic if it is  
  strictly stationary and in 
addition all its moments may  
  be determined on the basis of 
one realization of the process. 

Realisations of stochastic processes
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Time dependency – e.g. Windspeed: 

Observed monthly extreme 

Observed yearly extreme 

Observed 5 year extreme 
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Time dependency – e.g. Water level: 

Observed extremes 
10 days 

Observed extremes 
5 days 
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Time dependency – Extreme value distributions: 

Assuming the extreme values within a period T of an ergodic random 

process  X(t) are independent and follow the probability distribution   

 

Then, the extreme values of the same process within the period  

 

 

Are following: 
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Extreme Value Distributions 

  Extreme Type I – Gumbel Max  
 

 When the upper tail of the probability density function falls 
off exponentially (exponential, Normal and Gamma 
distribution) then the maximum in the time interval T is said 
to be Type I extreme distributed   
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For increasing time  

intervals the variance  

is constant but the mean  

value increases as:  



Extreme Value Distributions 

  Extreme Type II – Frechet Max 
 

 When a probability density function is downwards limited at 
zero and upwards falls off in the form  

 

  
 
then the maximum in the time interval T is said to be Type II 
extreme distributed   
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Extreme Value Distributions 

  Extreme Type III – Weibull Min 
 

 When a probability density function is downwards limited at 
e and the lower tail falls off towards e in the form 

 

 

 then the minimum in the time interval T is said to be Type 
III extreme distributed   
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Return Period 

 The return period for extreme events TR may be defined as: 

 

 

 

  
 
Example:  
Let us assume that - according to the cumulative 
distribution function of the annual maximum traffic load - 
the annual probability that a truck load larger than 100 ton 
is equal to 0.02 – then the return period of such heavy truck 
events is:  
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Example 
A Earthquake hazard map 
represents the ground 
acceleration in  (m/s2) with 
a return period of 475 
years.  
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Exercise 

Earthquake Hazard in Switzerland: 

Horizontal Groundacceleration (m/s2), 

10% Probability of excess 

 in 50 Years 

www.earthquake.ethz.ch 

 

A Earthquake hazard map represents the ground acceleration in  (m/s2) with a return period 
of 475 years.  
 

 

http://www.earthquake.ethz.ch/


Excercise 

A Earthquake hazard map represents the ground acceleration in  (m/s2) with a return period 
of 475 years.  
 
a) Show that Return period 475 Years  

is equal to 10% Probability of excess 
 in 50 Years 

 
b) How large is the probability that an  

earthquake with that return period  
happens within 475 years? 

 
 
Homogenious Poisson Process 

Earthquake Hazard in Switzerland: 

Horizontal Groundacceleration (m/s2), 

10% Probability of excess 

 in 50 Years 

www.earthquake.ethz.ch 

 

http://www.earthquake.ethz.ch/


Solution 

 a)   Show that Return period 475 Years is equal to 10% Probability of excess 
 in 50 Years  

 
 yearly occurrence probability:          
  
 

 mean time between two successive events: 
 

 
 The time between two successive events for Poisson processes is exponential 

distributed.  
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Solution 

b)  How large is the probability that an earthquake with that return period  
happens within 475 years? 
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• Loads on Structures 

 
Combination of loads 

 

We are interested in the maximum 

of a sum of load effects from different  

loads 

Probabilistic Modelling of Loads 
 

 )t(X...)t(X)t(Xmax)T(X n
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max  21



• Loads on Structures 

 
Combination of loads 

 

Turkstra’s load combination rule 

 

We take the max of the following  

combinations 

Probabilistic Modelling of Loads 
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• Uncertainties of resistances 

 
 

In structural engineering resistances include the following uncertainties 

 

- Geometrical uncertainties 

- Material characteristics 

- Model uncertainties 

 

The steps in the modelling process are: 

 

- define the random variables used to represent the uncertainties in the  

  resistances 

- select a suitable distribution type to represent the random variable 

- to assign the distribution parameters of the selected distribution. 

 

 

Probabilistic Modelling of Resistances 

Random variation in time and space 



• Uncertainties of resistances 

 
 

Concrete compressive strength 

Probabilistic Modelling of Resistances 

 coc f),t(f  fco:  28 day compressive strength 

(t,):  spatial stress and loading time function 

:  conversion factor between in-situ concrete 

     strength and cylinder compressive strength 

The concrete compressive strength can be assumed to be Log-Normal  

distributed with a coefficient of variation equal to 15%  



• Uncertainties of resistances 

 
 

Reinforcement steel yield strength 

Probabilistic Modelling of Resistances 

1 2 3sf X X X  

1X  normal distributed random variable representing the variation in the mean of different 

mills. 

2X
 

normal distributed zero mean random variable, which takes into account the variation 

between batches  

3X
 

normal distributed zero mean random variable, which takes into account the variation 

within a batch. 



• Uncertainties of resistances 

 
 

Reinforcement steel yield strength 

Probabilistic Modelling of Resistances 

Variable Type  E X   x MPa  xV  

1X  Normal    19 - 

2X  Normal 0  22 - 

3X  Normal 0  8 - 

A - nomA   - 0.02 

 

1( ) (0.87 0.13exp( 0.08 ))d d    

: nominal steel grade + two standard deviations of X1 

Yield stress depends on diameter of reinforcement bars 



• Uncertainties of resistances 

 
 

Structural steel yield strength 

Probabilistic Modelling of Resistances 

Description Variable Type  E X  XV  

Yield stress  yf  Lognormal 
  fyuV

y spf e C



 

0.07 

ultimate stress uf  Lognormal  uB E f  0.04 

modulus of elasticity E  Lognormal spE  0.03 

Poisson’s ratio ν  Lognormal spν  0.03 

ultimate strain ue  Lognormal u  spe  0.06 

 

 yf  uf  E  ν  
ue  

yf  1 0.75 0 0 -0.45 

uf   1 0 0 -0.60 

E    1 0 0 

ν    Symmetry 1 0 

ue      1 

 

Distribution characteristics Dependencies 



• Model uncertainties 

 
Model uncertainties relate engineering model results with actual 

structural behaviour 

 
 

 

Probabilistic Modelling of Resistances 

modX X 

mod

exp

x

x
 

X: true value 

Ξ:  model uncertainty 

Xmod:  model value 

 

xexp:  experimentally obtained value 



• The JCSS Probabilistic Model Code (PMC) 

http://www.jcss.ethz.ch/publications/publications_pmc.html  

 

Part I :  Basis of design 

Part II:  Load models 

Part III: Resistance models 

Part IV: Examples 

 

 

Probabilistic Modelling of Resistances 

http://www.jcss.ethz.ch/publications/publications_pmc.html


• The JCSS PMC – Load Models  

 
 

Probabilistic Modelling of Resistances 

2.00 GENERAL PRINCIPLES 05.2001 

2.01 SELF WEIGHT 06.2001 

2.02 LIVE LOAD 05.2001 

2.06 LOAD IN CAR PARKS 05.2001 

2.12 SNOW LOAD 05.2001 

2.13 WIND LOAD 05.2001 

2.15 WAVE LOAD 05.2006 

2.17 EARTHQUAKE 09.2002 

2.18 IMPACT LOAD 05.2001 

2.20 FIRE 05.2001 

http://www.jcss.ethz.ch/publications/PMC/LOADS/general_principles.pdf
http://www.jcss.ethz.ch/publications/PMC/LOADS/self_weight.pdf
http://www.jcss.ethz.ch/publications/PMC/LOADS/live_load.pdf
http://www.jcss.ethz.ch/publications/PMC/LOADS/loads_in_car_parks.pdf
http://www.jcss.ethz.ch/publications/PMC/LOADS/snow.pdf
http://www.jcss.ethz.ch/publications/PMC/LOADS/wind.pdf
http://www.jcss.ethz.ch/publications/PMC/LOADS/Waves.pdf
http://www.jcss.ethz.ch/publications/PMC/LOADS/Earthquake1b.pdf
http://www.jcss.ethz.ch/publications/PMC/LOADS/IMPACT.PDF
http://www.jcss.ethz.ch/publications/PMC/LOADS/FIRE.PDF


• The JCSS PMC – Resistance models 

 
 

Probabilistic Modelling of Resistances 

3.00 GENERAL PRINCIPLES 03.2001 

3.01 CONCRETE 05.2002 

3.02 STRUCTURAL STEEL 03.2001 

3.0* REINFORCING STEEL 03.2001 

3.04 PRESTRESSING STEEL 04.2005 

3.05 TIMBER 05.2006 

3.07 SOIL PROPERTIES 06.2002 

3.09 MODELUNCERTAINTIES 03.2001 

3.10 DIMENSIONS 03.2001 

3.11 EXCENTRICITIES 03.2001 

http://www.jcss.ethz.ch/publications/PMC/RESISTANCES/GENERAL.PDF
http://www.jcss.ethz.ch/Publications/PMC/RESISTANCES/CONCRETE.PDF
http://www.jcss.ethz.ch/Publications/PMC/RESISTANCES/STEELPR.PDF
http://www.jcss.ethz.ch/Publications/PMC/RESISTANCES/REBAR.PDF
http://www.jcss.ethz.ch/Publications/PMC/RESISTANCES/jcssprestress_final.pdf
http://www.jcss.ethz.ch/Publications/PMC/RESISTANCES/timber.pdf
http://www.jcss.ethz.ch/Publications/PMC/RESISTANCES/Soilproperties_5th_draft.pdf
http://www.jcss.ethz.ch/Publications/PMC/RESISTANCES/MODELUNCERTAINTIES.PDF
http://www.jcss.ethz.ch/Publications/PMC/RESISTANCES/DIMEN00.PDF
http://www.jcss.ethz.ch/Publications/PMC/RESISTANCES/EXCENTRICITIES.PDF

