Risk and Safety in

Civil, Surveying and Environmental Engineering

Prof. Dr. Michael Havbro Faber

Swiss Federal Institute of Technology

ETH Zurich, Switzerland

Contents of Today's Lecture

Probabilistic Modelling of Loads

Probabilistic Modelling of Resistances

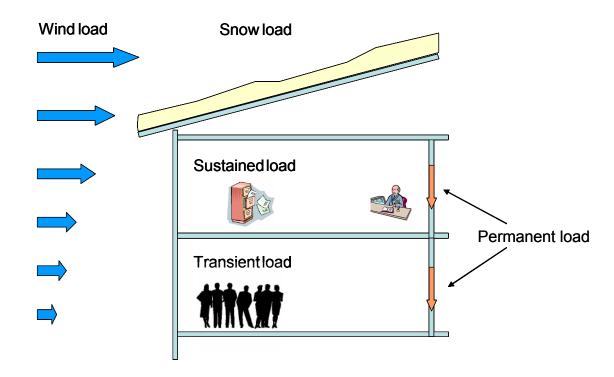
Probabilistic Modelling of Model Uncertainties

The Joint Committee on Structural Safety Probabilistic Model Code

Loads on Structures

Loads are uncertain due to:

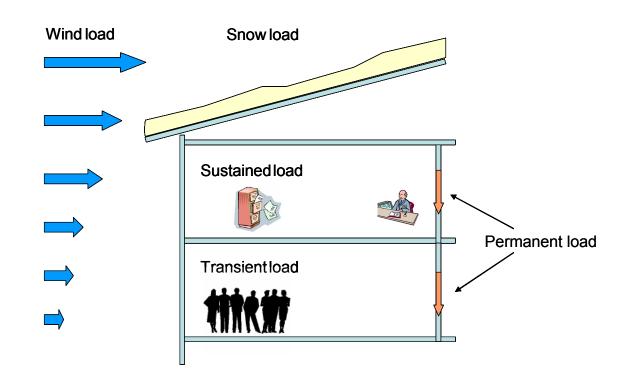
- Random variations in space and time
- Model uncertainties
- Statistical uncertainties



Loads on Structures

It is often useful to characterize loads as:

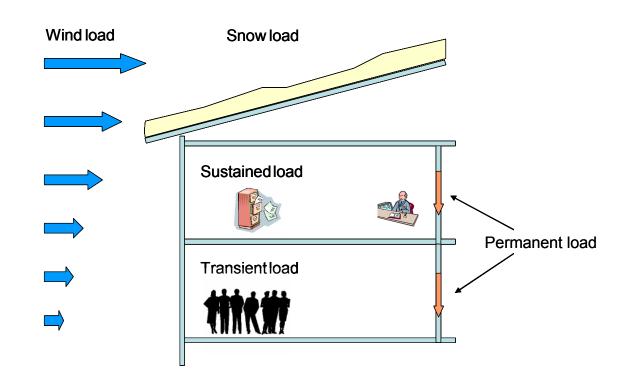
- Permanent or variable
- Fixed or free
- Static or dynamic



Loads on Structures

The probabilistic modelling includes the following steps:

- specifying the definition of the random variables used to represent the uncertainties in the loading
- selecting a suitable distribution type to represent the random variable
- assigning the distribution parameters of the selected distribution.

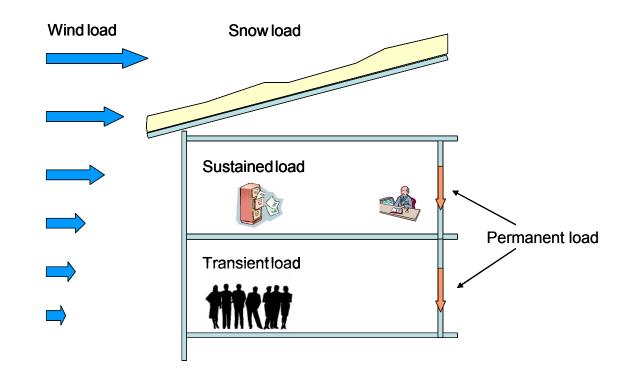


Loads on Structures

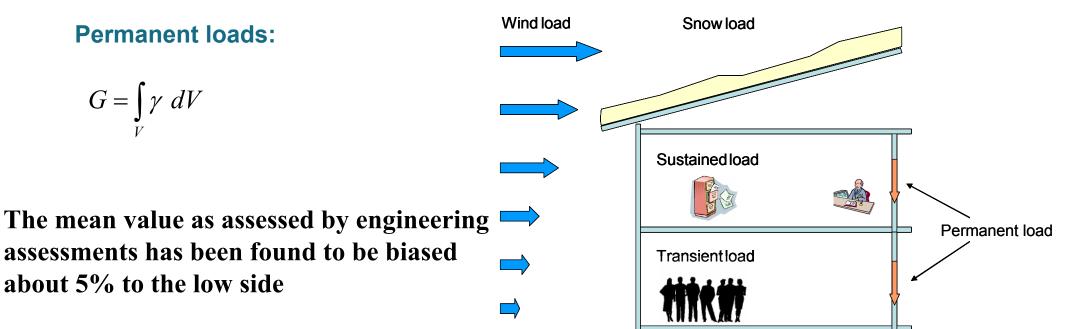
Permanent loads:

$$G = \int_{V} \gamma \, dV$$
Density

Material	COV
Construction Steel	0.01
Concrete	0.04
Timber	
- sawn beam or strut	0.12
- laminated beam, planed	0.10



Loads on Structures



Log-normal and normal distributions are

good candidates to represent the uncertainty

Loads on Structures

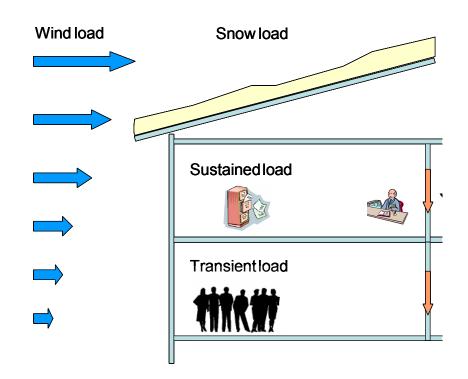
Live floor loads:

$$W(x, y) = m + V + U(x, y)$$

m is the overall mean value for a given use category

V is a zero mean random variable

U(x,y) is a zero mean random field



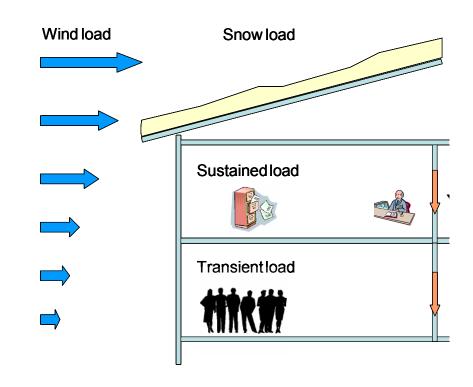
Loads on Structures

Live floor loads:

$$W(x, y) = m + V + U(x, y)$$

The random load effect in linear systems due to the spatially distributed load W(x,y) is represented by an equivalent uniformly distributed load Q_{equ}

$$S = \int_{A} W(x, y)i(x, y)dA = Q_{equ} \int_{A} i(x, y)dA$$



Loads on Structures

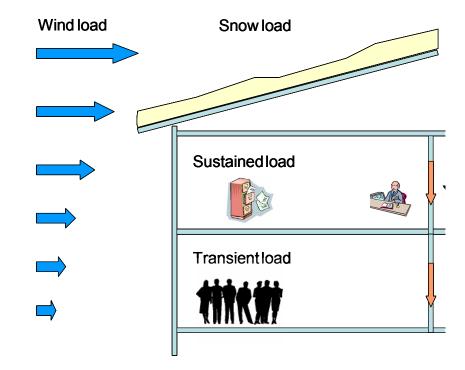
Live floor loads:

The mean value of the Q_{equ}

$$E[Q_{equ}] = m$$

The variance is

$$Var \left[Q_{equ}\right] = \frac{Var \left[\int_{A} W(x, y) i(x, y) dA\right]}{\left[\int_{A} i(x, y) dA\right]^{2}} = \frac{\int_{A} \int_{A_{1}} i(x, y) dA}{\left[\int_{A} i(x, y) dA\right]^{2}} = \frac{\int_{A} \int_{A_{1}} i(x, y) i(x, y) dA}{\left[\int_{A} i(x, y) dA\right]^{2}} = \frac{\int_{A} \int_{A_{1}} i(x, y) i(x, y) dA}{\left[\int_{A} i(x, y) dA\right]^{2}} = \frac{\int_{A} \int_{A_{1}} i(x, y) dA}{\left[\int_{A} i(x, y) dA\right]^{2}} = \frac{\int_{A} \int_{A_{1}} i(x, y) dA}{\left[\int_{A} i(x, y) dA\right]^{2}} = \frac{\int_{A} \int_{A_{1}} i(x, y) dA}{\left[\int_{A} i(x, y) dA\right]^{2}} = \frac{\int_{A} \int_{A_{1}} i(x, y) dA}{\left[\int_{A} i(x, y) dA\right]^{2}} = \frac{\int_{A} \int_{A_{1}} i(x, y) dA}{\left[\int_{A} i(x, y) dA\right]^{2}} = \frac{\int_{A} \int_{A} i(x, y) dA}{\left[\int_{A} i(x, y) dA\right]^{2}} = \frac{\int_{A} \int_{A} i(x, y) dA}{\left[\int_{A} i(x, y) dA\right]^{2}} = \frac{\int_{A} \int_{A} i(x, y) dA}{\left[\int_{A} i(x, y) dA\right]^{2}} = \frac{\int_{A} \int_{A} i(x, y) dA}{\left[\int_{A} i(x, y) dA\right]^{2}} = \frac{\int_{A} \int_{A} i(x, y) dA}{\left[\int_{A} i(x, y) dA\right]^{2}} = \frac{\int_{A} \int_{A} i(x, y) dA}{\left[\int_{A} i(x, y) dA\right]^{2}} = \frac{\int_{A} \int_{A} i(x, y) dA}{\left[\int_{A} i(x, y) dA\right]^{2}} = \frac{\int_{A} \int_{A} i(x, y) dA}{\left[\int_{A} i(x, y) dA\right]^{2}} = \frac{\int_{A} \int_{A} i(x, y) dA}{\left[\int_{A} i(x, y) dA\right]^{2}} = \frac{\int_{A} i(x, y) dA}{\left[\int_{A} i(x, y)$$



Loads on Structures

Live floor loads:

If the correlation radius ρ_0 is small there is:

$$Var[Q_{equ}] = \frac{\int i(x,y)^2 dA}{\int \int i(x,y)^2 dA} = \sigma_V^2 + \sigma_U^2 \kappa_{red} \qquad \kappa_{red} = \frac{A_0}{A} \kappa(A)$$

Loads on Structures

Live floor loads:

In principle the variance reduction factor may be determined from

$$\kappa_{red} = \frac{A_0}{A} \kappa(A)$$

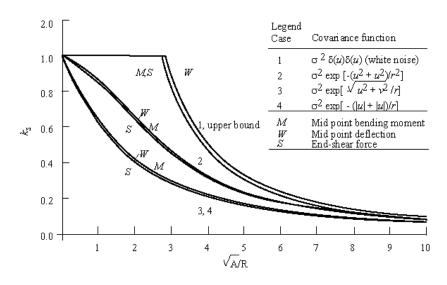
$$\kappa = 2.0$$
 η 0

Loads on Structures

Live floor loads:

In principle the variance reduction factor may be determined from

$$\kappa_{red} = \frac{A_0}{A} \kappa(A)$$



But for most practical purposes it can be assumed to be equal to zero

$$E[Q_{equ}] = m_q$$

$$Var[Q_{equ}] = \sigma_V^2$$

Loads on Structures

Live floor loads (sustained loads):

The maximum EUDL load has been found to be Gamma distributed but is sometimes modelled by a Type I extreme value distribution.

Assuming that changes of the sustained load follow a Poisson process with rate λ the probability distribution function of the maximum load in a time reference T may be determined from

$$F_{O,\text{max}}(x) = \exp(-\lambda T(1 - F_O(x)))$$

Loads on Structures

Live floor loads (transient loads):

The maximum EUDL load has been found to be Exponential distributed.

$$E[P_{equ}] = m_p \qquad Var[P_{equ}] = \sigma_V^2$$

Assuming that changes of the sustained load follow a Poisson process with rate v the probability distribution function of the maximum load in a time reference T may be determined from

$$F_{p,\text{max}} = \exp\left(-vT(1-F_p(x))\right)$$

Loads on Structures

Live floor loads (sustained/transient loads):

	Sustained Load			Transient Load					
Category	A_0 [m ²]	m_q	$\sigma_{\scriptscriptstyle V}$	$oldsymbol{\sigma}_{U}$	1/λ [y]	m_p [kN/m ²]	$\sigma_{\scriptscriptstyle V}$	1/ <i>v</i> [y]	d_p
		$[kN/m^2]$	$[kN/m^2]$	$[kN/m^2]$			$[kN/m^2]$		[d]
Office	20	0.5	0.3	0.6	5	0.2	0.4	0.3	1 - 3
Lobby	20	0.2	0.15	0.3	10	0.4	0.6	1.0	1 – 3
Residence	20	0.3	0.15	0.3	7	0.3	0.4	1.0	1 – 3
Hotel guest room	20	0.3	0.05	0.1	10	0.2	0.4	0.1	1 – 3
Patient room	20	0.4	0.3	0.6	5 – 10	0.2	0.4	1.0	1 – 3
Laboratory	20	0.7	0.4	0.8	5 – 10				
Libraries	20	1.7	0.5	1.0	>10				

Loads on Structures

The combined sustained and transient loads can be assessed as the maximum of

$$L_1 = L_{Q,\max} + L_p$$

$$L_2 = L_Q + L_{p,\max}$$

and modelled as a type I extreme value distribution

Loads on Structures

Wind loads

$$w = c_a c_g c_r \overline{Q}_{ref} = c_a c_e \overline{Q}_{ref}$$

 $w = c_d c_a c_e \overline{Q}_{ref}$

$$Q = \frac{1}{2}\rho U^2$$

 Q_{ref} : 10 min mean U

Smaller rigid structures

Taller flexible structures

 c_r : roughness factor

 c_g : gust factor

 c_a : aero-dynamic shape factor

 c_d : dynamic factor

 c_{ρ} : exposure factor

 ρ : 1.25 kg/m³

Loads on Structures

Wind loads

 c_r : roughness factor

 c_{g} : gust factor

 c_a : aero-dynamic shape factor

 c_d : dynamic factor

 c_{ρ} : exposure factor

 ρ : 1.25 kg/m³

Variable	Type	V
Q_{ref}	Gumbel	0.20 - 0.30
c_r	Lognormal	0.10 - 0.20
c_a - coefficient pressure	Lognormal	0.10 - 0.30
coefficient force	Lognormal	0.10 - 0.15
c_{g}	Lognormal	0.10 - 0.15
c_d	Lognormal	0.10 - 0.20

Wind load can be assumed Log-Normal distributed

$$V_w^2 \cong V_{c_d}^2 + V_{c_a}^2 + V_{c_r}^2 + V_{\overline{Q}_{ref}}^2$$

$$V_w^2 \cong V_{c_a}^2 + V_{c_r}^2 + V_{\overline{Q}_{ref}}^2$$

Loads on Structures

Snow loads

$$S_r = S_g r k^{\frac{h}{h_r}}$$

$$S_g = d \cdot \gamma(d)$$

 S_r : Snow load on roof

 S_g : Snow load on ground

r: ground to roof conversion factor

k: location factor (1.25 coastal, 1,5 inland)

h: altitude in meters

 h_r : reference altitude (300 meters)

 ρ : 1.25 kg/m³

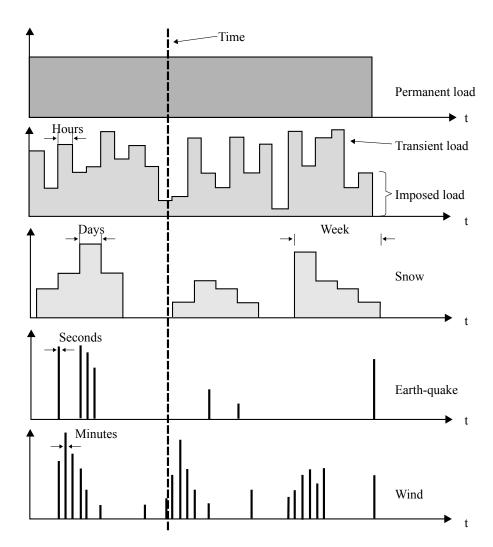
Typically the snow load is modelled by a Gamma or a Gumbel distribution

Loads on Structures

Combination of loads

We are interested in the maximum of a sum of load effects from different loads

$$X_{max}(T) = \max_{T} \{X_1(t) + X_2(t) + \dots + X_n(t)\}$$



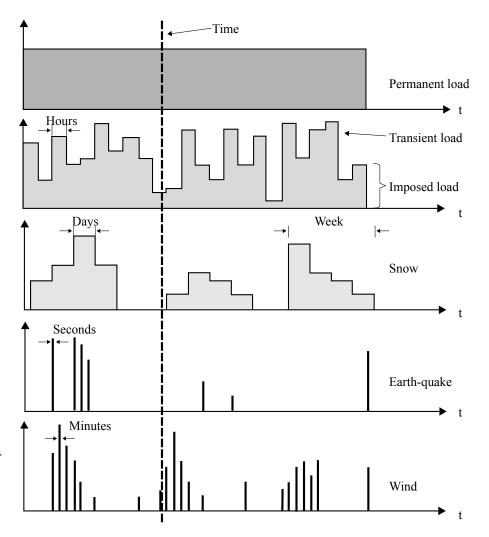
Loads on Structures

Combination of loads

Turkstra's load combination rule

We take the max of the following combinations

$$\begin{split} Z_1 &= \max_T \{X_1(t)\} + X_2(t^*) + X_3(t^*) + \ldots + X_n(t^*) \\ Z_2 &= X_1(t^*) + \max_T \{X_2(t)\} + X_3(t^*) + \ldots + X_n(t^*) \\ \vdots \\ Z_n &= X_1(t^*) + X_2(t^*) + X_3(t^*) + \ldots + \max_T \{X_n(t)\} \\ X_{max}(T) &\approx \max_T \{Z_i\} \end{split}$$



Loads on Structures

Combination of loads

Ferry Borges-Castanheta's load combination rule

$$X_{max}(T) \approx \max_{i} \{Z_{i}\}$$

Load combination	Repetition numbers				
	Load 1	Load 2	Load 3		
1	n_1	n_2/n_1	n_3/n_1		
2	1	n_2	n_3/n_2		
3	1	1	n_3		
4	n_1	1	n_3/n_1		

Uncertainties of resistances

In structural engineering resistances include the following uncertainties

- Geometrical uncertainties
- Material characteristics
- Model uncertainties

Random variation in time and space

The steps in the modelling process are:

- define the random variables used to represent the uncertainties in the resistances
- select a suitable distribution type to represent the random variable
- to assign the distribution parameters of the selected distribution.

Uncertainties of resistances

Concrete compressive strength

$$f_c = \alpha(t, \tau) f_{co}^{\lambda}$$

 f_{co} : 28 day compressive strength

 $\alpha(t,\tau)$: spatial stress and loading time function

d: conversion factor between in-situ concrete

strength and cylinder compressive strength

The concrete compressive strength can be assumed Log-Normal distributed with a coefficient of variation equal to 15%

Uncertainties of resistances

Reinforcement steel yield strength

$$f_s = X_1 + X_2 + X_3$$

- X_1 normal distributed random variable representing the variation in the mean of different mills.
- X_2 normal distributed zero mean random variable, which takes into account the variation between batches
- X_3 normal distributed zero mean random variable, which takes into account the variation within a batch.

Uncertainties of resistances

Reinforcement steel yield strength

Variable	Type	E[X]	$\sigma_x[MPa]$	V_x
X_1	Normal	μ	19	-
X_2	Normal	0	22	-
X_3	Normal	0	8	-
A	-	A_{nom}	-	0.02

 μ : nominal steel grade + two standard deviations of X_1

Yield stress depends on diameter of reinforcement bars

$$\mu(d) = \mu(0.87 + 0.13 \exp(-0.08d))^{-1}$$

Uncertainties of resistances

Structural steel yield strength

Description	Variable	Type	E[X]	V_X
Yield stress	f_y	Lognormal	$f_{y sp} \alpha e^{-uV_{fy}} - C$	0.07
ultimate stress	f_u	Lognormal	$BE[f_u]$	0.04
modulus of elasticity	E	Lognormal	E_{sp}	0.03
Poisson's ratio	v	Lognormal	v_{sp}	0.03
ultimate strain	\mathcal{E}_u	Lognormal	$\mathcal{E}_{u \ sp}$	0.06

	f_y	f_u	E	ν	\mathcal{E}_u
f_y	1	0.75	0	0	-0.45
f_u		1	0	0	-0.60
E			1	0	0
v	Syn	nmetry		1	0
\mathcal{E}_u			•		1

Distribution characteristics

Dependencies

Model uncertainties

Model uncertainties relate engineering model results with actual structural behaviour

$$X = \Xi \cdot X_{\text{mod}}$$

X: true value

三:

model uncertainty

 X_{mod} :

model value

$$\xi = \frac{x_{\text{mod}}}{x_{\text{exp}}}$$

 x_{exp} :

experimentally obtained value

Model uncertainties

Model uncertainties may be introduced in different ways:

$$Y = \Xi f(\mathbf{X})$$

$$Y = \Xi + f(\mathbf{X})$$

$$Y = f(\Xi_1 X_1, \Xi_2 X_2, ..., \Xi_n X_n)$$

Y structural performance

f(.) model function

 \mathcal{Z} random variable representing the model uncertainty

 X_i basic variables

X vector of basic random variables

• The JCSS PMC (http://www.jcss.ethz.ch/)

Part I: Basis of design

Part II: Load models

Part III: Resistance models

Part IV: Examples

The JCSS PMC – Load Models

2.00	GENERAL PRINCIPLES	05.2001
2.01	SELF WEIGHT	06.2001
2.02	LIVE LOAD	05.2001
2.06	LOADS IN CAR PARKS	05.2001
2.12	SNOW LOAD	05.2001
2.13	WIND LOAD	05.2001
2.15	WAVE LOAD	05.2006
2.17	EARTHQUAKE	09.2002
2.18	IMPACT LOAD	05.2001
2.20	<u>FIRE</u>	05.2001
	Swice Federal Institute of Teel	haology

The JCSS PMC – Resistance models

3.00	GENERAL PRINCIPLES	03.2001
3.01	CONCRETE	05.2002
3.02	STRUCTURAL STEEL	03.2001
3.0*	REINFORCING STEEL	03.2001
3.04	PRESTRESSING STEEL	04.2005
3.05	TIMBER	05.2006
3.07	SOIL PROPERTIES	06.2002
3.09	MODELUNCERTAINTIES	03.2001
3.10	DIMENSIONS	03.2001
3.11	EXCENTRICITIES	03.2001
E	Swiss Federal Institute of Techno	ology