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Structural Reliability Analysis

R li bilit f t t t bReliability of structures cannot be 
assessed through failure rates because

- Structures are unique inStructures are unique in     
nature

- Structural failures normally r
s

R
take place due to extreme 
loads exceeding the residual 
strength

S

Therefore in structural reliability, models 
are established for resistances R and 
loads S individually and the structural 
reliability is assessed through the 
probability of failure:

)0( ≤−= SRPPf
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Structural Reliability Analysis

If l th i t i t i th )1/()()( RPFRPPIf only the resistance is uncertain the 
failure probability may be assessed by

If also the load is ncertain e ha e

)1/()()( ≤==≤= sRPsFsRPP Rf

( ) ( 0) ( ) ( )P P R S P R S F f d
∞

≤ ≤ ∫If also the load is uncertain we have

where it is assumed that the load and 
the resistance are independent

( ) ( 0) ( ) ( )f R SP P R S P R S F x f x dx
−∞

= ≤ = − ≤ = ∫

)()( ff )()( ff )()( ffthe resistance are independent 

This is called the 

)(),( sfrf SR

Load S
Resistance R A

)(),( sfrf SR

Load S
Resistance R

)(),( sfrf SR

Load S
Resistance R A

“Fundamental Case”
sr ,

)(xf
FP

x sr , sr ,
)(xf

FP

x

sr ,

B

sr ,
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Structural Reliability Analysis

I th h R d SIn the case where R and S are 
Normal distributed the safety 
margin M is also Normal distributed

SRM −=

Then the failure probability is )0()0( ≤=≤−= MPSRPPF

with the mean value of M SRM μμμ −=

and standard deviation of M 22
SRM σσσ +=

0
The failure probability is then )()

0
( β
σ
μ

−Φ=
−

Φ=
M

M
FP
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Structural Reliability Analysis

Th N l di t ib t d f t i MThe Normal distributed safety margin M

)(mfM

SafeFailure
)(mfM

SafeFailure

Mσ MσMσ Mσ

m
Mμ

m
Mμ
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Structural Reliability Analysis

I th l th i tIn the general case the resistance 
and the load may be defined in terms 
of functions )(

)(

2

1

X
X

fS
fR

=
=

where X are basic random variables

and the safety margin as 

)(2f

)()()( 21 XXX gffSRM =−=−=

where                   is called the 

limit state function

( )g x

limit state function

F il h 0)( ≤xgFailure occurs when 0)( ≤xg
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Structural Reliability Analysis

S tti d fi ( 1)

1+ix

Failure domain

0),..,,( 21 ≤nxxxg

( ) 0Setting                   defines a (n-1) 
dimensional surface in the space 
spanned by the n basic variables X 0)( =xg

Failure domain

Safe domain
Ω

fΩ
( ) 0g =x

This is the failure surface separating 
the sample space of X into a safe 
domain and a failure domain ix

0),..,,( 21 >nxxxg

sΩ

The failure probability may in general 
terms be written as

), ,,( 21 ng

terms be written as 

Failure event
( )P f d= ∫ x x { }

( ) 0

( )f
g

P f d
≤

= ∫ X
x

x x { }0)( ≤= xF g
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Basics of Structural Reliability Methods

Th b bilit f f il b dThe probability of failure can be assessed 
by 

{ }
∫

≤=Ω

=
0)(

)(
x

X xx
g

f

f

dfP

where               is the joint probability 
density function for the basic random 
variables X

)(xXf

F h 2 di i l h f ilFor the 2-dimensional case the failure 
probability simply corresponds to the 
integral under the joint probability density 
f ti i th f f ilfunction in the area of failure
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Basics of Structural Reliability Methods

Th b bilit f f il bThe probability of failure can be 
calculated using
- numerical integration { }

∫
≤=Ω

=
0)(

)(
x

X xx
g

f

f

dfP

(Simpson, Gauss, Tchebyschev, 
etc.)

b t f bl i l i di ibut for problems involving dimensions 
higher than say 6 the numerical 
integration becomes cumbersome

Other methods are necessary !Other methods are necessary !
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Basics of Structural Reliability Methods

Wh th li it t t f ti iWhen the limit state function is 
linear ∑

=

⋅+=
n

i
ii xaag

1
0)(x

the saftey margin M is defined 
through ∑ ⋅+=

n

i
ii XaaM

1
0g

with

=i 1

mean value

d

∑
=

+=
n

i
XiM i

aa
1

0 μμ

and

variance ∑∑∑
≠===

+=
n

ijj
jijiij

n

i

n

i
XiM aaa

i
,111

222 σσρσσ
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Basics of Structural Reliability Methods

The failure probability can then be 
written as )0()0)(( ≤=≤= MPgPPF X

MμβThe reliability index is defined as 
M

M

σ
μβ =

)(mfM

(Basler and Cornell)

)(fM

Provided that the safety margin is 
Normal distributed

m
Normal distributed 
the failure probability is 
determined as )( β−Φ=FP
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Basics of Structural Reliability Methods

Th li bilit i d β h th t i lThe reliability index β has the geometrical 
interpretation of being the shortest distance 
between the failure surface and the origin in
standard Normal distributed space U
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Basics of Structural Reliability Methods

Example:Example:

Consider a steel rod with resistance r
subjected to a tension force s

SRg −=)(X
subjected to a tension force s

r and s are modeled by the random 
variables R and S

35,350 == RR σμ
40,200 == SS σμ

The probability of failure is required )0( ≤− SRP
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Basics of Structural Reliability Methods

Example:Example:

Consider a steel rod with resistance r
subjected to a tension force s

SRg −=)(X
subjected to a tension force s

r and s are modeled by the random 
variables R and S

35,350 == RR σμ
40,200 == SS σμ

The probability of failure is wanted )0( ≤− SRP

150200350
The safety margin is SRM −=

150200350 =−=Mμ
15.534035 22 =+=Mσ

150
The reliability index is then 84.2

15.53
150

==β

31042)842( −⋅=−Φ=P
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Basics of Structural Reliability Methods

U ll th li it t t f ti iUsually the limit state function is 
non-linear
- this small phenomenon caused   
the so-called invariance problem

Can however easily be linearized !

12u 12u 12uthe so-called invariance problem 

Hasofer & Lind suggested to linearize 
the limit state function in the design 4
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0)( =′ ug
the limit state function in the design 
point
- this solved the invariance 
problem
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Th li bilit i d th b

SSS

The reliability index may then be 
determined by the following 
optimization problem { }

∑
==∈

=
n

i
i
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1
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0)(
min

uu
β
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Basics of Structural Reliability Methods
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0)(The optimization problem can be formulated 
as an iteration problem
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1 ) the design point is determined as 

2) the normal vector to the limit state idu
g

i 21
)( ⋅

∂
− αβ

* β= ⋅u α

2) the normal vector to the limit state 
function is determined as

ni

du
g

du
n

j i

i
i ,..2,1  ,

)(
2/1

1

2

=

⎥
⎦

⎤
⎢
⎣

⎡
⋅

∂
=

∑
=

αβ

α

3) the safety index is determined as 0),...,( 21 =⋅⋅⋅ ng αβαβαβ

( )4) a new design point is determined as  

5) the above steps are continued until 

( )Tnu αβαβαβ ⋅⋅⋅=∗ ,..., 21
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Basics of Structural Reliability Methods

Example :Example :

Consider the steel rod with cross-sectional 
area a and yield stress r h r a= ⋅

The rod is loaded with the tension force s

The limit state function can then be written 
as sarg −⋅=)(x

r, a and s are uncertain and modeled by 
l di t ib t d d i bl

35,350 == RR σμ 1500, 300S Sμ σ= =
normal distributed random variables 

we would like to calculate the probability of 
failure

1,10 == AA σμ
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Basics of Structural Reliability Methods

Th fi t t i t t f th R μThe first step is to transform the 
basic random variables into 
standardized Normal distributed 
space

R

R
R

RU
σ
μ−

=

A
A

AU μ−
=space

A
AU

σ

S

S
S

SU
σ
μ−

=

Then we write the limit state 
function in terms of the

S

)())(()( +−++= uuuug μσμσμσfunction in terms of the 
realizations of the standardized 
Normal distributed random 
variables )1500300()10)(35035(          

)())(()(

+−++=

+++=

SAR

SSSAAARRR

uuu

uuuug μσμσμσ

variables
200035300350350u          R ++−+= ARSA uuuu
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Basics of Structural Reliability Methods

Th li bilit i d iThe reliability index is 
calculated as 

ARSAR αβαααα
β

35300350350
2000

+−+
−

=

th t f th
)35350(1

AR k
βαα +−=

the components of the 
α-vector are then calculated as )35350(1

RA k
βαα +−=

300

h

kS
300

=α

where
222
SARk ααα ++=
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Basics of Structural Reliability Methods

f ll i th it ti hfollowing the iteration scheme 
we get the following iteration 
history

Iteration Start 1 2 3 4 5
β 3.0000 3.6719 3.7399 3.7444 3.7448 3.7448
αR -0.5800 -0.5701 -0.5612 -0.5611 -0.5610 -0.5610
αΑ -0.5800 -0.5701 -0.5612 -0.5611 -0.5610 -0.5610
αS 0.5800 0.5916 0.6084 0.6086 0.6087 0.6087
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Basics of Structural Reliability Methods

Th d b t d d t
Translation and 

li O th lThe procedure can be extended to 
consider

scaling Orthogonal
transformation
(rotation)

Correlated random variables 
UYX →→

Correlated 
random 
variables

Un-correlated
random Standardized

random variablesvariables variablesrandom variables
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Basics of Structural Reliability Methods

C l t d d i blCorrelated random variables

The covariance matrix for the random 
ariables is gi en as

[ ] [ ] [ ]
⎥
⎥
⎤

⎢
⎢
⎡

=
nXXCovXXCovXVar 1211 ,...,

XC
variables is given as  [ ] [ ] ⎥

⎥
⎦⎢

⎢
⎣ nn XVarXXCov 1,

X

and the correlation coefficient matrix is 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
1

1

1

1

n

n

ρ

ρ

Xρ

The first step is the standardization

⎦⎣ 1nρ

X Xi − μThe first step is the standardization niY
i

i

X

Xi
i ,..2,1, ==

σ
μ
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Basics of Structural Reliability Methods

C l t d d i blCorrelated random variables

The transformation of the correlated 
random ariables into non Y = TUrandom variables into non-
correlated random variables can be 
written as

Y = TU

where       is a lower triangular matrix

h i

T

then we can write

T T T T T TE E E⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦Y XC Y Y T U U T T U U T T× T ρ

with T standing for transpose matrix

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Swiss Federal Institute of Technology



Basics of Structural Reliability Methods

C l t d d i blCorrelated random variables

In the case of 3 random variables we 
ha e

11 12 13

22 23
T

ρ ρ ρ
ρ ρ

⎡ ⎤
⎢ ⎥⋅ = = ⎢ ⎥XT T ρ

have

As       is a lower triangular matrix we 
h

33.sym ρ
⎢ ⎥
⎢ ⎥⎣ ⎦

T
have 

1221

11 1

T
T
T

=
=
ρ

2
2122

1331

1
TT

TT

T

−=

= ρ

11 11 12 13 11 12 130 0
0 0T

T T T T
T T T T

ρ ρ ρ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥T T

22

22

213123
32

1 TTT

T
TTT ⋅−

=
ρ21 22 22 23 22 23

31 32 33 33 33

0   0
0 0 .

T T T T T
T T T T sym

ρ ρ
ρ

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

T T
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Basics of Structural Reliability Methods

Th l t il i tiThe normal-tail approximation
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Basics of Structural Reliability Methods

N l di t ib t d d i blNon-normal distributed random variables

)()()()( FFFF

Rosenblatt Transformation

)(),,(),,()( 12211121 11
xFxxxxFxxxxFxF XnnXnnXX nn

……… −−− −
⋅=

Rosenblatt Transformation

)()( 11 1
=Φ X xFu

)()( 122 2

1

=Φ X xxFu

),,()( 121 −=Φ nnXn xxxxFu
n

…
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Basics of Structural Reliability Methods

Transformation

g(Z): linear g(U): non linear

μZ1, μZ2 μU1= μU2= 0∈

Swiss Federal Institute of Technology

σZ1, σZ2 σU1= σU2= 1∈



Basics of Structural Reliability Methods

joint probability density functionjoint probability density function

“Limit state function”

g(U) = R-S
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Basics of Structural Reliability Methods

Start point X1
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Basics of Structural Reliability Methods

Linearization of Limit state function in starting point

Swiss Federal Institute of Technology



Basics of Structural Reliability Methods

Calculation of new design point 
X2
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Basics of Structural Reliability Methods

Linearisation of Limit state 
function in  X2
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Basics of Structural Reliability Methods

Calculation of new design point X3
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Basics of Structural Reliability Methods

Linearization of Limit state 
function in  X3
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Basics of Structural Reliability Methods

β1=3.556

β2=3.607β

β3=3.608
4 3 608β4=3.608

Convergency Criteria: εβββ ≤Δ + nn 1
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Basics of Structural Reliability Methods

SORM I tSORM Improvements
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Basics of Structural Reliability Methods

SORM I t ∫= )(x xh deI λ
SORM Improvements

Asymptotic Laplace integral 

∫
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Basics of Structural Reliability Methods

Simulation methods may also be 
used to solve the integration 
problem { }

∫
≤=Ω

=
0)(

)(
x

X xx
g

f

f

dfP

1) m realizations of the vector X are    
generated um

be
r

1
)( iX xF

i

2) for each realization the value of 
the limit state function is 
evaluated R

an
do

m
 n

u

jz

jx ix

evaluated

3) the realizations where the limit 
state function is zero or negative 

R

fn
are counted

4) The failure probability is 
estimated as

f

n
p f=
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Basics of Structural Reliability Methods

E i i f f il b bili i i• Estimation of failure probabilities using
Monte Carlo Simulation

18

20

18

20

18

20

18

20• m random outcomes of R und S 
are generated and the number of  

t i th f il d i
18

20

12

14

16

nc
e 12

14

16

nc
e 12

14

16

nc
e 12

14

16

nc
e

outcomes nf in the failure domain
are recorded and summed

• The failure probability p
12

14

16

nc
e

6

8

10

R
es

is
ta

6

8

10

R
es

is
ta

6

8

10

R
es

is
ta

6

8

10

R
es

is
ta• The failure probability pf

is then
6

8

10

R
es

is
ta

0

2

4

-2 0 2 4 6 8 10 12
0

2

4

-2 0 2 4 6 8 10 12
0

2

4

-2 0 2 4 6 8 10 12
0

2

4

-2 0 2 4 6 8 10 12

m
n

p f
f =

0

2

4

-2 0 2 4 6 8 10 12

Safe
Failure

Swiss Federal Institute of Technology

2 0 2 4 6 8 10 12
Load

2 0 2 4 6 8 10 12
Load

2 0 2 4 6 8 10 12
Load

2 0 2 4 6 8 10 12
Load

2 0 2 4 6 8 10 12
Load



Basics of Structural Reliability Methods

P ti l f t f tPartial safety factors

Design codes prescribe design equations 
where the design variables (e.g. cross-

( ) 0/ =+− CQcGmc QGzR
a

γγγ
where the design variables (e.g. cross
sections) are to be determined as a 
function of 

Ch t i ti l R G Q- Characteristic values   

- Partial safety factors

CR CG CQ

mγ Gγ Qγ

The design variables are selected such 
that the design equation is close to zerothat the design equation is close to zero
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Basics of Structural Reliability Methods

)(),( sfrf SR

S RS

r, s
cx

=γdx
=γ

CS CR d
m x
=γ

c
Q x
=γ

dd z x RS  ,
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Basics of Structural Reliability Methods

E l Iteration Start 1 2 3 4 5Example Iteration Start 1 2 3 4 5
β 3.0000 3.6719 3.7399 3.7444 3.7448 3.7448
αR -0.5800 -0.5701 -0.5612 -0.5611 -0.5610 -0.5610
αΑ -0.5800 -0.5701 -0.5612 -0.5611 -0.5610 -0.5610

0 5800 0 5916 0 6084 0 6086 0 6087 0 6087αS 0.5800 0.5916 0.6084 0.6086 0.6087 0.6087

35,350 == RR σμ , RRμ
1,10 == AA σμ

300,1500 == RS σμ

Design value for  r

Characteristic value for r

56.2760.350357448.3561.0* =+⋅⋅−=+⋅= RRRd ur μσ

6029235035641641Characteristic value for r

Partial safety factor

60.2923503564.164.1 =+⋅−=+⋅−= RRcr μσ

06.1
56276
60.292

==Rγ
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