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Probabilistic Modelling of Loads

• Loads on Structures

Loads are uncertain due to: Wind load Snow loadWind load Snow loadWind load Snow loadWind load Snow loadLoads are uncertain due to:

- Random variations in space 
d tiand time 

- Model uncertainties

SustainedloadSustainedloadSustainedloadSustainedload

- Statistical uncertainties Transient loadTransient load
Permanent load

Transient loadTransient load
Permanent load
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Probabilistic Modelling of Loads

• Loads on Structures

It is often useful to characterize Wind load Snow loadWind load Snow loadWind load Snow loadWind load Snow loadIt is often useful to characterize 
loads as:

- Permanent or variable- Permanent or variable

- Fixed or free
SustainedloadSustainedloadSustainedloadSustainedload

- Static or dynamic Transient loadTransient load
Permanent load

Transient loadTransient load
Permanent load
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L d St t

Probabilistic Modelling of Loads

• Loads on Structures

The probabilistic modelling Wind load Snow loadWind load Snow loadWind load Snow loadWind load Snow load

includes the following steps:

- specifying the definition of the 
random variables used torandom variables used to 
represent the uncertainties in the 
loading

SustainedloadSustainedloadSustainedloadSustainedload

- selecting a suitable distribution 
type to represent the random 
variable

Transient loadTransient load
Permanent load

Transient loadTransient load
Permanent load

- assigning the distribution 
parameters of the selected 
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Probabilistic Modelling of Loads

• Loads on Structures

Permanent loads: Wind load Snow loadWind load Snow loadWind load Snow loadWind load Snow loadPermanent loads:

V

G dVγ= ∫
SustainedloadSustainedloadSustainedloadSustainedload

V

Density
Transient loadTransient load

Permanent load
Transient loadTransient load

Permanent load
Density

Material COV 
Construction Steel 0.01Construction Steel 0.01
Concrete 0.04 
Timber 

- sawn beam or strut 
l i t d b l d

 
0.12 
0 10
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- laminated beam, planed 0.10
 



Probabilistic Modelling of Loads

• Loads on Structures

Permanent loads: Wind load Snow loadWind load Snow loadWind load Snow loadWind load Snow loadPermanent loads:

V

G dVγ= ∫
SustainedloadSustainedloadSustainedloadSustainedload

V

Transient loadTransient load
Permanent load

Transient loadTransient load
Permanent load

The mean value as assessed by engineering
assessments has been found to be biased
about 5% to the low sideabout 5% to the low side

Log-Normal and Normal distributions are
d did t t t th t i t
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Probabilistic Modelling of Loads

• Loads on Structures

Live floor loads: Wind load Snow loadWind load Snow loadWind load Snow loadWind load Snow loadLive floor loads:

( , ) ( , )W x y m V U x y= + +

m is the overall mean value for a 
given use category

SustainedloadSustainedloadSustainedloadSustainedload

V is a zero mean random variable

U(x y) is a zero mean random field

Transient loadTransient loadTransient loadTransient load

U(x,y) is a zero mean random field
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Probabilistic Modelling of Loads

• Loads on Structures

Live floor loads: Wind load Snow loadWind load Snow loadWind load Snow loadWind load Snow loadLive floor loads:

( , ) ( , )W x y m V U x y= + +

The random load effect in linear 
systems due to the spatially 
di t ib t d l d W( ) i

SustainedloadSustainedloadSustainedloadSustainedload

distributed load W(x,y) is 
represented by an equivalent 
uniformly distributed load Qequ

Transient loadTransient loadTransient loadTransient load

∫ ∫==
A A

equ dAyxiQdAyxiyxWS ),(),(),(
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Probabilistic Modelling of Loads

• Loads on Structures

Live floor loads: Wind load Snow loadWind load Snow loadWind load Snow loadWind load Snow loadLive floor loads:

The mean value of the Qequ

The variance is

SustainedloadSustainedloadSustainedloadSustainedloadequE Q m⎡ ⎤ =⎣ ⎦

⎡ ⎤
Transient loadTransient loadTransient loadTransient load

2

( , ) ( , )

( )

A
equ

Var W x y i x y dA
Var Q

i x y dA

⎡ ⎤
⎢ ⎥
⎣ ⎦⎡ ⎤ = =⎣ ⎦

⎡ ⎤
⎢ ⎥

∫

∫

1 1 2 2

1 2

1 1 2 2 ( , ), ( , ) 1 2
2 2

2

( , )

( , ) ( , )
A

U x y U x y
A A

V U

i x y dA

i x y i x y dA dAρ
σ σ

⎢ ⎥
⎣ ⎦

+

∫

∫ ∫
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V U

A

i x y dA
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⎢ ⎥
⎣ ⎦
∫



Probabilistic Modelling of Loads

• Loads on Structures

Live floor loads:Live floor loads:

If the correlation radius ρ0 is small 
then:then:

equVar Q⎡ ⎤ =⎣ ⎦
2

2 2 2 2
2

( , )
A

V U V U red

i x y dA
σ σ σ σ κ+ = +

⎡ ⎤

∫
)(0 A

A
A

red κκ =

( , )
A

i x y dA
⎡ ⎤
⎢ ⎥
⎣ ⎦
∫

A
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Probabilistic Modelling of Loads

• Loads on Structures

Live floor loads:Live floor loads:

In principle the variance reduction 
factor may be determined from )(0 A

A
red κκ =factor may be determined from )(

Ared
 

 κ = 1.4κ = 1.0 i i

κ = 2.4 η κ = 2.0 η 0

ξ = x/1 ξ

κ  2.4 η κ  2.0 η 0
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ξ
0 1

ξ
0 1



Probabilistic Modelling of Loads

• Loads on Structures

Live floor loads:Live floor loads:

In principle the variance reduction 
factor may be determined from )(0 A

A
red κκ =factor may be determined from )(

Ared

 

But for most practical purposes 
it can be assumed to be equal to 
zerozero

equ qE Q m⎡ ⎤ =⎣ ⎦
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Probabilistic Modelling of Loads

• Loads on Structures

Live floor loads (sustained loads):Live floor loads (sustained loads):

The maximum EUDL load has been found to be Gamma distributed but 
is sometimes modelled by a Type I extreme value distributionis sometimes modelled by a Type I extreme value distribution.  

Assuming that changes of the sustained load follow a Poisson processAssuming that changes of the sustained load follow a Poisson process 
with rate λ the probability distribution function of the maximum load in 
a time reference T may be determined from

,max ( ) exp( (1 ( )))Q QF x T F xλ= − −
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Probabilistic Modelling of Loads

• Loads on Structures

Live floor loads (transient loads):Live floor loads (transient loads):

The maximum EUDL load has been found to be Exponential distributed.  

Assuming that changes of the sustained load follow a Poisson process

equ pE P m⎡ ⎤ =⎣ ⎦ [ ] 2
VequPVar σ=

Assuming that changes of the sustained load follow a Poisson process 
with rate ν the probability distribution function of the maximum load in 
a time reference T may be determined from

( )( )( ),max exp 1 x= − −p pF νT F
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Probabilistic Modelling of Loads

• Loads on Structures

Live floor loads (sustained/transient loads):Live floor loads (sustained/transient loads):
 Sustained Load Transient Load 

Category A0 
[ 2]

qm  Vσ  Uσ  λ/1  pm  Vσ  ν/1  pd  
[m2] 

q

[kN/m2] [kN/m2] [kN/m2] 

[y] 
p

[kN/m2] 
[kN/m2] 

[y]
p

[d] 
Office 20 0.5 0.3 0.6 5 0.2 0.4 0.3 1 - 3 

Lobby 20 0.2 0.15 0.3 10 0.4 0.6 1.0 1 – 3 

Residence 20 0.3 0.15 0.3 7 0.3 0.4 1.0 1 – 3 

Hotel guest  20 0.3 0.05 0.1 10 0.2 0.4 0.1 1 – 3 g
room 
Patient room 20 0.4 0.3 0.6 5 – 10 0.2 0.4 1.0 1 – 3 

Laboratory 20 0.7 0.4 0.8 5 – 10     
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Libraries 20 1.7 0.5 1.0 >10     



Probabilistic Modelling of Loads

• Loads on Structures

The combined sustained and transient loads can be assessed as theThe combined sustained and transient loads can be assessed as the 
maximum of 

LLL +

max,2

max,1

pQ

pQ

LLL

LLL

+=

+=

and modelled as a type I extreme value distribution
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Probabilistic Modelling of Loads

• Loads on Structures

Wind loadsWind loads

a g r a eref refw = c c c Q c c Q= Smaller rigid structuresa g r a eref refQ Q

d a e refw = c c c Q Taller flexible structuresd a e refQ

cr: roughness factor
f

21
=Q ρU

cg: gust factor
ca: aero-dynamic shape factor
cd: dynamic factor

f t

2
Q ρU

Q : 10 min mean U
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ce: exposure factor
ρ: 1.25 kg/m3

Qref: 10 min mean U



Probabilistic Modelling of Loads

• Loads on Structures

Wind loadsWind loads

cr: roughness factor
c : gust factorcg: gust factor
ca: aero-dynamic shape factor
cd: dynamic factor
ce: exposure factorce: exposure factor
ρ: 1.25 kg/m3

2 2 2 2V V V V

2 2 2 2 2
d a r ref

w c c c QV V V V V≅ + + + Dynamic sensitive

Ri id

Wind load can be assumed to 
be Log-Normal distributed

Swiss Federal Institute of Technology

2 2 2 2
a r ref

w c c QV V V V≅ + + Rigid



Probabilistic Modelling of Loads

• Loads on Structures

Snow loadsSnow loads

Sr: Snow load on roof
S : Snow load on ground

h
hS S k Sg: Snow load on ground

r: ground to roof conversion factor 
k: location factor (1.25 coastal, 1,5 inland)
h: altitude in meters

rh
r gS = S  r  k

h: altitude in meters
hr: reference altitude (300 meters)
ρ: 1.25 kg/m3

( )gS d   dγ= ⋅

Typically the snow load is modelled by a Gamma or a Gumbel distribution
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Probabilistic Modelling of Loads
 

Time• Loads on Structures

Combination of loads Hours

Permanent load

tCombination of loads

We are interested in the maximum
of a sum of load effects from different t

Transient load

Imposed load

loads
t

Snow

WeekDays

Earth-quake

t
Seconds

{ })t(X...)t(X)t(Xmax)T(X nTmax +++= 21

Wind

t
Minutes
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t

Wind



Probabilistic Modelling of Loads
 

Time• Loads on Structures

Combination of loads Hours

Permanent load

tCombination of loads

Turkstra’s load combination rule
t

Transient load

Imposed load

We take the max of the following 
combinations

t

Snow

WeekDays

Earth-quake

t
Seconds{ }

{ } )t(X...)t(X)t(Xmax)t(XZ

)t(X...)t(X)t(X)t(XmaxZ

nT

nT

++++=

++++=

∗∗∗

∗∗∗

3212

3211

Wind

t
Minutes

{ })t(Xmax...)t(X)t(X)t(XZ nTn ++++= ∗∗∗
321
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t

Wind

{ }iimax Zmax)T(X ≈



Probabilistic Modelling of Loads

• Loads on Structures

Combination of loadsCombination of loads

Ferry Borges-Castanheta’s 
load combination rule { }iimax Zmax)T(X ≈

i

Repetition numbers Load combination 
Load 1 Load 2 Load 3

1 1n  12 / nn  13 / nn  
2 1 2n  23 / nn  
3 1 13 1 1 3n
4 1n  1 13 / nn  
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Probabilistic Modelling of Resistances

• Uncertainties of resistances

In structural engineering resistances include the following uncertainties

- Geometrical uncertainties
- Material characteristics
- Model uncertainties

Random variation in time and space

The steps in the modelling process are:

- define the random variables used to represent the uncertainties in the 
resistances

- select a suitable distribution type to represent the random variable
- to assign the distribution parameters of the selected distribution.

Swiss Federal Institute of Technology



Probabilistic Modelling of Resistances

• Uncertainties of resistances

Concrete compressive strength

λτα coc f),t(f = fco: 28 day compressive strength
α(t,τ): spatial stress and loading time function
λ i f t b t i it tλ: conversion factor between in-situ concrete

strength and cylinder compressive strength

The concrete compressive strength can be assumed to be Log-Normal 
distributed with a coefficient of variation equal to 15% 
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Probabilistic Modelling of Resistances

• Uncertainties of resistances

Reinforcement steel yield strength

1 2 3sf X X X= + +

1X normal distributed random variable representing the variation in the mean of different1X  normal distributed random variable representing the variation in the mean of different 
mills. 

2X normal distributed zero mean random variable, which takes into account the variation2X  o a d st buted e o ea a do va ab e, w c ta es to accou t t e va at o
between batches  

3X normal distributed zero mean random variable, which takes into account the variation 

Swiss Federal Institute of Technology

3  ,
within a batch. 



Probabilistic Modelling of Resistances

• Uncertainties of resistances

Reinforcement steel yield strength

Variable Type [ ]E X [ ]MPaσ VVariable Type [ ]E X [ ]x MPaσ xV

1X  Normal μ   19 - 
2X  Normal 0  22 - 

X Normal 0 83X  Normal 0 8 -
A - nomA   - 0.02 

 μ: nominal steel grade + two standard deviations of X1

1

Yield stress depends on diameter of reinforcement bars
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1( ) (0.87 0.13exp( 0.08 ))d dμ μ −= + −



Probabilistic Modelling of Resistances

• Uncertainties of resistances

Structural steel yield strength

D i ti V i bl T [ ] V f f EDescription Variable Type [ ]E X XV

Yield stress  yf  Lognormal 
  fyuV

y spf e Cα − −  
0.07 

ultimate stress uf  Lognormal [ ]uB E f  0.04 

yf uf E ν
uε  

yf  1 0.75 0 0 -0.45 

uf   1 0 0 -0.60 
modulus of elasticity E  Lognormal spE  0.03 

Poisson’s ratio ν  Lognormal spν  0.03 

ultimate strain ε Lognormal ε 0 06

E    1 0 0 
ν    Symmetry 1 0 

ε 1ultimate strain uε  Lognormal u  spε 0.06

 

uε 1 

 

Distribution characteristics Dependencies
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Distribution characteristics Dependencies



Probabilistic Modelling of Resistances

• Model uncertainties

Model uncertainties relate engineering model results with actualModel uncertainties relate engineering model results with actual 
structural behaviour

modX XΞ= ⋅ X: true value
Ξ: model uncertainty

modx
x

ξ =

Xmod: model value

xexp: experimentally obtained value
expx
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Probabilistic Modelling of Resistances

• Model uncertainties

Model uncertainties may be introduced in different ways:Model uncertainties may be introduced in different ways:
( )Y fΞ= X

( )Y fΞ= + X

( )Y f X X XΞ Ξ Ξ= 1 1 2 2( , ,..., )n nY f X X XΞ Ξ Ξ=
Y

(.)f

structural performance

model function

Ξ

iX

random variable representing the model uncertainty

basic variables

Swiss Federal Institute of Technology

X vector of basic random variables



Probabilistic Modelling of Resistances

• The JCSS Probabilistic Model Code (PMC) 
http://www.jcss.ethz.ch/publications/publications_pmc.html

Part I :  Basis of design
Part II: Load modelsPart II:  Load models
Part III: Resistance models
Part IV: Examples
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Probabilistic Modelling of Resistances

• The JCSS PMC – Load Models 
2.00 GENERAL PRINCIPLES 05.2001

2.01 SELF WEIGHT 06.2001

2.02 LIVE LOAD 05.2001

2.06 LOAD IN CAR PARKS 05.2001

2.12 SNOW LOAD 05.2001

2.13 WIND LOAD 05.2001

2.15 WAVE LOAD 05.2006

2.17 EARTHQUAKE 09.2002

2.18 IMPACT LOAD 05.2001
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2.20 FIRE 05.2001



Probabilistic Modelling of Resistances

• The JCSS PMC – Resistance models
3.00 GENERAL PRINCIPLES 03.2001

3.01 CONCRETE 05.2002

3.02 STRUCTURAL STEEL 03.2001

3.0* REINFORCING STEEL 03.2001

3.04 PRESTRESSING STEEL 04.2005

3.05 TIMBER 05.2006

3.07 SOIL PROPERTIES 06.2002

3.09 MODELUNCERTAINTIES 03.2001

3.10 DIMENSIONS 03.2001
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3.11 EXCENTRICITIES 03.2001


