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1.1 

1

1

Exercise 1:         
 
Exercise 1.1- Multiple choice questions:  
 
In the following multiple choice questions it should be noted that for some of the 
questions several answers may be correct. Tick the correct alternatives in every 
question.  
 
1.1 In probability theory the probability, ( )P A , of an event A  can take any value 

within the following boundaries: 
 
0 ( )P A≤ ≤  √
 

1 ( )P A− ≤ ≤  
 

( )P A−∞ ≤ ≤ ∞  
 
 
1.2 Which one(s) of the following expressions is(are) correct? 
 
The probability of the union of two events A  and B  is equal to the sum of the 
probability of event  and the probability of event A B , given that the two events are 
mutually exclusive. √
 
The probability of the union of two events  and A B  is equal to the probability of the 
sum of event  and event A B , given that the two events are mutually exclusive. 
 
The probability of the intersection of two events  and A B  is equal to the product of 
the probability of event  and the probability of event A B , given that the two events 
are mutually exclusive. 
 
The probability of the intersection of two events  and A B  is equal to the product of 
the probability of event A  and the probability of event B , given that the two events 
are independent. √
 
 
1.3 Within the theory of sample spaces and events, which one(s) of the following 

statements is(are) correct? 
 

√An event  is defined as a subset of a sample space A Ω . 
 
A sample space Ω  is defined as a subset of an event A . 
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1.2 

1.4 If the intersection of two events, A  and B  corresponds to the empty set ∅ , i.e. 
, the two events are:  A B∩ =∅

 
√Mutually exclusive. 

 
Independent. 
 
Empty events. 
 
 
1.5 The probability of the intersection of two mutually exclusive events is equal to: 
 
The product of the probabilities of the individual events. 
 
The sum of the probabilities of the individual events. 
 
The difference between the probabilities of the individual events. 
 
One (1). 
 

√Zero (0). 
 
None of the above. 
 
 
1.6 The probability of the union of two not mutually exclusive events A  and B  is 

given as: ) . It is provided that the probability 
of event A  is equal to 0.1, the probability of event 

( ) ( ) ( ) (P A B P A P B P A B∪ = + − ∩
B  is 0.1 and the probability 

of event B  given event A , i.e. ( )P B A is 0.8. Which result is correct?  
 

( ) 0P A B∪ = − .6  
 

( ) 0.12P A B∪ =  √
 

( ) 0.04P A B∪ =  
 
1.7 For an event A  in the sample space Ω , event A  represents the 

complementary event of event A . Which one(s) of the following hold? 
 

√A A∪ = Ω  
 
A A∩ = Ω  
 
A A∪ =∅  
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1.3 

1.8 Probability distribution functions may be defined in terms of their moments. If X  
is a continuous random variable which one(s) of the following is(are) correct? 

 
√The first moment of X  corresponds to its mean value, Xμ . 

 
The second moment of X  corresponds to its mean value, Xμ . 
 

√The second central moment of X  corresponds to its variance, 2
Xσ . 

 
 
1.9 The probability density function of a continuous random variable X  is illustrated 

in the following diagram.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The probability of X  exceeding the value of 5 is equal to: 
 

( 5) 0.875P X > =  
 

( 5) 0.055P X > =  
 

( 5) 0.125P X > =  
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1.10 At a given location in Switzerland it has been observed that on average 4 
avalanches occur per year. The annual probability of a house being hit by an 
avalanche on this location is thus: 

 
Equal to one (1). 
 
Larger than one (1). 
 

√None of the above.  
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1.4 

1.11 The variance of a continuous random variable X  can be expressed as: 
2 , where X( ) ( )XVar X E X μ⎡ ⎤= −⎣ ⎦ μ  is the mean value of X  and [ ]E ⋅  is the 

expectation operator. Based on this expression which one(s) of the following 
expressions is(are) correct? 

 
2 2( ) XVar X E X μ⎡ ⎤= −⎣ ⎦  √

 
2( ) XVar X E Xμ ⎡ ⎤= − ⎣ ⎦  

 
2( ) XVar X X μ= −  

 
 
1.12 Imagine that you have thrown a dice and that the dice is still hidden by a cup. 

What kind(s) of uncertainty is(are) associated with the outcome of the dice? 
 
Aleatory uncertainty. 
 
Statistical uncertainty. 
 
Inherent random variability. 
 

√None of the above. 
 
 
1.13 The convolution integral in probability describes how the probability density 

function for the sum of two random variables can be established. However, 
assumption(s) for its derivation is(are) that: 

 
The random variables are normally distributed. 
 

√The random variables are independent. 
 

√The random variables are continuous.  
 
None of the above. 
 
 
1.14 Which one(s) of the following statements is(are) meaningful: 
 
The probability of a big earthquake for the region around Zurich is close to 0.02. 
 
Strong winds occur in Ireland with a probability of 0.7. 
 
The probability of getting struck by lighting is equal to 0.1, if you stand under a tree. 
 

√None of the above. 
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1.5 

1.15 A given random variable is assumed to follow a normal distribution. Which 
parameter(s) is(are) sufficient to define the probability distribution function of the 
random variable: 

 
The variance and the standard deviation. 
 

√The standard deviation and the mean value. 
 
The mode and the coefficient of variation. 
 
None of the above.  
 
 
1.16 Which one(s) of the following features is(are) characteristics of a normal 

distribution function? 
 
The variance is equal to the coefficient of variation. 
 

√The mode is equal to the median. 
 

√The skewness is equal to zero.  
 
None of the above. 
 
 
1.17 The median of a data set corresponds to: 
 
The lower quartile of the data set. 
 

√The 0.5 quantile of the data set. 
 
The upper quartile of the data set. 
 
 
1.18 The commutative, associative and distributive laws describe how to: 
 

√Operate with probabilities. 
 

√Operate with intersections of sets. 
 

√Operate with unions of sets. 
 
None of the above. 
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1.6 

1.19 Measurements were taken of the concrete cover depth of a bridge column. The 
following symmetrical histogram results from the plot of the measured values: 
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If X  represents the random variable for the concrete cover depth, which one(s) of the 
following statements is(are) correct? 
 
The sample mean, x , is equal to 0.16 mm. 
 

√The sample mean, x , is equal to 15 mm. 
 

√The mode of the data set is equal to 15 mm. 
 
 
1.20 After the completion of a concrete structure an engineer tests the null 

hypothesis that the mean value of the concrete cover depth corresponds to 
design assumptions. Measurements of the concrete cover depth are taken and 
after performing the hypothesis test the engineer accepts the null hypothesis. In 
its early years in service the structure shows signs of deterioration that can be 
explained only in the case that the design assumptions are not fulfilled. Which 
of the following statement(s) is(are) correct? 

 
The engineer has performed a Type I error. 
 

√The engineer has performed a Type II error. 
 
The engineer has performed a Type I and a Type II error. 
 
None of the above. 
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1.7 

1.21 Which one(s) of the following statements is(are) correct for a uniformly 
distributed random variable? 

 
The expected value of the random variable is equal to 1. 
 
The probability distribution function is constant over the definition space. 
 

√The probability density function is constant over the definition space. 
 
None of the above.  
 
 
1.22 According to the central limit theorem which of the following statement(s) hold? 
 
The probability distribution function of the sum of a number of independent random 
variables approaches the normal distribution as the number of the variables 
increases. √
 
The probability distribution function of the product of a number of independent 
random variables approaches the normal distribution as the number of the variables 
increases. 
 
None of the above. 
 
 
1.23 The maximum likelihood method enables engineers to estimate the distribution 

parameters of a random variable on the basis of data. Which of the following 
statement(s) is(are) correct for the maximum likelihood method? 

 
√It provides point estimates of the distribution parameters. 

 
It provides information about the uncertainty associated with the estimated 
parameters. √
 
It provides no information about the uncertainty associated with the estimated 
parameters. 
 
None of the above. 
 
 
1.24 Consider a number of log-normally distributed and independent random 

variables. Which of the following statement(s) hold? 
 
The probability distribution function of the sum of the random variables approaches 
the log-normal distribution as the number of the variables increases. 
 
The probability distribution function of the sum of the random variables approaches 
the normal distribution as the number of the variables increases. √
 
None of the above. 
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1.25 It is given that the operational life (until breakdown) T  of a diesel engine has an 
exponential distribution, ( ) t

TF t e λ1 −= − , with parameter λ  and mean value, 

Tμ λ1/= , equal to 10 years. The engine is inspected every 2 years and if a 
problem is observed it is fully repaired. The probability that the engine breaks 
down before the first inspection is equal to: 

 
√( 2 ) 0.18P T years≤ = 1

9

. 
 

( 2 ) 0.81P T years≤ = . 
 

( 2 ) 0.0067P T years≤ = . 
 
None of the above. 
 
 
1.26 From past experience it is known that the shear strength of soil can be 

described by a log-normal distribution. 15 samples of soil are taken from a site 
and an engineer wants to use the data in order to estimate the parameters of 
the log-normal distribution. The engineer: 

 
√may use a probability paper to estimate the parameters of the log-normal distribution. 

 
may use the maximum likelihood method to estimate the parameters of the log-
normal distribution. √
 
may use the method of moments to estimate the parameters of the log-normal 
distribution. √
 
None of the above. 
 
 
1.27 Based on experience it is known that the concrete compressive strength may be 

modeled by a normally distributed random variable X , with mean value 
30X MPaμ =  and standard deviation 5X MPaσ = . The compressive strength of 

20 concrete cylinders is measured. An engineer wants to test the null 
hypothesis oH  that X  follows a normal distribution with the above given 
parameters. He/she carries out a Chi-square test by dividing the sample into 
k = 4  intervals. He/she calculates a Chi-square sample statistic equal to 

2 0 5.=mε . Which of the following statement(s) is(are) correct? 
 

√The engineer cannot reject the null hypothesis  at the 5% significance level. oH
 

The engineer can reject the null hypothesis  at the 5% significance level. oH
 
The engineer can accept the null hypothesis  at the 10% significance level. oH √
 
None of the above. 
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1.28 Consider a simply supported timber beam. The beam will fail if the applied 
central moment exceeds the bending strength of the beam. The bending 
strength R  of the beam and the annual maximum of the applied central moment 
L  are modeled by uncorrelated normally distributed variables with parameters: 

30kNm=Rμ , 5=R kNmσ , 10=L kNmμ , 2=L kNmσ . Which of the following 
statement(s) is(are) correct? (HINT: If M  represents the linear safety margin 
then the probability of failure is given by: FP P M βΦ( 0) (= − ) . = ≤ β  is the so-

called reliability index given as: M

M

μβ
σ

= , where Mμ  and Mσ  are the mean and 

standard deviation of the safety margin respectively.) 
 
The reliability index of the timber beam corresponding to a one year reference period 
is equal to 3.71. √
 

√The probability of failure of the timber beam in a year is equal to . 41 04 10. −⋅
 
The reliability index of the timber beam corresponding to a one year reference period 
is equal to 4.08. 
 
The probability of failure of the timber beam in a year is equal to . 52 25 10. −⋅
 
 
1.29 In a mediterranean city there are on average 5 snowfalls a year. Assume that 

the occurrence of snowfalls X  follows a Poisson process with distribution 

function ( )( )
!

x

X
eF x

x

νν −

=  and with mean ν . Which of the following statement(s) 

is(are) correct? 
 

√The probability of exactly 5 snowfalls in the next year is equal to 0.175. 
 
The probability of exactly 5 snowfalls in the next year is equal to 1. 
 
The probability of no snowfall in the next year is equal to 0.774. 
 

√The probability of no snowfall in the next year is equal to 0.0067. 
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Exercise 2-Solution:         
 
Exercise 2.1:  
 
The risk associated with an event can be estimated as: 
 
R PC=  
 
Where  is the probability of the event and  represents the consequences associated 
with this event. 

P C

 
So it is: 

1 1 1
10 100 10 CHF
100

R PC= = =  

2 2 2
1 500 5 CHF

100
R P C= = =  

3 3 3
20 100 20 CHF

100
R P C= = =  

 
So it is seen that event 3 is the event associated with a higher risk. Here event 3 also 
had the higher probability of occurrence. That however does not necessarily imply a high 
risk in cases where the consequences associated with the event are low (are associated 
with a low cost). 
 
 
Exercise 2.2:  
 
Case Comment Correlation coefficient  
A If a straight line would fit relatively well so a relatively 

high positive correlation exists 
0.8XYρ >  

B Medium positive correlation. The data would fit on a 
straight line but they are not absolutely close to it. 

0.6 0.8XYρ< <  

C Absolutely no correlation between X  and Y  0XYρ =  
D Medium negative correlation since the data would fit on 

a straight line but they are not absolutely close to it 
0.8 0.6XYρ− < < −  

 
 
Exercise 2.3:  
 
It is given that the probability of corrosion initiation is: ( ) 0.06P CI = . Hence the probability 
of no corrosion initiation is: ( ) 1 ( ) 1 0.06 0.94=P C . The probability that the test 
will indicate corrosion initiation provided that corrosion initiation is present is: 

I P CI= − = −

( )P I CI 1=  

while the probability of false indication is: ( ) 0.14P I CI = . Using the theorem of Bayes the 
probability of corrosion initiation given a positive indication from the test can be 
calculated as: 

( ) ( ) 1 0.06( ) 0.313
1 0.06 0.14 0.94( ) ( ) ( ) ( )

P I CI P CI
P CI I

P I CI P CI P I CI P CI
⋅

= =
⋅ + ⋅+

=  
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2.2 

Exercise 2.4:  
 
Case 1. 
 
There are 6 possible outcomes when we throw a dice. These are numbers ranging from 
1 to 6. Hence the even numbers are 2, 4 and 6, making 3 out of 6 possible outcomes. 
The probability that the outcome is an even number is: 1( ) 2P A = . The numbers which 
can be divided by 3 are 2 i.e. the numbers 3 and 6. So the probability that the outcome is 
a number dividable by 3 is: 1( ) 3P B = .  
The probability of both events occurring simultaneously is:  
 

1( ) 6P A B∩ =  which can also be seen by looking the common numbers in the two sets. 
There is actually one common number, that is number 6 (it is an even number and 
dividable by 3). 
 
Case 2. 
 
Thinking in the same way as before the probability that the outcome is a prime number is: 

1( ) 2P B = . That is because the possible outcomes being a prime number are numbers 2, 
3 and 5. So the probability that events A and B occur simultaneously is: 
 

1( ) 6P A B∩ = , since there is one outcome that can be both an even number and a prime 
number, i.e. number 2. 
 
 
Exercise 2.5:  
 
It is given that: 
 

1D : the proposal is accepted and the project will be funded. 
2D : the proposal should be revised by the Professor and resubmitted to SNF.  
3D : the proposal is not accepted and hence no funding is provided. 

 
1( ) 0.45P D = , , . 2( ) 0.35P D = 3( ) 0.2P D =

 
a. The table is completed as follows: 

 
Dr. Beispiel’s indicative assessment,  jISNF final decision 

 iD
1jI D=  2jI D=  3jI D=  

1D  0.86 0.1 0.04 
2D  0.2 0.74 0.06 
3D  0 0.1 0.9 

 
Observe that the horizontal sum is equal to 1: 

1 1 1 2 1 3( ) ( ) ( )P D I P D I P D I+ + 1= . 
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2.3 

b. Using the Bayes’ Theorem the probability that the final decision made by SNF 
is the same with the indicative assessment of Dr. Beispiel is: 

 

( ) 2 2 2 2 2 2
2 2 3

2 1 1 2 2 2 2 3 3
2

1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) (( ) ( )

0.74 0.35 0.799
(0.1 0.45) (0.74 0.35) (0.1 0.2)

i i
i

P I D D P D P I D D P D
P D I D

P I D D P D P I D D P D P I D D P DP I D D P D
=

= =
= = =

= + = + ==

⋅
=

⋅ + ⋅ + ⋅

∑ )

 
 

Exercise 2.6:  
 
a. In order to plot the Tukey box plot five main features are required: 

• the lower quartile 
• the lower adjacent value 
• the median 
• the upper adjacent value 
• the upper quartile 

 
Consider the Zurich data. A value ν  is required such that  
 

nQ Qν = +  
 
Therefore for the lower quartile (i.e. the 0.25 quantile) it is: 
 

20*0.25 0.25 5.25ν = + =  
 
ν  has a non integer value. The value is split to its integer part 5k =  and the fractional 
part . Then the 0.25 quantile is given by: 0.25p =

 
0.25 1(1 ) (1 0.25)*9.11 0.25*9.24 9.1425k kQ p x px += − + = − + =  

 
In the same way for the upper quartile it is: 
 

20*0.75 0.75 15.75ν = + =  
 
ν  has a non integer value. The value is splitted to its integer part  and the 
fractional part . Then the 0.25 quantile is given by: 

15k =
0.75p =

 
0.75 1(1 ) (1 0.5)*9.63 0.5*9.7 9.6825k kQ p x px += − + = − + =  

 
The median is given as following: 
 

20*0.5 0.5 10.5ν = + =  
 
In this case we deal with a non integer value. The value is splitted to its integer part 

 and the fractional part . Then the 0.5 quantile (i.e. the median) is given by: 10k = 0.5p =
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1(1 ) (1 0.5)*9.45 0.5*9.48 9.465k kmedian p x px += − + = − + =  
 
To evaluate the adjacent values the interquartile range is required: 
 

0.75 0.25 9.6825 9.1425 0.54r Q Q= − = − =  
 
The lower adjacent value is the smallest observation that is greater than or equal to the 
lower quartile minus 1.5r. It is: 
 

0.25 1.5 9.1425 1.5*0.54 8.3325Q r− = − =  
 
Thus the lower adjacent value is 8.39.  
In the same way the upper adjacent value is found as: 
 

0.75 1.5 9.6825 1.5*0.54 10.4925Q r+ = + =  
 
Therefore the upper adjacent value is a value less than or equal to 10.4925, that is 10.47 
which actually coincides with the higher value of the data set. 
 
The values necessary to plot the Tukey box plots are given in the following table. 
 
Zurich Data:                                                                   Global Data: 

Median       Median       

9.465       14.22       

Lower quartile       Lower quartile       

v k p 0.25 quantile v k p 0.25 quantile 

5.25 5 0.25 9.1425 5.5 5 0.25 14.1125 

Upper quartile       Upper quartile       

v k p 0.75 quantile v k p 0.75 quantile 

15.75 15 0.75 9.6825 15.5 15 0.75 14.38 

Interquartile        Interquartile        

r 1.5*r 0.25 quantile -1.5r 0.75 quantile +1.5r r 1.5*r 
0.25 quantile -

1.5r 
0.75 quantile 

+1.5r 

0.54 0.81 8.3325 10.4925 0.2675 0.40125 13.71125 14.78125 

Adjacent values       Adjacent values       

Lower Upper     Lower Upper     

8.39 10.47     13.99 14.47     

Statistic  Outside values   Statistic  Outside values   

q0.25 9.1425 8.23   q0.25 14.1125    

min 8.39 8.33   min 13.99    

median 9.465     median 14.22     

max 10.47     max 14.47     

q0.75 9.6825     q0.75 14.38     
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2.5 

 
Figure 2.1: Tukey box plots. 

 
 
b. The histogram and cumulative distribution function for both data sets are shown in 
the following.  
 

 
Figure 2.2: Histograms for both data sets. 

 

 
Figure 2.3: Cumulative frequency distributions for both data sets. 

The detailed calculations on which the above figures are based on may be found in the 
excel file with name “Exercise 2” provided in: 
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2.6 

http://www.ibk.ethz.ch/fa/education/ws_safety 
You may find that there are actually two ways of presenting the cumulative frequency 
distribution. Both ways are provided in the above mentioned excel file. Figure 2.3 has 
been produced using the second way in Matlab. 
 
 
Exercise 2.7:  
 
a. The first sample moment of the considered variable is calculated as: 
 

1
1 1 923 102.56 mm/hour

9im x
n

= = =∑  

 
The second sample moment is calculated as: 

2 2
2

1

1 1 97237 10804 mm /hour
9

n

i
i

m x
n =

= = =∑ 2   

 
Using the expressions for the first two moments, provided in Table 2.3 of Exercise 2 it 
is: 

1
0.5772 0.5772 0.5772102.56 102.56m u u u
α α

= + ⇒ = + ⇒ = −
α

   (1) 

And 
2 22 2

2 2 2

0.5772 0.5772 0.577210804 102.56 0.076
6 6

m u π π α
α α αα α

⎛ ⎞ ⎛ ⎞= + + ⇒ = − + + ⇒ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
And from Equation (1) it is: 
 

0.5772 0.5772102.56 102.56 94.94
0.076

u
α

= − = − =  

 
b. In the following table the necessary values for plotting the data on the 
probability paper are provided. An example of calculation is given in the following: 

, 1
1( ) 0.1

9 1X oF x = =
+

 and  , 1ln( ln( ( ))) ln( ln(0.1)) 0.834X oF x− − = − − = −

 

i  Annual maximum precipitation per hour ix  (mm/hour) , ( )
1X o i

iF x
n

=
+

 ,ln( ln( ( )))X o iF x− −  

1 73 0.1 -0.834 
2 85 0.2 -0.476 
3 93 0.3 -0.186 
4 98 0.4 0.087 
5 100 0.5 0.367 
6 108 0.6 0.672 
7 115 0.7 1.031 
8 121 0.8 1.500 
9 130 0.9 2.250 

 
The values of the above table are now plotted: 

http://www.ibk.ethz.ch/fa/education/ws_safety
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Figure 2.4: Probability paper for testing the suitability of the Gumbel distribution. 

 
c. Yes, the belief of the engineer is correct. Figure 2.4 shows the plotted data on the 
probability paper for the Gumbel distribution. A “best-fit” line is plotted. It is seen that the 
data fit quiet well to the straight “best-fit” line. Hence the belief of the engineer is correct. 

 
d. From the probability distribution function of the Gumbel distribution, 

( )( )( )( ) exp expXF x xα= − − −u  it is seen that after a small transformation we get: 
 

ln( ln( ( )))XF x x uα α− − = −  which is a linear relationship between: 
  

ln( ln( ( )))Xy F= − − x  and x  with slope α  and y-intercept uα .  
 

Using the “best-fit” line two equations may be formed with two unknowns from where we 
can calculate the parameters of the distribution. It is: 
Hence the two linear equations can be written using the general form: , where 

 and 
y xκ= −λ

κ α= uλ α= . 
For  it is , and for 121x = 1.5y = 93x =  it is 0y = . 
It is: 

1.5 121y xκ λ κ λ= − ⇒ = −  
and 

0 93y xκ λ κ= − ⇒ = −λ  
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Subtracting the above two equations we get: 
1.5 0 121 ( 93 ) 1.5 28 0.0536κ λ κ λ κ κ− = − − − ⇒ = ⇒ =  
 
And then from one of the two equations it is: 0 0.0536 93 4.9848y xκ λ λ λ= − ⇒ = ⋅ − ⇒ =  
 
Hence the parameters of the Gumbel distribution are: 
 

0.0536α κ= =  and 4.98480.0536 4.9848 93
0.0536

u u uα λ= ⇒ = ⇒ = = . 

 
It is observed that the values of the parameters calculated using the probability paper 
differ from the ones calculated with the method of moments. This can be explained from 
the fact that with the probability paper we use a “best-fit” line for the calculation of the 
parameters. 
 
Note also that if you would use other combinations for the x  and  values to form the 
set of the two linear relationships with the two unknowns the result may be slightly 
different. 

y
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5

Exercise 3- Solution:         
 
Exercise 3.1:  
 
Using the information provided it is: 
 

( ) 0.6
( ) 0.4
( | ) 0.75
( | ) 0.75
( | ) 1 ( | ) 1 0.75 0.25
( | ) 1 ( | ) 1 0.75 0.2

SD

SW

SD SD

SW SW

P SW
P SD
P I SD
P I SW
P I SW P I SD
P I SD P I SW

=
=

=
=
= − = − =

= − = − =

 

 
Using the Bayes’ Theorem it is: 

( | ) ( ) 0.75 0.4 2( | ) 0.6667 0.6667
( | ) ( ) ( | ) ( ) 0.75 0.4 0.25 0.6 3

( | ) ( ) 0.25 0.4 2( | ) 0.18182
( | ) ( ) ( | ) ( ) 0.25 0.4 0.75 0.6 11

( |

SD
SD

SD SD

SW
sw

SW SW

S

P I SD P SD
P SD I

P I SD P SD P I SW P SW

P I SD P SD
P SD I

P I SD P SD P I SW P SW

P SW I

⋅ ⋅
= = = = =

⋅ + ⋅ ⋅ + ⋅

⋅ ⋅
= = =

⋅ + ⋅ ⋅ + ⋅
=

( | ) ( ) 0.25 0.6 1) 0.3333
( | ) ( ) ( | ) ( ) 0.25 0.6 0.75 0.4 3

( | ) ( ) 0.75 0.6 9( | ) 0.8181
( | ) ( ) ( | ) ( ) 0.75 0.6 0.25 0.4 11

SD
D

SD SD

SW
SW

SW SW

P I SW P SW
P I SW P SW P I SD P SD

P I SW P SW
P SW I

P I SW P SW P I SD P SD

⋅ ⋅
= = =

⋅ + ⋅ ⋅ + ⋅

⋅ ⋅
= =

⋅ + ⋅ ⋅ + ⋅

=

= =

 

 
And: 

( ) ( )

( ) ( )

( ) ( | ) ( | ) 0.75 0.6 0.25 0.4 0.55

( ) ( | ) ( | ) 0.25 0.6 0.75 0.4 0.45

SW SW SW

SD SD SD

P I P I SW P SW P I SW P SW

P I P I SW P SW P I SD P SD

= ⋅ + ⋅ = ⋅ + ⋅ =

= ⋅ + ⋅ = ⋅ + ⋅ =

 

 
The event tree can now be filled in. An example of calculation is provided in the following.  
 
Consider the branch associated with the activity “clean up the roof”. If the roof is cleaned 
up there are two events that may occur according to our problem: 
 

a. the roof may collapse (due to various reasons) 
b. the roof will not collapse (survival of the roof) 
 

These events are associated with some probability as shown in the event tree branches: 
 
a.  and b. . Hence the expected cost of this action 
is: 

4( ) 5 10fP SN −= ⋅ 4( ) 1 5 10 0.9995sP SN −= − ⋅ =

4
 [ ] ( ) 1000004 ( ) 4000 5 10 1004000 0.9995 4000

            4500 
clean up f sE C P SN P SN

CHF

−= ⋅ + ⋅ = ⋅ ⋅ + ⋅

=
 

In a similar way the rest of the event tree may be completed. 
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Figure 3.1. Event tree. 

 
It can be seen that the action associated with the smaller cost is not to clean up the roof.  
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3.3 

Exercise 3.2:  
 
Note: Please correct the question 3.2.a such as to read:  
“Carry out a prior decision analysis (using an appropriate event tree) and determine 
whether it is beneficial to open up the borehole.” 
I am sorry if this has caused any inconvenience. The pre-posterior analysis is requested 
in 3.2.b. 
 
 
a. Based on the information provided the following event tree is constructed for 
carrying out the prior analysis: 
 

 
 
The benefit associated with the opening of the borehole, a-priori, is estimated as follows: 

[ ] [ ] [ ]
1

'[ ] ( 90000) (15000) (170000)

        = 0.5 ( 90000) 0.3 (15000) 0.2 (170000)
        = 4000 

aE u P D P D P O

CHF

′ ′ ′= ⋅ − + ⋅ + ⋅

⋅ − + ⋅ + ⋅  

Hence the action that gives the larger utility (larger expected benefit in terms of cost) is 
action , 1a
 

[ ] { } { }
1 2

max ; max 4000; 0 4000a aE u E u E u CHF⎡ ⎤ ⎡ ⎤′ ′ ′= = =⎣ ⎦ ⎣ ⎦   
 
and hence a-priori the engineer would decide to open up the borehole. 
 
 
b. The event tree is now extended to include the cases of performing a test, 11a , or 
not performing a test, 12a . The following probabilities can readily be estimated: 
 
In case that the test is carried out the probability of receiving the indication that the well 
is dry is: 
 

( ) ( | ) ( ) ( | ) ( ) ( | ) ( )
          0.6 0.5 0.3 0.3 0.1 0.2 0.41

D D C OP I P I D P D P I C P C P I O P O′ ′ ′= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅ =

′  
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The probabilities of the states of the well are updated given the above indication: 
( | ) ( ) 0.6 0.5 0.3( | ) 0.732

( ) 0.41 0.41
D

D
D

P I D P D
P D I

P I
′⋅ ⋅′′ = = =

′
=  

( | ) ( ) 0.3 0.3 0.09( | ) 0.220
( ) 0.41 0.41

D
D

D

P I C P C
P C I

P I
′⋅ ⋅′′ = = =

′
=  

( | ) ( ) 0.1 0.2 0.02( | ) 0.048
( ) 0.41 0.41

D
D

D

P I O P O
P O I

P I
′⋅ ⋅′′ = = =

′
=

′

 

 
Similarly for the other two possible outcomes of the test it is: 

( ) ( | ) ( ) ( | ) ( ) ( | ) ( )
          0.1 0.5 0.3 0.3 0.5 0.2 0.24

C C C CP I P I D P D P I C P C P I O P O′ ′ ′= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅ =
 

 
( | ) ( ) 0.1 0.5 0.05( | ) 0.208

( ) 0.24 0.24
C

C
C

P I D P D
P D I

P I
′⋅ ⋅′′ = = =

′
=  

( | ) ( ) 0.3 0.3 0.09( | ) 0.375
( ) 0.24 0.24

C
C

C

P I C P C
P C I

P I
′⋅ ⋅′′ = = =

′
=  

( | ) ( ) 0.5 0.2 0.1( | ) 0.417
( ) 0.24 0.24

C
C

C

P I O P O
P O I

P I
′⋅ ⋅′′ = = =

′
=

′

 

 
 

( ) ( | ) ( ) ( | ) ( ) ( | ) ( )
          0.3 0.5 0.4 0.3 0.4 0.2 0.35

O O O OP I P I D P D P I C P C P I O P O′ ′ ′= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅ =
 

 
( | ) ( ) 0.3 0.5 0.15( | ) 0.429

( ) 0.35 0.35
O

O
O

P I D P D
P D I

P I
′⋅ ⋅′′ = = =

′
=  

( | ) ( ) 0.4 0.3 0.12( | ) 0.343
( ) 0.35 0.35

O
O

O

P I C P C
P C I

P I
′⋅ ⋅′′ = = =

′
=  

( | ) ( ) 0.4 0.2 0.08( | ) 0.228
( ) 0.35 0.35

O
O

O

P I O P O
P O I

P I
′⋅ ⋅′′ = = =

′
=  

 
The expected utility can be written: 

}{
1,...,1 1

[ ] '[ ] ''[ ] '[ ] max ''[ ( ) ]
n n

i i i jj mi i
E u P I E u I P I E u a I

=
= =

= =∑ ∑ i   

Where  is the number of different possible experiment findings and  is the number of 
different decision alternatives. So it is: 

n m

{ }
}{ }{

''[ ] max ''[ ]( 90000) ''[ ](50000) ''[ ](170000);0 ]

           = max 0.732(-90000)+0.220(50000)+0.048(170000);0 max 46720;0

           =0 

D D D DE u I P D I P C I P O I

CHF

= − + + =

= − =  

Similarly: 
 

{ }
}{ }{

''[ ] max ''[ ]( 90000) ''[ ](50000) ''[ ](170000);0 ]

           = max 0.208(-90000)+0.375(50000)+0.417(170000);0 max 46720;0

           =70920 

C C C CE u I P D I P C I P O I

CHF

= − + + =

= − =  
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{ }
}{ }{

''[ ] max ''[ ]( 90000) ''[ ](50000) ''[ ](170000);0 ]

           = max 0.429(-90000)+0.343(50000)+0.228(170000);0 max 17300;0

           =17300 

C O O OE u I P D I P C I P O I

CHF

= − + + =

= =  

 
And the expected utility considering the costs of the test is: 
 
[ ] [ ] [ ] [ ] }{

{ }
'' | ( ) '' | ( ) '' | ( ) 10000

(0) 0.41 (70920) 0.24 (17300) 0.35 10000
23076 10000 13076

D D C C O OE u E u I P I E u I P I E u I P I

CHF

′ ′ ′= ⋅ + ⋅ + ⋅ −

= ⋅ + ⋅ + ⋅ − =

= − =

=

 

 
Hence if this is compared to the case of not carrying out the test it can be seen that the 
utility is higher in the case that the test is carried out. 
 
The benefit associated from opening up the borehole is then equal to 13076 CHF. 
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4.1 

Exercise 4- Solution:         
 
Exercise 4.1:  
 
For convenience we name the events that may cause a delay as shown in the last 
column of the following table: 
 
 Works Representation Probability of delay 

Form working A 0.2 Phase 1 
Bending of Reinforcement B 0.1 

Phase 2 Installation of reinforcement C 0.05 
Phase 3 Concrete delivering and concreting  D 0.15 
 
In order to construct the fault tree, the top event and the basic events are identified. In 
this case the top event is the delay of the construction project and the various works that 
may lead to a delay are the basic events. Further more the different phases involved in 
construction should be taken into account. The fault tree is shown in the following figure: 
 

 
Figure 4.1: Fault tree for the delay of a construction project. 

 
The basic events are connected with OR gates and that is due to the fact that a delay of 
the construction may result due to either A, B, C, or D occurring. 
 
Now the probability of delay of the construction project can be estimated: 
The probability of delay in the first phase is: 

_ _1 1 (1 ( )) (1 ( )) 1 (1 0.2) (1 0.1) 0.28delay PhaseP P A P B= − − ⋅ − = − − ⋅ − =  
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The probability of delay in the second phase is due to event C or a delay during the first 
phase. So it is: 

_ _ 2 _ _11 (1 ) (1 ( )) 1 (1 0.28) (1 0.05) 0.316delay Phase delay PhaseP P P C= − − ⋅ − = − − ⋅ − =  
And eventually the probability of delay of the construction project, taken into account all 
phases of the construction, is: 

_ _ _ _ 21 (1 ) (1 ( )) 1 (1 0.316) (1 0.15) 0.4186delay of construction delay PhaseP P P D= − − ⋅ − = − − ⋅ − =  
 
 
b. The events associated with the weather effect (if any) are referred to as in the 

following: 
 

- the construction work will not be affected: X 
- there may be problems in concreting due to frost: Y 
- the construction work may stop due to heavy rainfall: Z 

 
An event tree is constructed to compute the costs associated with a delay of the 
construction project: 
 

 
 
The cost associated with a delay in the project is: 

[ ] [ [ ]] 0.4186 100000 0.4186 0.3 50000 0.4186 0.2 20000 0

              49813.4
delay iE C E p E C

CHF

= ⋅ = ⋅ + ⋅ ⋅ + ⋅ ⋅ +

=
∑ =

=

 

 
 
c. The fault tree of figure 4.1 remains the same but now it is: 
 

( ) 0.05P A =  and  and: _ _1 1 (1 ( )) (1 ( )) 1 (1 0.05) (1 0.1) 0.145delay PhaseP P A P B= − − ⋅ − = − − ⋅ − =

_ _ 2 _ _11 (1 ) (1 ( )) 1 (1 0.145) (1 0.05) 0.188delay Phase delay PhaseP P P C= − − ⋅ − = − − ⋅ − =  and: 

_ _ _ _ 21 (1 ) (1 ( )) 1 (1 0.188) (1 0.15) 0.3098delay of construction delay PhaseP P P D= − − ⋅ − = − − ⋅ − =  
 
And finally using a tree similar to the one in the previous question (4.1.b) it is: 

[ ] [ [ ]] [ ] (0.3098 100000 0.3098 0.3 50000 0.3098 0.2 20000 0) 12000

              48866.2
delay i TeamE C E p E C E C

CHF

= ⋅ + = ⋅ + ⋅ ⋅ + ⋅ ⋅ + +

=
∑

 
As it can be seen the expected cost of the delay reduces if the extra team for the form 
working is used. 
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Exercise 5-Solution:         
 
Exercise 5.1:  
 
Note:Please correct the units of the mean value and standard deviation of the 
yield stress in this exercise: 

3 2425 10 /
yf KN mmμ −= ⋅  and 3 225 10 /

yf KN mmσ −= ⋅  
 
 
The Safety margin is simply: 

100 35y yM R S A f S f= − = ⋅ − = ⋅ −  
 
Since the yield stress yf  is normal distributed, M  is also normal distributed and we may 
estimate its mean and standard deviation as follows: 

3[ ] [100 35] 100 35 100 425 10 35 7.5
yM y fE M E f KNμ μ −= = ⋅ − = ⋅ − = ⋅ ⋅ − =  

And the variance is: 
2

2 2 2 3 2 2

[ ] [100 35] [100 ] [35]

    =100 0 100 (25 10 ) 6.25
y

M y y

f

VAR M VAR f VAR f VAR

KN

σ

σ −

= = ⋅ − = ⋅ −

⋅ − = ⋅ ⋅ =

=
 

And the standard deviation is then: 
2 6.25 2.5M M KNσ σ= = =  

 
(Note: The mean and standard deviation are estimated using the properties of operators 
provided in the Lecture Notes-Lecture 2) 
 
The probability of failure of the rod is then (following Equations 5.24 and 5.25 of the 
lecture notes: 

0 0 0 7.5( 0) ( ) ( ) ( )
2.5

   = ( 3) 0.00135

M M
f M

M M

P P M P Z
μ μ

σ σ
− − −

= ≤ = ≤ = Φ = Φ

Φ − =

=
 

 
Whereas the reliability of the rod is simply: 
Reliability=1 1 0.00135 0.99865fP− = − =  
 
(Note: You can estimate the standard normal distribution value corresponding to -3 
either using standard normal distribution tables (available in any statistics book) or using 
Excel’s direct function: normsdist(z) ) 
 
It is easier to draw the probability density function of the standardised safety margin i.e. 
of . The area under the density function to the right of -3 in the x-axis represents the 
safe region. 

MZ
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Exercise 6-Solution:         
 
Exercise 6.1:  
 
Using the provided Figure and basic principles of geometry it is: 
  

sin ( ) sin( )
b c
β π α β

=
− −

  ⇒
sin ( )( , , )

sin ( )
b f c c βα β

α β
= = ⋅

+
 

 
Using the properties of the expectators it is: 

[ ] sin ( ) sin ( ) sin (1.225)[ ] 6 6.32
sin ( ) sin ( ) sin (1.225 0.813)

E b E c E c kmβ β
α β α β

⎡ ⎤
= ⋅ = ⋅ = ⋅ =⎢ ⎥+ + +⎣ ⎦

 

 
While the estimation of the error associated with the measurement of side b  is 
represented by the standard deviation [ ]bσ  and is estimated as in the following :  
 

[ ]
22 2

2 2
c

f f fV b
c

2
α βσ σ σ

α β
⎡ ⎤∂ ∂ ∂⎡ ⎤ ⎡ ⎤= ⋅ + ⋅ + ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
sin ( )

sin ( )
f
c

β
α β

∂
=

∂ +
 

 

( )( ) ( ) ( )
( )( )

1
2

sin cossin ( ) sin ( ) sin
sin ( ) sin

f c c c
β α ββ β α β

α α β α α α β
− ⋅ +⎛ ⎞∂ ∂ ∂

= ⋅ = ⋅ ⋅ + = − ⋅⎜ ⎟∂ + ∂ ∂ +⎝ ⎠
 

 

( )( )

( ) ( ) ( ) ( ) ( )( )

( )
( )

( ) ( )
( )( )

( ) ( ) ( ) ( )
( )( )

( )

1

1 2

2 2

sin ( ) sin ( ) sin ( )
sin ( )

cos ( ) sin ( ) 1 sin ( ) cos 1 sin ( )

cos sin cos cos sin sin cos
sin sin sin

sin

sin

f c c

c c

c c

c

β β α β
β α β β β

β α β α β α β β

β β α β β α β β α β
α β α β α β

α β β

−

− −

⎛ ⎞∂ ∂ ∂
= ⋅ = ⋅ ⋅ +⎜ ⎟∂ + ∂ ∂⎝ ⎠

= ⋅ ⋅ + + − ⋅ + ⋅ + ⋅ ⋅ ⋅

⎛ ⎞ ⎛⋅ + ⋅ + − ⋅ +⎜ ⎟ ⎜= ⋅ − = ⋅
⎜ ⎟ ⎜+ + +⎝ ⎠ ⎝

+ −
= ⋅

( )( )

⎞
⎟
⎟
⎠

( )
( )( )2 2

sin

sin
c

α

α β α β

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= ⋅
⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
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And eventually it is: 

[ ]
22 2

2 2 2

2 22
2 2

2 2

2 2 2 2 2 2 2

sin sin cos( ) sin
sin( ) (sin( )) (sin( ))

1.0537 0.005 3.1894 0.011 5.4671 0.011 0.004875

c

c

f f fV b
c

c c

km

α β

2
α β

σ σ σ
α β

β β α β ασ σ σ
α β α β α β

⎡ ⎤∂ ∂ ∂⎡ ⎤ ⎡ ⎤= ⋅ + ⋅ + ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡⎡ ⎤ ⋅ ⋅ + ⋅
= ⋅ + ⋅ +⎢ ⎥ ⎢⎢ ⎥+ + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= ⋅ + ⋅ + ⋅ =

⎤
⎥

 

 
The error in b is calculated by: 
 
[ ] 0.004875 0.0698b kσ = = m  

 
 
 
Exercise 6.2: 
 
The price of the TV game is a normal distributed random variable  . 2(50,10 )A N∼
The money that he expects to receive from his parents are represented by the normal 
distributed random variable . 2(20,5 )B N∼
 
The safety margin can be formulated as follows: 
 

20M B A= + −  
 
If , the boy can buy the TV game, whereas if 0M > 0M ≤  he cannot. 
 
Therefore the probability that he cannot buy the TV game can be expressed as: 
 
P[ 0] [(20 ) 0]M P B A< = + − <  
 
The probability can be obtained by integrating the probability distribution function over 
the corresponding area. 
 
But before carrying out the integration, the random variables in the limit state function 
have to be standardized.  
 

2(50,10 ) 50 10A
A A A A

A

A
A N U A U A U

μ
μ σ

σ
−

− − − −− > = ⇔ = + ⋅ ⇔ = + ⋅∼ A  

 
2(20,5 ) 20 5B

B B B B
B

B
B N U B U B U

μ
μ σ

σ
−

− − − −− > = ⇔ = + ⋅ ⇔ = + ⋅∼ B  

 
The limit state function in the standard normal space is given by: 
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6.3 

A( ) ( )20 20 5 50 10 5 10 10B A BM U U U U= + + ⋅ − + ⋅ = ⋅ − ⋅ −  
The probability can be calculated by solving the following integration 
 

5 10 10 0
[ 5 10 10 0] ( ) ( )

B A
B A Au u

P M U U u u du duφ φ
− − <

= − − < = ∫ B A B  

2
5

s > −  

( )φ i denotes the standard normal density function of and Au Bu .  
 

 
 

Visualization of the integration area 
 
Since the joint density probability function is symmetric, we can rotate the limit 
state function. Due to the rotation the two dimensional integration is converted 
into a one dimensional integration. 

 
 

2D visualization of the original and the rotated limit state function. 
 
 

*

*

2 2
1
2

B A

B A

u u

u u

v v

= ⋅ +

= − ⋅

=
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2 2

1 42 2
2 5

2
5

4 2 2
5 5 5

A A A

B

u u u

u

s

⋅ + = − ⋅ ⇔ = −

=

⎛ ⎞ ⎛ ⎞= − + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
The minimal distance s  between the straight line and the origin is: 
 

2
5

s = −  

 

( ) ( )
2 / 5

[ 5 10 10 0] ( )

1 1 (2 / 5) 1 1 (0.8944)

0.89

B AP M U U s dsφ
−∞

−
= − − < =

= − −Φ = − −Φ

=

∫
 

 
The probability that the boy cannot buy the game is 0.89. 
 
 
Exercise 6.3: 
 

2
2 12( 1) 3x x

1 2( , ) 0g x x <

= − − +

 
 

The reliability index can be estimated by: 
 

( ){ }
2

0 1
min

n

ig i
uβ

∈ = =

= ∑u u
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( )

( )
0.52

1

1,2,...i
i

n

i i

g
u

i n
g
u

β
α

β
=

∂
− ⋅
∂

= =
⎡ ⎤⎛ ⎞∂⎢ ⎥⋅ ⋅⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦
∑

α

α

 

 
The limit state function is given by: 
 

2
1 2 1 2( , ) 2( 1) 3g X X X X= − + −  

 
Since the random variables 1X  and 2X  are standard normal distributed we do not need 
to standardize them. 
 

1 2

2( ) 2( 1) 3X Xg u u u= − + −  
 
We substitute  
 

1 1X Xu β α= ⋅  
 

2 2X Xu β α= ⋅  
 

1 2

1 1

2

2 2

0 2 ( 1) 3

0 2 4 1
X X

X X X

β α β α

β α β α β α

= ⋅ ⋅ − + ⋅ −

= ⋅ ⋅ − ⋅ ⋅ + ⋅ −
2

 

 
The reformulation of this equation and solving in respect to β   gives: 
 

1 1 2

1 1

2

2

1
2 4

1
2 4

X X X

new
old X X X

β
β α α α

β
2

β α α α

=
⋅ ⋅ − ⋅ +

=
⋅ ⋅ − ⋅ +

 

 
To calculate the α  values we need to calculate the derivatives: 
 

( )1 2 1

1 1

22 ( 1) 3 4 ( 1)X X X
X X

g g u u u
u u
∂ ∂

− = − ⋅ − + − = − ⋅ −
∂ ∂

 

( )1 1

1

4 ( 1)X X
X

g
u

β α β α∂
− ⋅ = − ⋅ ⋅
∂

−  

 

( )1 2

2 2

22 ( 1) 3 1X X
X X

g g u u
u u
∂ ∂

− = − ⋅ − + − = −
∂ ∂

 

( )2

2

1X
X

g
u

β α∂
− ⋅ =
∂

−  
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6.6 

( ) ( ) ( )
1

2
2 2

1
4 ( 1) 1

n

X
i i

g
u

β β α
=

⎛ ⎞∂
⋅ ⋅ = ⋅ ⋅ − +⎜ ⎟∂⎝ ⎠

∑ α  

 

( )

( ) ( ) ( )
1 1

1

1

0.5 22 2

1

4 ( 1)

4 ( 1) 1

X X
X

n
X

i Xi

g
u

g
u

β
β α

α
β α

β
=

∂
− ⋅
∂ − ⋅ ⋅

= =
⎡ ⎤⎛ ⎞ ⋅ ⋅ − +∂⎢ ⎥⋅ ⋅⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦
∑

α

α

−
 

 

( )

( ) ( ) ( )
2

2

1

0.5 22 2

1

1

4 ( 1) 1

X
X

n
X

i Xi

g
u

g
u

β
α

β α
β

=

∂
− ⋅
∂ −

= =
⎡ ⎤⎛ ⎞ ⋅ ⋅ − +∂⎢ ⎥⋅ ⋅⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦
∑

α

α

 

 
The starting values for the iteration are chosen: 
 

1

2

0.6

0.6

1

X

X

α

α

β

=

= −

= −

 

 
1st. Iteration: 
 
Calculation of a new β  value: 
 

( )
1 1 2

2

1 1 0.268
2 1 0.36 4 0.6 0.62 4new

old X X X

β
β α α α

= =
⋅ − ⋅ − ⋅ −⋅ ⋅ − ⋅ +

= −  

 
Calculation of the new α  values: 
 

( ) ( ) ( ) ( )
1

1

1

2 22

4 ( 1) 4 ( 0.268 0.6 1) 0.988
4 ( 0.268 0.6 1) 14 ( 1) 1

X
X

X

β α
α

β α

− ⋅ ⋅ − − ⋅ − ⋅ −
= =

⋅ − ⋅ − +⋅ ⋅ − +
2
=

 

 

( ) ( ) ( ) ( )
2

1

2 22

1 1 0.154
4 ( 0.268 0.6 1) 14 ( 1) 1

X

X

α
β α

− −
= =

⋅ − ⋅ − +⋅ ⋅ − +
2
= −  

 
 
2nd. Iteration: 
 
With these values one can calculate again a new β  value 
 

( )
1 1 2

2 2

1 1 0.216
2 4 2 0.268 0.988 4 0.988 0.154new

old X X X

β
β α α α

= =
⋅ ⋅ − ⋅ + ⋅ − ⋅ − ⋅ −

= −  
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6.7 

And new alpha values: 
 

( ) ( ) ( ) ( )
1

1

1

2 22

4 ( 1) 4 ( 0.216 0.988 1)

4 ( 0.216 0.988 1) 14 ( 1) 1

0.981

X
X

X

β α
α

β α

− ⋅ ⋅ − − ⋅ − ⋅ −
= =

⋅ − ⋅ − +⋅ ⋅ − +

=

2  

 

( ) ( )
2 2 2

1 0.194
4 ( 0.216 0.988 1) 1

Xα −
= =

⋅ − ⋅ − +
−  

 
 
3rd. Iteration: 
 

( )
1 1 2

2 2

1 1 0.221
2 4 2 0.216 0.981 4 0.981 0.194new

old X X X

β
β α α α

= =
⋅ ⋅ − ⋅ + ⋅ − ⋅ − ⋅ −

= −  

 
 

( ) ( ) ( ) ( )
1

1

1

2 22

4 ( 1) 4 ( 0.221 0.981 1)

4 ( 0.221 0.981 1) 14 ( 1) 1

0.979

X
X

X

β α
α

β α

− ⋅ ⋅ − − ⋅ − ⋅ −
= =

⋅ − ⋅ − +⋅ ⋅ − +

=

2  

 

( ) ( )
2 2 2

1 0.202
4 ( 0.221 0.981 1) 1

Xα −
= =

⋅ − ⋅ − +
−  

 
4th. Iteration: 
 

( )
1 1 2

2 2

1 1 0.22
2 4 2 0.221 0.979 4 0.979 0.202new

old X X X

β
β α α α

= =
⋅ ⋅ − ⋅ + ⋅ − ⋅ − ⋅ −

= −  

 
The results of this iteration are given in the following table. 
 

Iteration 
i Start 1 2 3 4 5 6 

β  -1 -0.269 -0.216 -0.221 -0.22 -0.22 - 

1Xα  0.6 0.988 0.981 0.980 0.980 - - 

2Xα  -0.6 -0.154 -0.194 -0.201 -0.201 - - 

 
 

2
1 2[2( 1) 3 0] ( ( 0.22)) (0.22) 0.587P X X− + − < = Φ − − = Φ =  
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6.8 

Exercise 6.4: 
 
The limit state function describing the event of failure may be written as: 
 

( ) 8g x = −w   
 
where  is the central deflection.  w
 
By replacing with the relevant values we get:  

4
6

3

5( ) 8 8 8 1.235 10
384

q l qg x w
E I h

⋅ ⋅
= − = − = − ⋅

⋅ ⋅
 

 
where  in [ ] and  in [ mm ].  q /kN m h
 
Reforming gives: 
 

3 6( ) 8 1.235 10g x h= ⋅ − ⋅ ⋅q  
 
Now the normally distributed variables are transformed into standard normal distributed 
variables as follows: 
 

Q
Q

Q

Q
U

μ
σ
−

=  and  H
H

H

H
U

μ
σ
−

=  

 
Thus the limit state function may now be written in the space of the standardized normal 
distributed random variables as: 
 

3 6

3 6

( ) 8 ( ) 1.235 10 ( )

8 (100 5) 1.235 10 (5 1)
H H H Q Q Q

H Q

g u u u

u u

μ σ μ= ⋅ + ⋅ − ⋅ ⋅ + ⋅

= ⋅ + ⋅ − ⋅ ⋅ + ⋅

σ
 

 
3 2( ) 40 800 1235 1825H H H Qg u u u u u= + ⋅ + ⋅ − ⋅ +   

 
The design point values are: 
 

H Hu α β=  Q Qu α β=  
 
Thus: 

3 2( ) ( ) 40 ( ) 800 1235 1825H H H Qg u α β α β α β α β= ⋅ + ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ +  
 
The reliability index may be estimated by: 
 

2

( ( ) 0)
min

n

iz g z i
uβ

∈ =
= ∑  

And reforming gives: 
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6.9 

3 2 2
1

1825
40 800 1235i

H H i H Q

β
α β α β α α−

−
=

⋅ + ⋅ ⋅ + ⋅ − ⋅
 

 
Now the following iteration scheme is followed: 

1/ 22

( )

( )

i
i

n

i i

g
u

g
u

β α
α

β α

∂
− ⋅
∂

=
⎡ ⎤⎛ ⎞∂⎢ ⎥⋅⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦
∑

 

 
21 (3 80 800)H H Hu u

k
α = − ⋅ + ⋅ +  

 
2 2( 1235) (3 80 800)H Hk u u= − + ⋅ + ⋅ + 2  

 
1 ( 1235)Q k

α = − −  

 
Iteration i Start  1 2 3 4 5 6 

β  3 1.380346 1.266017 1.264043 1.263972 1.263974 1.263974 

Hα  -0.7071 
-

0.462254 
-

0.519157 
-

0.518418 
-

0.518494 
-

0.518491 -0.518492 
Qα  0.7071 0.886747 0.854679 0.855127 0.855081 0.855083 0.855083 

Iteration. 
 
The probability of failure may now be estimated as: 

( ) ( 1.263974) 0.103 10.3%FP β= Φ − = Φ − = ≈  
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7.1 

Exercise 7-Solution:         
 
Exercise 7.1:  
 
1. Open Matlab 
 
2. Copy the routine provided in the last pages of this file and paste it in the 
 “EDITOR” 
 
3. Save the file with the name: “Exercise_7.mat” 
 
4. In the COMMAND WINDOW write “Exercise_7” and click enter 
 
5. Wait until you see the results in the workspace. (The time required for the 
 simulation depends on the number of simulations. In the provided routine the 
 number of simulations, ilast, is set to 1 million. If you want to have a view of the 
 results faster decrease this number initially to e.g. 10000- however the accuracy 
 of the result is smaller for smaller number of simulations). 
 
6. The probability of corrosion initiation after 50 years is equal to: 0.0219. 
 
7. The probability of visual corrosion after 50 years is equal to: 0.0112. 
 
8. You can use Matlab to plot and check the distributions of the variables in the 
 model. For example right click “cd” in the workspace.  
 Choose “hist” from the available plots to plot the histogram of the simulated 
 values of the concrete cover depth. The plots should agree with the input  values 
 for every variable.  

 
 

 

Mean value =55 mm 
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7.2 

Routine for Monte Carlo Simulation in Matlab 
 
%mean__ stands for the mean value of a variable 
  
%stdev__ stands for the standard deviation of a variable 
  
%other statistical parameters are provided according to the relevant 
%distribution of a variable 
  
%for the relation between moments and parameters of a distribution please 
%use Tables 2.7 and/or 2.8 in the chapter 2 of the script 
  
%the variables are defined as provided in Table 7.1 of Exercise 7.1 
  
%concrete cover depth, cd  
meancd=55; 
stdevcd=11; 
lamdacd = log(meancd^2)-log(sqrt(stdevcd^2+meancd^2)); 
zitacd = sqrt(log((stdevcd/meancd)^2+1)); 
  
% diffusion coefficient, D 
meanD=40; 
stdevD=10; 
lamdaD = log(meanD^2)-log(sqrt(stdevD^2+meanD^2)); 
zitaD = sqrt(log((stdevD/meanD)^2+1)); 
  
%surface concentration, Cs 
meanCs=0.4; 
stdevCs=0.08; 
lamdaCs = log(meanCs^2)-log(sqrt(stdevCs^2+meanCs^2)); 
zitaCs = sqrt(log((stdevCs/meanCs)^2+1)); 
  
%critical concentration, Ccr 
meanCcr=0.15; 
stdevCcr=0.05;; 
lamdaCcr = log(meanCcr^2)-log(sqrt(stdevCcr^2+meanCcr^2)); 
zitaCcr = sqrt(log((stdevCcr/meanCcr)^2+1)); 
  
  
%propagation time 
meanTp=7.5; 
stdevTp=1.88; 
lamdaTp = log(meanTp^2)-log(sqrt(stdevTp^2+meanTp^2)); 
zitaTp = sqrt(log((stdevTp/meanTp)^2+1)); 
  
  
%model uncertainty, Xi 
meanXi=1; 
stdevXi=0.05; 
lamdaXi = log(meanXi^2)-log(sqrt(stdevXi^2+meanXi^2)); 
zitaXi = sqrt(log((stdevXi/meanXi)^2+1)); 
  
%reference time,t 
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7.3 

t=50; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%% 
%%%%Monte Carlo Simulation%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%number of simulations 
ilast=1000000; 
  
%create memory space in Matlab to enable faster performance 
cd=zeros(ilast,1); 
Cs=zeros(ilast,1); 
Ccr=zeros(ilast,1); 
Xi=zeros(ilast,1); 
Tp=zeros(ilast,1); 
D=zeros(ilast,1); 
  
  %random numbers for the concrete cover depth, cd 
            cd=lognrnd(lamdacd,zitacd,ilast,1); 
             
   %random numbers for the diffusion coefficient, D 
            D=lognrnd(lamdaD,zitaD,ilast,1); 
             
  %random numbers for the surface chloride concentration, Cs 
            Cs=lognrnd(lamdaCs,zitaCs,ilast,1); 
   
  %random numbers for the critical chloride concentration, Ccr       
            Ccr=lognrnd(lamdaCcr,zitaCcr,ilast,1); 
             
  %random numbers for the model uncertainty,Xi 
            Xi=lognrnd(lamdaXi,zitaXi,ilast,1); 
  
  %random numbers for the propagation time, Tp 
            Tp=lognrnd(lamdaTp,zitaTp,ilast,1); 
       
save Random_numbers 
clear 
  
  
%%INSERTION OF THE MODEL FUNCTION%%%%%%%%%%%%%%%%%%%%% 
  
load Random_numbers; 
  
    %inverse of standard normal disribution 
        normstandardinv=norminv((1 - (Ccr./(2 * Cs))),0,1); 
  
    %estimation of the error function 
         errorfunction=normstandardinv/sqrt(2); 
         partA=errorfunction.^(-2); 
         
    %time till corrosion initiation, CI 
         Ti_mod = ((cd.^2)./D).*partA; 
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7.4 

    %time till visual corrosion 
        T_CV=Xi.*Ti_mod+Tp; 
         
    %margin for corrosion initiation 
        M_CI=Xi.*Ti_mod-t; 
         
    %margin for visual corrosion,CV 
        M_CV=T_CV-t; 
         
         
%%LOOPS FOR THE ESTIMATION OF THE PROBABILTIY OF FAILURE%%%%%%%%%%  
         
%corrosion initiation 
            for i=1:ilast 
                if M_CI(i)<=0  
                    ni(i)=1; 
               else 
                    ni(i)=0; 
                end 
              end 
     %nitotal is the total number of cases where M_CI<=0 
                sum_nitotal=sum(ni); 
     %Probability of corrosion initiation after 50 years 
                Pf_CI=sum_nitotal/ilast; 
  
                 
 %visual corrosion  
            for i=1:ilast 
                if M_CV(i)<=0  
                    nv(i)=1; 
               else 
                    nv(i)=0; 
                end 
              end 
     %nvtotal is the total number of cases where M_CV<=0 
                sum_nvtotal=sum(nv); 
     %Probability of corrosion initiation after 50 years 
        Pf_CV=sum_nvtotal/ilast; 
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Exercise 8- Solution:         
 
Exercise 8.1:  
 
a. The deterministic values of  is estimated as follows: or

 M R S= −   
16
8

μ
σ

s

s

=

=
 16

7
8

μ
β

σ
oM

M

r −
= = =  

       
      ⇒ 72or =  MPa 
 
From the resistance function it is:  
 

( ) ( )or t r g t= ⋅  
( ) 20 ( ) 20 ( )( )

20 1 19 19
cr

cr o

a a t a t a tg t
a a

− −
= = = −

− −
 

where 
2 /(2 )

(2 ) / 2 / 22( )
2

π σ ν
m

m m m
o

ma t a C t
−

− −⎛ ⎞= + ⋅ ⋅ Δ ⋅ ⋅⎜ ⎟
⎝ ⎠

 

 
and inserting the known parameters it is: 

( ) 1.258 1.8 3.6( ) 1 0.8 10 30πa t t
−−= − ⋅ ⋅ ⋅ ⋅  

 
And so:  

( ) 1.258 1.8 3.61 0.8 10 3020 ( ) 20( )
19 19 19 19

π ta tg t
−−− ⋅ ⋅ ⋅ ⋅

= − = −  

 

( ) 1.258 1.8 3.61 0.8 10 3020( ) 72
19 19

π t
r t

−−⎡ ⎤− ⋅ ⋅ ⋅ ⋅
⎢ ⎥= ⋅ −
⎢ ⎥
⎣ ⎦

 

 
The out-crossing rate is estimated as follows: 

( ) ( ) ( ) ( )η η ηω ϕ η ϕ
ω ω ωo

o o o

v t+ ⎡ ⎤
= ⋅ ⋅ − ⋅Φ⎢ ⎥

⎣ ⎦
  where:  ( )

( )
μ

η
σ

s

s

r t
t

−
=   

and hence  ( )( )η
σ s

r tt =  

 
 
 
 

In the following the out-crossing rate is estimated for years 1 to 50.  
 
 
 
 
 
 
 

8.1 
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Time  a(t) g(t) r(t) η(t) η' (t)/ωo ϕ(η) ϕ(η’/ω0) φ(-η'/ωo) v+(t) 
0 1 1 72 7 -7.7E-09 9.13E-12 0.398942 0.5 3.64E-06
1 1.016555 0.999129 71.93727 6.992158 -8E-09 9.65E-12 0.398942 0.5 3.85E-06
2 1.03361 0.998231 71.87264 6.98408 -8.2E-09 1.02E-11 0.398942 0.5 4.07E-06
3 1.051187 0.997306 71.80603 6.975754 -8.5E-09 1.08E-11 0.398942 0.5 4.32E-06
4 1.069309 0.996352 71.73736 6.96717 -8.7E-09 1.15E-11 0.398942 0.5 4.58E-06
5 1.088001 0.995368 71.66652 6.958315 -9E-09 1.22E-11 0.398942 0.5 4.87E-06
6 1.10729 0.994353 71.59343 6.949178 -9.3E-09 1.3E-11 0.398942 0.5 5.19E-06
7 1.127204 0.993305 71.51796 6.939746 -9.6E-09 1.39E-11 0.398942 0.5 5.55E-06
8 1.147771 0.992223 71.44002 6.930003 -9.9E-09 1.49E-11 0.398942 0.5 5.93E-06
9 1.169024 0.991104 71.35949 6.919936 -1E-08 1.59E-11 0.398942 0.5 6.36E-06

10 1.190996 0.989948 71.27623 6.909528 -1.1E-08 1.71E-11 0.398942 0.5 6.84E-06
11 1.213723 0.988751 71.1901 6.898763 -1.1E-08 1.85E-11 0.398942 0.5 7.36E-06
12 1.237242 0.987514 71.10098 6.887622 -1.1E-08 1.99E-11 0.398942 0.5 7.95E-06
13 1.261595 0.986232 71.00869 6.876087 -1.2E-08 2.16E-11 0.398942 0.5 8.61E-06
14 1.286824 0.984904 70.91309 6.864136 -1.2E-08 2.34E-11 0.398942 0.5 9.35E-06
15 1.312976 0.983528 70.81399 6.851748 -1.3E-08 2.55E-11 0.398942 0.5 1.02E-05
16 1.340101 0.9821 70.7112 6.8389 -1.3E-08 2.78E-11 0.398942 0.5 1.11E-05
17 1.368251 0.980618 70.60452 6.825565 -1.4E-08 3.05E-11 0.398942 0.5 1.22E-05
18 1.397484 0.97908 70.49375 6.811718 -1.4E-08 3.35E-11 0.398942 0.5 1.34E-05
19 1.42786 0.977481 70.37863 6.797329 -1.5E-08 3.7E-11 0.398942 0.5 1.48E-05
20 1.459446 0.975819 70.25894 6.782367 -1.5E-08 4.09E-11 0.398942 0.5 1.63E-05
21 1.492313 0.974089 70.13439 6.766799 -1.6E-08 4.55E-11 0.398942 0.5 1.81E-05
22 1.526536 0.972288 70.00471 6.750588 -1.7E-08 5.07E-11 0.398942 0.5 2.02E-05
23 1.562198 0.970411 69.86956 6.733696 -1.7E-08 5.69E-11 0.398942 0.5 2.27E-05
24 1.599389 0.968453 69.72863 6.716079 -1.8E-08 6.4E-11 0.398942 0.5 2.55E-05
25 1.638204 0.96641 69.58154 6.697693 -1.9E-08 7.24E-11 0.398942 0.5 2.89E-05
26 1.678748 0.964276 69.4279 6.678488 -2E-08 8.24E-11 0.398942 0.5 3.29E-05
27 1.721135 0.962046 69.26728 6.65841 -2.1E-08 9.41E-11 0.398942 0.5 3.76E-05
28 1.765488 0.959711 69.0992 6.637401 -2.1E-08 1.08E-10 0.398942 0.5 4.32E-05
29 1.811941 0.957266 68.92317 6.615396 -2.3E-08 1.25E-10 0.398942 0.5 5E-05
30 1.860642 0.954703 68.73862 6.592327 -2.4E-08 1.46E-10 0.398942 0.5 5.82E-05
31 1.911751 0.952013 68.54494 6.568118 -2.5E-08 1.71E-10 0.398942 0.5 6.82E-05
32 1.965443 0.949187 68.34148 6.542685 -2.6E-08 2.02E-10 0.398942 0.5 8.06E-05
33 2.021913 0.946215 68.12749 6.515936 -2.7E-08 2.41E-10 0.398942 0.5 9.6E-05
34 2.081371 0.943086 67.90217 6.487772 -2.9E-08 2.89E-10 0.398942 0.5 0.000115
35 2.144052 0.939787 67.66464 6.458081 -3E-08 3.5E-10 0.398942 0.5 0.00014
36 2.210215 0.936304 67.41392 6.42674 -3.2E-08 4.29E-10 0.398942 0.5 0.000171
37 2.280146 0.932624 67.14892 6.393615 -3.4E-08 5.3E-10 0.398942 0.5 0.000211
38 2.354164 0.928728 66.86843 6.358554 -3.6E-08 6.63E-10 0.398942 0.5 0.000264
39 2.432621 0.924599 66.57112 6.32139 -3.8E-08 8.39E-10 0.398942 0.5 0.000335
40 2.515913 0.920215 66.25549 6.281936 -4.1E-08 1.08E-09 0.398942 0.5 0.000429
41 2.604484 0.915553 65.91985 6.239981 -4.3E-08 1.4E-09 0.398942 0.5 0.000558
42 2.69883 0.910588 65.56233 6.195291 -4.6E-08 1.85E-09 0.398942 0.5 0.000737
43 2.799511 0.905289 65.1808 6.1476 -4.9E-08 2.48E-09 0.398942 0.5 0.000989
44 2.90716 0.899623 64.77287 6.096608 -5.3E-08 3.39E-09 0.398942 0.5 0.001351
45 3.022497 0.893553 64.3358 6.041975 -5.7E-08 4.72E-09 0.398942 0.5 0.001883
46 3.14634 0.887035 63.8665 5.983313 -6.1E-08 6.71E-09 0.398942 0.5 0.002679
47 3.279625 0.88002 63.36142 5.920177 -6.6E-08 9.78E-09 0.398942 0.5 0.003901
48 3.423431 0.872451 62.81647 5.852059 -7.1E-08 1.46E-08 0.398942 0.5 0.005825
49 3.578999 0.864263 62.22695 5.778369 -7.7E-08 2.24E-08 0.398942 0.5 0.008941
50 3.747771 0.85538 61.58739 5.698424 -8.3E-08 3.55E-08 0.398942 0.5 0.014145

The probability of failure at time t is given by: 
0

( ) 1 exp( ( ) )ν
t

fP t t dt+− − ⋅∫  =

Where for t =50 years: . 
50

0

( ) 0.0347ν t dt+ ⋅ =∫
And the probability of failure is then: ( ) 1 exp( 0.0347) 3.41%fP t = − − =  
 
b. The probability of failure is now given by: 

  
0

( ) 1 exp( ( ) ) ( )ν
t

f RP t t dt f r dr
∞

+

−∞

= − − ⋅ ⋅ ⋅∫∫ o

Since  is a random variable for random values around its mean values we get the 
following table: 

or

8.2 



Risk and Safety 
M.H.Faber, Swiss Federal Institute of Technology, ETH Zurich, Switzerland 

 

ro fR(ro) 
50

0

( )ν t dt+ ⋅∫  exp(-
50

0

( )ν t dt+ ⋅∫ ) exp(- )fR(ro) 
50

0

( )ν t dt+ ⋅∫
60 0.0004284 40.788933 1.93015E-18 8.26898E-22 
61 0.0010405 23.943161 3.99592E-11 4.15764E-14 
62 0.0023393 13.912772 9.07319E-07 2.1225E-09 
63 0.004869 8.0026024 0.000334591 1.62911E-06 
64 0.0093816 4.556417 0.010499612 9.85028E-05 
65 0.0167341 2.567893 0.076696977 0.001283458 
66 0.0276325 1.4324386 0.238726044 0.006596607 
67 0.0422404 0.790867 0.453451472 0.019153964 
68 0.0597757 0.4321561 0.64910807 0.038800879 
69 0.0783089 0.2337049 0.79159535 0.061988925 
70 0.0949701 0.1250735 0.88243207 0.083804646 
71 0.1066234 0.0662387 0.935907394 0.099789594 
72 0.1108173 0.0347127 0.96588289 0.107036534 
73 0.1066234 0.018 0.982161002 0.104721309 
74 0.0949701 0.0092352 0.99080729 0.094097049 
75 0.0783089 0.004688 0.995322931 0.077942598 
76 0.0597757 0.0023544 0.997648336 0.059635111 
77 0.0422404 0.0011698 0.998830876 0.042191 
78 0.0276325 0.000575 0.999425178 0.027616655 
79 0.0167341 0.0002796 0.999720462 0.01672946 
80 0.0093816 0.0001345 0.999865538 0.009380308 
81 0.004869 6.398E-05 0.999936025 0.004868661 
82 0.0023393 3.011E-05 0.999969893 0.002339245 
83 0.0010405 1.401E-05 0.999985986 0.001040456 
84 0.0004284 6.452E-06 0.999993548 0.000428408 

 
And through numerical integration (essentially the sum of all the values estimated in the 
last column of the above table) it is: 

0
exp( ( ) ) ( ) 0.859ν

t

R ot dt f r dr
∞

+

−∞

− ⋅ ⋅ ⋅ =∫∫  

 
And the probability of failure is: 
 

( ) 1 0.859 0.141 14.1%fP t = − = =  
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Exercise 10- Solution:         
 
Exercise 10.1:  
 
a.   
The failure probability for a specific time range [0,t] is determined as follows,  

0
( ) 1 exp( ( ) )ν

t

fP t t dt+= − − ⋅∫  
 
Solving the integral for each year from 0 to 50 years and plotting over the time yields 
Figure 10.1.  
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Figure 10.1: Cumulative probability of failure 

 
A series system with 50 components, where the components are one-year periods is 
assumed. 
 
The failure probabilities for the one-year periods are computed with  
from Figure 10.1 (see also Table 10.1). 

( ) ( ) ( 1)f f fP t P t P t= − −
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Time Pf Pf 1- Pf Time Pf Pf 1- Pf 

(Years) (cumulative) (yearly) (yearly) (Years) (cumulative) (yearly) (yearly) 

1 3.74537E-06 3.74537E-06 0.999996255 26 0.00029608 3.08014E-05 0.999969199
2 7.7051E-06 3.95972E-06 0.99999604 27 0.0003312 3.51178E-05 0.999964882
3 1.18983E-05 4.19316E-06 0.999995807 28 0.00037147 4.02644E-05 0.999959736
4 1.63461E-05 4.44788E-06 0.999995552 29 0.00041791 4.64409E-05 0.999953559
5 2.10726E-05 4.72643E-06 0.999995274 30 0.00047181 5.39053E-05 0.999946095
6 2.61043E-05 5.0317E-06 0.999994968 31 0.00053481 6.29928E-05 0.999937007
7 3.14713E-05 5.36703E-06 0.999994633 32 0.00060895 7.41431E-05 0.999925857
8 3.72075E-05 5.73623E-06 0.999994264 33 0.00069689 8.79386E-05 0.999912061
9 4.33513E-05 6.14375E-06 0.999993856 34 0.00080205 0.000105159 0.999894841

10 4.9946E-05 6.59473E-06 0.999993405 35 0.0009289 0.000126856 0.999873144
11 5.70411E-05 7.09514E-06 0.999992905 36 0.00108338 0.000154473 0.999845527
12 6.46931E-05 7.65197E-06 0.999992348 37 0.00127338 0.000190002 0.999809998
13 7.29665E-05 8.27341E-06 0.999991727 38 0.00150962 0.000236238 0.999763762
14 8.19356E-05 8.96908E-06 0.999991031 39 0.00180677 0.000297153 0.999702847
15 9.1686E-05 9.75037E-06 0.99999025 40 0.00218524 0.00037847 0.99962153
16 0.000102317 1.06307E-05 0.999989369 41 0.00267381 0.000488567 0.999511433
17 0.000113943 1.16263E-05 0.999988374 42 0.00331371 0.000639908 0.999360092
18 0.000126699 1.27563E-05 0.999987244 43 0.00416508 0.000851364 0.999148636
19 0.000140743 1.40437E-05 0.999985956 44 0.00531711 0.001152033 0.998847967
20 0.00015626 1.55167E-05 0.999984483 45 0.00690478 0.00158767 0.99841233
21 0.000173469 1.7209E-05 0.999982791 46 0.00913651 0.002231725 0.997768275
22 0.000192631 1.91622E-05 0.999980838 47 0.01234116 0.003204657 0.996795343
23 0.000214058 2.14271E-05 0.999978573 48 0.01704959 0.004708427 0.995291573
24 0.000238124 2.40665E-05 0.999975933 49 0.02413871 0.007089116 0.992910884

25 0.000265283 2.71587E-05 0.999972841 50 0.03509059 0.010951887 0.989048113

Table 10.1 Annual probability of failure and reliability 
 
The probability of failure of the series system is then: 

  
50

1

1 1 (1 ( )) 1 0.9654 3.46%F S i
i

P P P F
=

= − = − − = − =∏
 
b. The resistance parameter or  is normal distributed with mean value 72 and 
standard deviation 3.6. The failure probability was computed in Exercise 8.1a for a single 
deterministic value of 72or = . The failure probabilities for the normal distributed or  are 
computed analogous for each integer or  from e.g. 60or =  to 84or = . 
 
The probability of survival for each  is obtained by factorizing with its frequency of 
occurrence: 

or

 
50

1

( ) (1 ) ( )
i

f f R o
i

P t P f r
=

= − ⋅∏  

The probability of failure of the series system is obtained through summation of the 

probabilities of survival for each  value. or
84 50

160

( ) 1 (1 ) ( )
if f

i

P t P f r dr
=

R o= − − ⋅ ⋅∏∫  
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10.3 

or ( ) R of r f o f o ( )P r  

50

1

(1 )
if

i

P
=

−∏  
50

1

(1 ) ( )
if R o

i

P f r
=

− ⋅∏  ( )P r  from ( )v t+

60 0.0004284 0.6383 0.3617 0.000154956 1
61 0.0010405 0.6369 0.3631 0.000377795 1
62 0.0023393 0.6368 0.3632 0.000849639 0.9999
63 0.004869 0.6377 0.3623 0.001764029 0.9996
64 0.0093816 0.6359 0.3641 0.00341583 0.9895
65 0.0167341 0.6139 0.3861 0.006461051 0.9233
66 0.0276325 0.5471 0.4529 0.012514777 0.7613
67 0.0422404 0.4347 0.5653 0.023878489 0.5465
68 0.0597757 0.3059 0.6941 0.041490302 0.3509
69 0.0783089 0.1942 0.8058 0.063101275 0.2084
70 0.0949701 0.1144 0.8856 0.084105504 0.1176
71 0.1066234 0.064 0.936 0.099799468 0.0641
72 0.1108173 0.0346 0.9654 0.106983022 0.0341
73 0.1066234 0.0183 0.9817 0.104672156 0.0178
74 0.0949701 0.0095 0.9905 0.094067866 0.0092
75 0.0783089 0.0048 0.9952 0.077932972 0.0047
76 0.0597757 0.0024 0.9976 0.059632222 0.0024
77 0.0422404 0.0012 0.9988 0.042189695 0.0012
78 0.0276325 0.0006 0.9994 0.027615959 0.0006
79 0.0167341 0.000293 0.999707 0.016729235 0.000280
80 0.0093816 0.000141 0.999859 0.009380247 0.000134
81 0.004869 0.000067 0.999933 0.004868646 0.000064
82 0.0023393 0.000032 0.999968 0.00233924 0.000030
83 0.0010405 0.000015 0.999985 0.001040455 0.000014

84 0.0004284 0.000007 0.999993 0.000428408 0.0000064
Table 10.2 Probability of failure of the series system 
 
Numerical integration yields: 

84 50

160

(1 ) ( ) 0.886
if R o

i

P f r dr
=

− ⋅ ⋅ =∏∫  

 
Thus the probability of failure of the series system is:  
  ( ) 1 0.886 0.114 11.4%fP t = − = =

 
Comments:  In Exercise 8 we had obtained a failure probability of 14.1%.  

By comparing columns 3 and 6 it can be seen that with smaller -
values the differences in the failure probabilities are bigger. An 
explanation for this difference may be the fact that out-crossings before 
the considered time are neglected in computing the out-crossing rate. 

or
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Exercise 11-Solution:         
 
Exercise 11.1:  
 
Download Hugin Lite and install it in your pc.  
 
a. The problem described in Exercise 4 can be represented by a BPN as the one 
shown in the following Figure. The probabilities associated with the various states of 
each node can be found in the Hugin file provided together with the solution of this 
exercise.  
 
After inserting all the necessary values save the file and click the compile button (the one 
that is like a thunder). You should then be able to view the results as th list of results on 
the left hand column of the following figure. It can be see that the probability o f delay of 
the construction project is equal to 41.86% (the same as the one estimated in Exercise 
4). 
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11.2 

b and c. For parts b. and c. of Exercise 4 the following Bayesian Probabilistic net 
can be used: 
 

 
 
It is seen that the use of 1 or 2 teams, the effect of the weather and the delay of the 
project are all linked to the node of “Cost” as they have an effect on that. 
 
By completing the associated tables correctly the cost associated with the use of 1 or 2 
teams is equal to 49813.40 CHF and 48840.91 CHF respectively. As it can be seen the 
expected cost of the delay reduces if the extra team for the form working is used. 
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Assignment 13-Solution:  
 
 
Exercise 13.1: 
 
Based on previous knowledge the bending strength of timber is assumed normally 
distributed with standard deviation equal to MPa 11=σ  and uncertain mean μ  
assumed also normally distributed with  and standard deviation MPa 843.='μ

MPa 53.' =σ .  
 
Assume now that 10 four point tests are carried out with the results shown in Table 
11.1. 
 

Nr. fc [MPa]
1 31.5 
2 38.3 
3 36.6 
4 38.2 
5 35.1 
6 44.9 
7 50.8 
8 42.5 
9 39.6 
10 36.9 

Table 11.1 Density strength of the timber samples. 
 
Based on the new test results, update the prior probabilistic model for the mean 
value of the bending strength. Plot the prior and posterior probability density 
functions. 
 
 
Solution 13.1 
 
Prior probabilistic model of the mean value of bending strength: 
 
 Bending strength is normally distributed with 

 
 Standard deviation, known:  MPa 11=σ  
 Mean, uncertain, normally distributed:  andMPa 843.' =μ MPa 53.' =σ  
 
Based on the prior probabilistic model and the observations from the tests carried 
out we can update the probabilistic model for the mean and standard deviation of 
the mean value of the bending strength. 
 
For normally distributed variables with known standard deviation and unknown 
mean it is: 

⎟
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where 

n'n
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x

n
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=′′
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⋅

=′′  

 
n is the sample size of the test carried out, that is 10n = , while ' is the sample 
size assumed for the prior distribution and is given as  

n
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x  is the sample mean of the observations and that is 
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Based on the above the posterior mean and standard deviation are estimated: 
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and 
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We can now plot the prior and posterior density functions as shown in Figure 11.1. 
It is seen that the effect of the test results is quite significant on the updating of the 
distribution. 
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13.3 
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