Risk and Safety

in

Civil, Surveying and Environmental Engineering

Prof. Dr. Michael Havbro Faber Swiss Federal Institute of Technology ETH Zurich, Switzerland

Consider a steel rod. The rod will fail if the applied load on the rod exceeds the resistance of the rod.

The resistance *R* of the rod is a Normal distributed random variable with parameters:

 $\mu_R = 350 MPa$ and $\sigma_R = 35 MPa$

The applied load S on the rod is deterministic and equal to 200 MPa

We need to estimate the probability of failure of the rod

- **1.** Safety margin M = R S
- **2. We write:** $FLIM(1)\{M\} = R S$
- 3. In "Stochastic modeler" provide the name, distribution and distribution parameters of *R* and *S*
- 4. In "Computation Options" choose FORM for the method of integration
- 5. Save the file with name "Exercise_1"
- 6. Run the reliability analysis

Consider Exercise 1 again:

Consider Exercise 1 again:

Carry out a parametric study for the loading stress S
use values ranging between 100 to 300 MPa with an interval of 10 MPa

- Go to "parametric study" and input the above information under lower and upper bound
- Proceed as before and save the file as Exercise 2
- Run the reliability analysis

• Consider the same steel rod

The load S on the rod is now also Normal distributed with parameters:

 $\mu_s = 200 MPa$ and $\sigma_s = 40 MPa$

- a. Estimate again the probability of failure of the rod using FORM
- b. Use Monte Carlo Simulation to do the above estimation

Exercise 3a

- **1.** Safety margin M = R S
- **2. We write:** $FLIM(1){M} = R S$
- 3. In "Stochastic modeler" provide the name, distribution and distribution parameters of *R* and *S* (both Normal distributed)

$$\mu_R = 350 \text{ MPa} \text{ and } \sigma_R = 35 \text{ MPa}$$
 $\mu_S = 200 \text{ MPa} \text{ and } \sigma_S = 40 \text{ MPa}$

Exercise 3a

- **1.** Safety margin M = R S
- **2. We write:** $FLIM(1)\{M\} = R S$
- 3. In "Stochastic modeler" provide the name, distribution and distribution parameters of *R* and *S* (both Normal distributed)

 $\mu_R = 350 \text{ MPa} \text{ and } \sigma_R = 35 \text{ MPa}$ $\mu_S = 200 \text{ MPa} \text{ and } \sigma_S = 40 \text{ MPa}$

- 4. In "Computation Options" choose FORM for the method of integration
- 5. Save the file with name "Exercise_3a"
- 6. Run the reliability analysis

Exercise 3b

- **1.** Safety margin M = R S
- **2.** We write: $FLIM(1)\{M\} = R S$
- 3. In "Stochastic modeler" provide the name, distribution and distribution parameters of *R* and *S* (both Normal distributed)

 $\mu_R = 350 \text{ MPa} \text{ and } \sigma_R = 35 \text{ MPa}$ $\mu_S = 200 \text{ MPa} \text{ and } \sigma_S = 40 \text{ MPa}$

- 4. In "Computation Options" choose <u>Crude Monte Carlo</u> for the method of integration and give a number of simulations
- 5. Save the file with name "Exercise_3b"
- 6. Run the reliability analysis

• Consider again a steel rod

The resistance *R* of the rod is given by: $R = A \cdot f_{y}$

Where A is the cross-sectional area and f_v is the steel yield stress

- A is constant : $A = 10 mm^2$
- f_y is Normal distributed with parameters: $\mu_{f_y} = 350 MPa$ and $\sigma_{f_y} = 35 MPa$

The load S is Normal distributed with parameters: $\mu_s = 1500 N$ and $\sigma_s = 300 N$

Estimate the probability of failure of the rod using FORM carrying a parametric analysis for the cross sectional area of the rod (from 10 mm² to 20 mm², with step 2 mm²)

- **1.** Safety margin M = R S
- 2. We write: DEFFUNC(1)=A * fyFLIM(1){M} = FUNC(1)-S
- 3. In "Stochastic modeler" provide the name, distribution and distribution parameters of all the variables.
- 4. In "Computation Options" choose FORM for the method of integration
- 5. Save the file with name "Exercise_4"
- 6. Run the reliability analysis

- Consider Exercise 4 but:
- the steel yield stress f_v
- is Normal distributed with parameters: μ_{f_y} and $\sigma_{\mu_{f_y}} = 35 MPa$

where μ_{f_y} is Normal distributed: $\mu_{\mu_{f_y}} = 350 MPa$ and $\sigma_{\mu_{f_y}} = 10 MPa$

Remember that:

The resistance *R* of the rod is given by: $R = A \cdot f_y$

Where A is the cross-sectional area and f_{y} is the steel yield stress

A is constant : $A = 10 mm^2$

The load S is normal distributed with parameters: $\mu_s = 1500 N$ and $\sigma_s = 300 N$

Estimate the probability of failure of the rod using FORM

ETH Swiss Federal Institute of Technology

1. Safety margin $M = A * f_v - S$

2. We write:
$$FLIM(1){M} = A * f_y - S$$

RF07(1)=mfy

- 3. In "Stochastic modeler" provide the name, distribution and distribution parameters of all the variables. Watch out how to define f_{y} !!!
- 4. In "Computation Options" choose FORM for the method of integration
- 5. Save the file with name "Exercise_5"
- 6. Run the reliability analysis

• Remember Exercise 7 (weekly exercises)

The time to corrosion initiation is given by:

$$T_{I_{\text{mod}}} = \frac{d^2}{4D} \left(erf^{-1} \left(1 - \frac{C_{CR}}{C_S} \right) \right)^{-2}$$

where:

- *d* : the concrete cover depth to the reinforcement
- *D*: the chloride diffusion coefficient
- C_{CR} : the critical chloride concentration which when exceeded at the level of the reinforcement corrosion will initiate
- C_s : the chloride concentration at the surface of the concrete

$$erf^{-1}(.)$$
 :error function expressed as: $erf^{-1}(x) = \frac{\Phi^{-1}\left(\frac{x}{2} + \frac{1}{2}\right)}{\sqrt{2}}$

• Remember Exercise 7 (weekly exercises)

The time to corrosion initiation is given by:

$$T_{I_{\text{mod}}} = \frac{d^2}{4D} \left(erf^{-1} \left(1 - \frac{C_{CR}}{C_S} \right) \right)^{-2}$$

Model uncertainty
$$\Xi$$
 : $T_{I} = \Xi T_{I_{mod}}$

Statistical characteristics:

Description	Representation	Units	Distribution	μ	σ
Cover thickness	d	mm	Log-normal	55	11
Diffusion coefficient	D	mm ² / yr	Log-normal	40	10
Surface concentration	C_s	Water % of concrete	Log-normal	0.4	0.08
Critical concentration	C _{CR}	Water % of concrete	Log-normal	0.15	0.05
Propagation time	$T_{_P}$	years	Log-normal	7.5	1.88
Model uncertainty	[1]	-	Log-normal	1	0.05

- Remember Exercise 7
- a. Estimate the probability of corrosion initiation after *t*= 50 years
- b. Estimate the profile of corrosion initiation from year 1 to year 100

- a. Estimate the probability of corrosion initiation after *t*= 50 years
- 1. Formulate safety margin M_CI:

- a. Estimate the probability of corrosion initiation after *t*= 50 years
- 1. Formulate safety margin M_CI: M_CI=Xi*Ti_mod-t

- a. Estimate the probability of corrosion initiation after *t*= 50 years
- M_CI=Xi*Ti_mod-t **1.** Formulate safety margin M_Cl
- 2. Write the expression in Comrel and declare the distributions and their statistics

DEFFUNC(1)(X)=IF(X<0,0,ICPHI(X/2+0.5)/SQRT(2))

- a. Estimate the probability of corrosion initiation after *t*= 50 years
- 1. Formulate safety margin M_CI
- 2. Write the expression in Comrel and declare the distributions and their statistics

DEFFUNC(1)(X)=IF(X<0,0,ICPHI(X/2+0.5)/SQRT(2))

$$erf^{-1}(x) = \frac{\Phi^{-1}\left(\frac{x}{2} + \frac{1}{2}\right)}{\sqrt{2}}$$

M_CI=Xi*Ti_mod-t

$$T_{I_{\text{mod}}} = \frac{d^2}{4D} \left(erf^{-1} \left(1 - \frac{C_{CR}}{C_S} \right) \right)^{-2}$$

- a. Estimate the probability of corrosion initiation after *t*= 50 years
- 1. Formulate safety margin M_CI
- 2. Write the expression in Comrel and declare the distributions and their statistics

DEFFUNC(1)(X)=IF(X<0,0,ICPHI(X/2+0.5)/SQRT(2))

FLIM(1){CI}=XI*((FUNC(1)(1-Ccr/Cs))^(-2)*d^2/(4*D))-t

- 3. Save as Exercise_6a
- 4. Run the reliability analysis

$$erf^{-1}(x) = \frac{\Phi^{-1}\left(\frac{x}{2} + \frac{1}{2}\right)}{\sqrt{2}}$$

M_CI=Xi*Ti_mod-t

$$T_{I_{\rm mod}} = \frac{d^2}{4D} \left(erf^{-1} \left(1 - \frac{C_{CR}}{C_S} \right) \right)^{-2}$$

b. Estimate the profile of corrosion initiation from year 1 to year 100

- b. Estimate the profile of corrosion initiation from year 1 to year 100
- 1. Keep Exercise_6a
- 2. In "Parametric study" give for t, the lower bound equal to 1 and upper bound equal to 100
- 3. Save as Exercise_6b
- 4. Run the reliability analysis

Estimate the probability of visual corrosion after 50, 70 and 90 years, following Exercise 7 of the weekly exercises!

