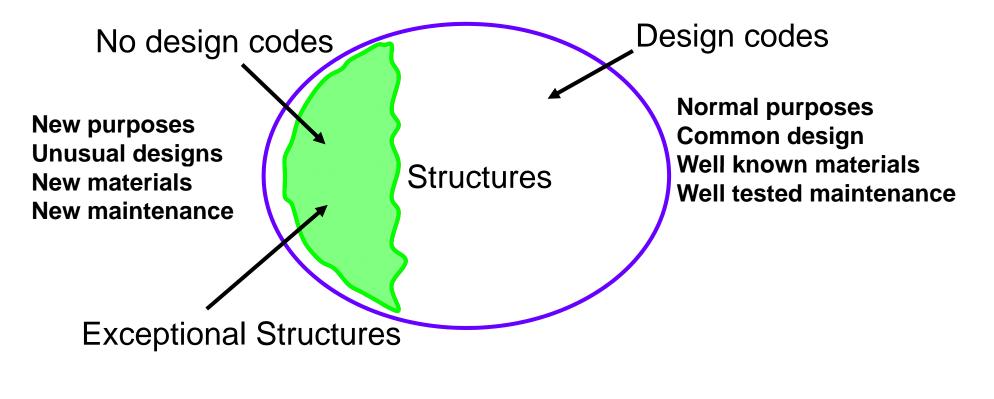
Risk and Safety in Engineering

Prof. Dr. Michael Havbro Faber Swiss Federal Institute of Technology ETH Zurich, Switzerland

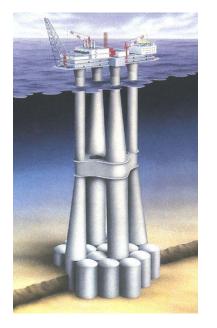

Contents of Presentation

- Codes and design of structures
- Structural reliability and safety formats
- Code calibration as a decision problem
- Target reliabilities for the design of structures
- The JCSS approach to code calibration
- CodeCal a software for calibration of design codes

Codes and design of structures

• "Normal structures" are designed according to structural design codes

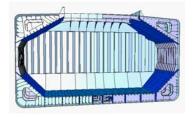
ETH Swiss Federal Institute of Technology


Codes and design of structures

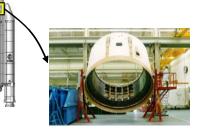
• Exceptional structures are associated with

"Extreme Dimensions"

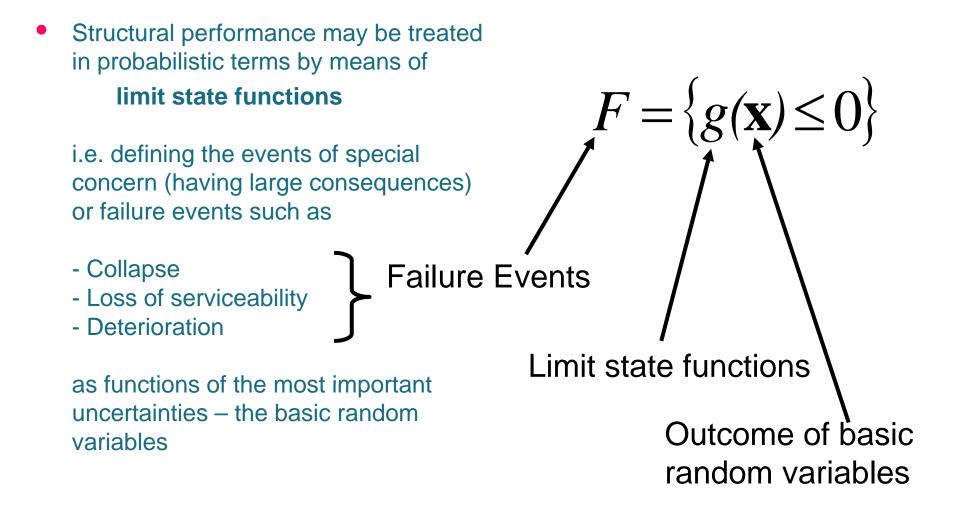
Great Belt Bridge under construction


Concept drawing of the Troll platform

Codes and design of structures


• Exceptional structures are associated with fulfilling

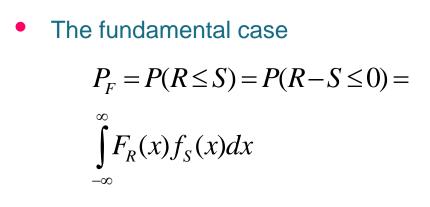
"New and Innovative Purposes"

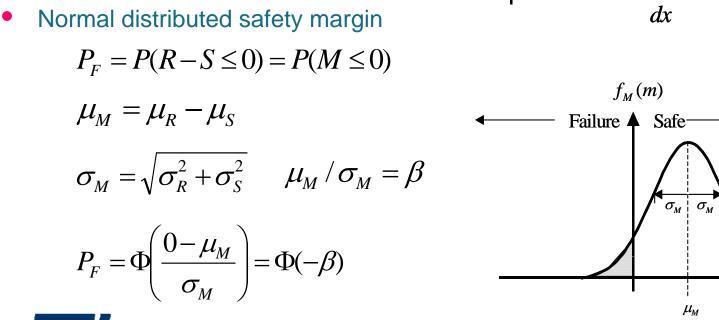

Concept drawing of Floating Production, Storage and Offloading (FPSO) unit Illustrations of the ARIANE 5 rocket

Structural performance is subject to uncertainty due to:

- Natural variability in material properties and loads or load effects
- Statistical uncertainties due to lack of or insufficient data
- Model uncertainties due to idealisations and lack of understanding in the physical modelling of structural performance

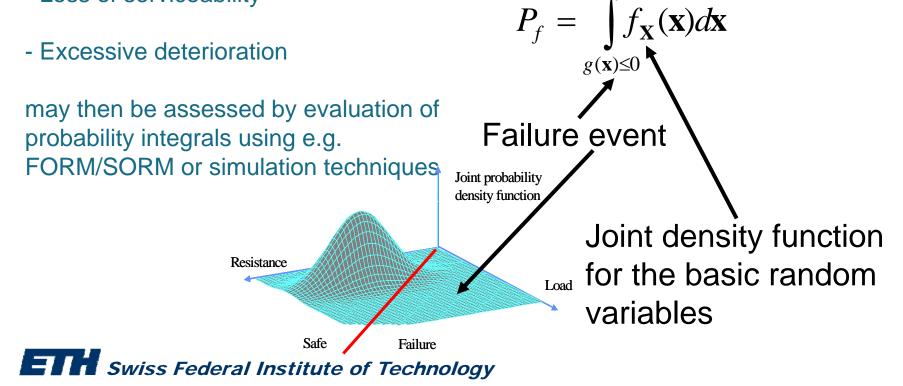
ETH Swiss Federal Institute of Technology

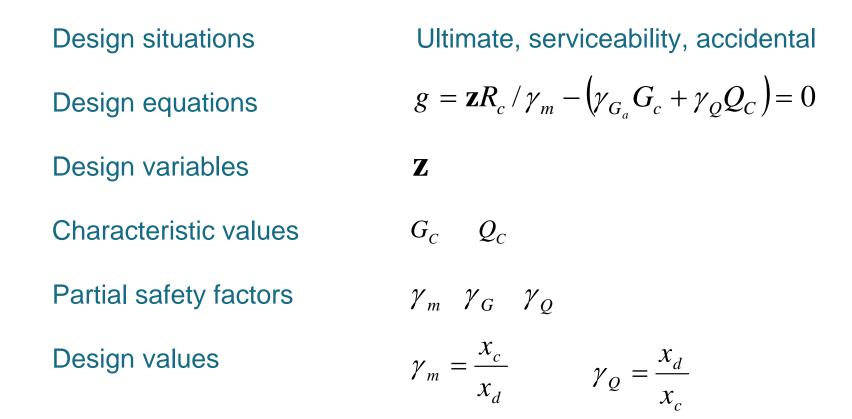

 $f_R(r), f_S(s)$


Load S

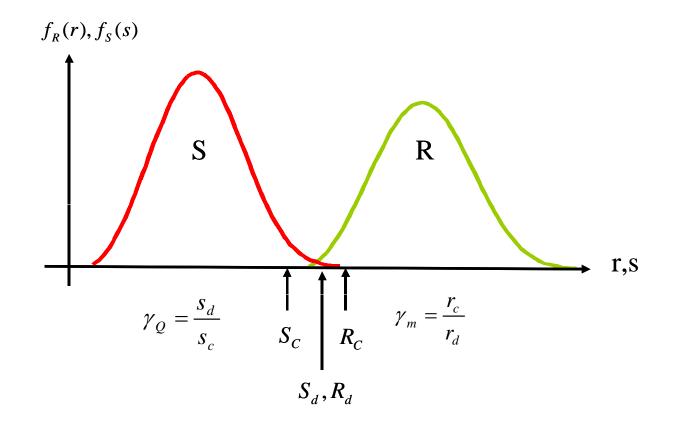
Resistance R

x


т



ETH Swiss Federal Institute of Technology


- The probability of failure with regard to:
 - Ultimate collapse
 - Loss of serviceability
 - Excessive deterioration

 The Load and Resistance Factor Design (LRFD) safety format is built up by the following components:

 The results of a FORM/SORM reliability analysis can be related to the parameters of a LRFD safety format

Code calibration as a decision problem

 The code calibration problem can be seen as a decision problem with the objective to maximize the life-cycle benefit obtained from the structures by "calibrating" (adjusting) the partial safety factors

$$\max_{\gamma} W(\gamma) = \sum_{j=1}^{L} w_j \Big[B_j - C_{Ij}(\gamma) - C_{Rj}(\gamma) - C_{Fj} P_{Fj}(\gamma) \Big]$$

s.t. $\gamma_i^l \le \gamma_i \le \gamma_i^u$, $i = 1, ..., m$

The "optimal" design is determined from the design equations

$$\min_{\gamma} \quad C_{ij}(\mathbf{z}) \qquad \qquad G_j(\mathbf{x}_c, \mathbf{p}_j, \mathbf{z}, \gamma) \ge 0$$
s.t.
$$G_j(\mathbf{x}_c, \mathbf{p}_j, \mathbf{z}, \gamma) \ge 0$$

$$\mathbf{z}_i^l \le z_i \le z_i^u \quad , i = 1, ..., N$$

Target reliabilities for the design of structures

• Target reliabilities for Ultimate Limit State verification

	Minor consequences	Moderate consequences	Large consequences
safety measure	of failure	of failure	of failure
High	$\beta = 3.1 (P_F \approx 10^{-3})$	$\beta = 3.3 (P_F \approx 5 \ 10^{-4})$	$\beta = 3.7 (P_F \approx 10^{-4})$
Normal	$\beta = 3.7 (P_F \approx 10^{-4})$	$\beta = 4.2 (P_F \approx 10^{-5})$	$\beta = 4.4 (P_F \approx 5 10^{-5})$
Low	$\beta = 4.2 (P_F \approx 10^{-5})$	$\beta = 4.4 (P_F \approx 10^{-5})$	$\beta = 4.7 (P_F \approx 10^{-6})$

Target reliabilities for Serviceability Limit State Verification

Relative cost of	Target index	
safety measure	(irreversible SLS)	
High	$\beta = 1.3 (P_F \approx 10^{-1})$	
Normal	$\beta = 1.7 (P_F \approx 5 \ 10^{-2})$	
Low	$\beta = 2.3 (P_F \approx 10^{-2})$	

The JCSS approach to code calibration

- A seven step approach
 - 1. Definition of the scope of the code
 - class of structures and type of failure modes
 - 2. Definition of the code objective
 - achieve target reliability/probability
 - **3.** Definition of code format
 - how many partial safety factors and load combination factors to be used
 - should load partial safety factors be material independent
 - should material partial safety factors be load type independent
 - how to use the partial safety factors in the design equations
 - rules for load combinations

The JCSS approach to code calibration

- A seven step approach
 - 4. Identification of typical failure modes and of stochastic model
 - relevant failure modes are identified and formulated as limit state functions/design equations
 - appropriate probabilistic models are formulated for uncertain variables
 - **5.** Definition of a measure of closeness
 - the objective function for the calibration procedure is formulated e.g.

The JCSS approach to code calibration

- A seven step approach
 - 6. Determination of the optimal partial safety factors for the chosen code format min $C(\mathbf{z})$

s.t.
$$c_i(\mathbf{x}_c, \mathbf{p}_j, \mathbf{z}, \gamma) = 0$$
, $i = 1, ..., m_e$
 $c_i(\mathbf{x}_c, \mathbf{p}_j, \mathbf{z}, \gamma) \ge 0$, $i = m_e + 1, ..., m$
 $\mathbf{z}_i^1 \le \mathbf{z}_i \le \mathbf{z}_i^u$, $i = 1, ..., N$

- 7. Verification
 - incorporating experience of previous codes and practical aspects

The code calibration software CodeCal

<u>CodeCal</u>

