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Contents of Today's Lecture

• Probability theory 

• Descriptive statistics

• Uncertainties in engineering decision making

• Probabilistic modelling

• Engineering model building
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Overview of Probability Theory

• What are we aiming for ? 

Decision Making !

Risks

Consequences of eventsProbabilities of events

Probabilistic model

Data Model estimation

We need to be able to
quantify the probability of 
events and to update 
these based on new 
information

The probability theory provides 
the basis for the consistent
treatment of uncertainties
in decision making !
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Interpretation of Probability
States of nature of which we have interest such as:

- a bridge failing due to excessive traffic loads

- a water reservoir being over-filled

- an electricity distribution system „falling out“

- a project being delayed

are in the following denoted „events“

we are generally interested in quantifying the probability that such 
events take place within a given „time frame“
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Interpretation of Probability

• There are in principle three different interpretations of probability

- Frequentistic ∞→=  for                                 exp
exp
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n
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Interpretation of Probability

Consider the probability of getting a „head“ when flipping a coin

- Frequentistic 0.51
1000
510)( ==AP

- Classical
2
1)( =AP

- Bayesian 0.5  )( =AP
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Learn how to develop knowledge !

Formulate hypothesis about the world

Utilize existing knowledge

Combine with data

Conditional Probability and Bayes‘s Rule
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Conditional Probability and Bayes‘s Rule

Conditional probabilities are of special interest as they provide
the basis for utilizing new information in decision making.

The conditional probability of an event E1 given that event E2 has 
occured is written as:

The events E1 and E2 are said to be statistically
independent if:
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Conditional Probability and Bayes‘s Rule
From

it follows that

and when E1 and E2 are statistically independent it is
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Conditional Probability and Bayes‘s Rule
Consider the sample space divided up into n mutually exclusive
events E1, E2, …, En
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Conditional Probability and Bayes‘s Rule
as there is

we have

1
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Likelihood Prior

Posterior
Bayes Rule

Reverend Thomas Bayes
(1702-1764)
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Conditional Probability and Bayes‘s Rule

Example – inspection of degrading concrete structure

It is assumed (known) that the probability
that corrosion of the reinforcement has 
initiated is: 01.0)( =CIP

The state of the reinforcement of the considered 
beam  is unknown and NDE tests are invoked 

The quality of the test is specified by the probabilities

- that the test will indicate corrosion given that corrosion
has initiated

- that the test will indicate corrosion given that corrosion
has not initiated

)( CIIP

)( CIIP

A reinforced concrete structure is considered
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Conditional Probability and Bayes‘s Rule

Example – inspection of degrading concrete structure

By comparison of a large number of NDE 
measurements with the real condition of 
concrete structures it has been found that

8.0)( =CIIP

1.0)( =CIIP

We now seek the probability of corrosion
given that we get an indication of corrosion
by the NDE inspection i.e.

?)( =ICIP
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Overview of Descriptive Statistics

• What are we aiming for ? 

Decision Making !

Risks

Consequences of eventsProbabilities of events

Probabilistic model

Data Model estimation

In the first step we 
simply want to describe
the data
- graphically
- numerically

Descriptive statistics make 
no assumptions – only describe !
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Numerical Summaries

• Central measures:

Sample mean : 

Median : The 0.5 quantile (obtained from ordered data sets, see quantile 
plots)

Mode : Most frequent value – obtained from histograms
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If one number should be given to represent a data set typically 
the sample mean would be chosen 
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Numerical Summaries

• Dispersion measures:

Sample variance: 

Sample coefficient of variation (CoV):

∑
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Indicator of variability relative to the sample mean 

Indicator of variability around the sample mean 
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Numerical Summaries

• Other measures:

Sample skewness: 

Sample kurtosis
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Numerical Summaries

• Measures of correlation (linear dependency between data pairs):

 

2-dimensional scatter plots

 

Almost no dependency Almost full dependency
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Numerical Summaries

• Measures of correlation (linear dependency between data pairs):

Sample covariance: 

Sample coefficient of correlation:

n
2
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Numerical Summaries
• Summary:

Central measures: 
- sample mean value: The center of gravity of a data set
- sample median: The mid value of a data set
- sample mode: The most frequent value/range of a data set

Dispersion measures:
- sample variance: The distribution around the sample mean  
- sample CoV: The variability relative to the sample mean

Other measures:
- sample skewness: The skewness relative to the sample mean 
- sample kurtosis: The peakedness around the sample mean

Measures of correlation:
- sample covariance: Tendency for high-high, low-low and high-low 

pairs in two data sets
- sample coefficient of 
correlation : Normalized coefficient between -1 and +1 
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Graphical Representations

• Assume that we have a set of data 
(observations of concrete compressive strength)

The simplest representation of the data
is the one-dimensional scatter plot
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Graphical Representations

• Histograms

The data are grouped into intervals
 

Interval Midpoint Number of
observations

Frequency
[%]

Cumulative
frequency

23-26
26-29
29-32
32-35
35-38
38-41

24.5
27.5
30.5
33.5
36.5
39.5

1
4
3
6
4
2

5
20
15
30
20
10

0.05
0.25
0.40
0.70
0.90
1.00
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• Histograms

The grouped data are plotted

Graphical Representations

mode

Simple histogram Frequency distribution

Interval Midpoint Number of
observations

Frequency
[%]

Cumulative
frequency

23-26
26-29
29-32
32-35
35-38
38-41

24.5
27.5
30.5
33.5
36.5
39.5

1
4
3
6
4
2

5
20
15
30
20
10

0.05
0.25
0.40
0.70
0.90
1.00
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Graphical Representations

• Histograms

The grouped data are plotted

Interval Midpoint Number of
observations

Frequency
[%]

Cumulative
frequency

23-26
26-29
29-32
32-35
35-38
38-41

24.5
27.5
30.5
33.5
36.5
39.5

1
4
3
6
4
2

5
20
15
30
20
10

0.05
0.25
0.40
0.70
0.90
1.00
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Graphical Representations

• Quantile plots

Definition : the Q-quantile corresponds to the value in a data set 
which is exceeded by 100% - Q x 100% of the data

e.g. the 0.75 quantile is exceeded by 100% - 0.75 x 100% 
= 25% of the data

Quantile plots are generated by plotting the data against 
their quantile values
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Graphical Representations

• Quantile plots

1i
iQ

n
=

+

The quantiles are calculated from the 
ordered data set as:

Median = 0.5 quantile value
Lower quartile = 0.25 quartile value Upper quartile = 0.75 quartile value

i Oxi
Ordered

i
Q
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• Tukey Box plots

Graphical Representations
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Graphical Representations

• Tukey Box plots

 Statistic Value
Lower quartile
Lower adjacent value
Median
Upper adjacent value
Upper quartile

29.30
24.40
33.05
39.70
35.85
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Graphical Representations

• Summary

One-dimensional scatter plots : illustrate the range and distribution of a 
data sets along one axis, indicate symmetry.

Histograms:                       illustrate how the data are distributed over 
the range of data, indicate mode and 
symmetry.

Quantile plots: Illustrate median, distribution and symmetry

Tukey – Box plots: Illustrate median, upper/lower quartiles, 
symmetry and distribution
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Overview of Uncertainty Modelling

• Why uncertainty modelling

Decision Making !

Risks

Consequences of eventsProbabilities of events

Probabilistic model

Data Model estimation

Decision Making !Decision Making !

RisksRisks

Consequences of eventsProbabilities of events Consequences of eventsConsequences of eventsProbabilities of eventsProbabilities of events

Probabilistic modelProbabilistic model

Data Model estimationData Model estimation

Uncertain phenomenonUncertain phenomenon
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Uncertainties in Engineering Problems

Different types of uncertainties influence decision making

• Inherent natural variability – aleatory uncertainty
- result of throwing dices
- variations in material properties
- variations of wind loads
- variations in rain fall

• Model uncertainty – epistemic uncertainty
- lack of knowledge (future developments)
- inadequate/imprecise models (simplistic physical modelling)

• Statistical uncertainties – epistemic uncertainty 
- sparse information/small number of data
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Uncertainties in Engineering Problems

• Consider as an example a dike structure 

- the design (height) of the dike will be determining the 
frequency of floods

- if exact models are available for the prediction of future 
water levels and our knowledge about the input parameters 
is perfect then we can calculate the frequency of floods (per 
year) - a deterministic world !

- even if the world would be deterministic – we would not 
have perfect information about it – so we might as well 
consider the world as random   
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Uncertainties in Engineering Problems

In principle the so-called 

inherent physical uncertainty (aleatory – Type I)

is the uncertainty caused by the fact that the world is random, however, 
another pragmatic viewpoint is to define this type of uncertainty as

any uncertainty which cannot be reduced by means of collection of additional 
information

the uncertainty which can be reduced is then the 

model and statistical uncertainties (epistemic – Type II) 
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Uncertainties in Engineering Problems

Observed annual 
extreme water levels

Model for annual 
extremes

Regression model to
predict future extremes

Predicted future 
extreme water level

Aleatory 
Uncertainty

Epistemic 
Uncertainty

Observed annual 
extreme water levels

Model for annual 
extremes

Regression model to
predict future extremes

Predicted future 
extreme water level

Aleatory 
Uncertainty

Epistemic 
Uncertainty
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Uncertainties in Engineering Problems

The relative contribution of aleatory and epistemic uncertainty to the 
prediction of future water levels is thus influenced directly by the applied 
models 

refining a model might reduce the epistemic uncertainty – but in general also 
changes the contribution of aleatory uncertainty

the uncertainty structure of a problem can thus be said to be scale 
dependent !
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Uncertainties in Engineering Problems

Knowledge

Time
Future

Past

Present

100%

Observation

Prediction

Knowledge

Time
Future

Past

Present

100%

Observation

Prediction

The uncertainty structure changes also as function of time – is thus time 
dependent !
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Random Variables

• Probability distribution and density functions

A random variable is denoted with capital letters : X

A realization of a random variable is denoted with small letters : x 

We distinguish between 

- continuous random variables : can take any value in a given range

- discrete random variables : can take only discrete values
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Random Variables

• Probability distribution and density functions

The probability that the outcome of a discrete 
random variable X is smaller than x is denoted 
the probability distribution function

The probability density function for a discrete
random variable is defined by

( ) ( )
i

X X i
x x

P x p x
<

= ∑

)xX(P)x(p iX ==
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Random Variables

• Probability distribution and density functions

The probability that the outcome of a 
continuous random variable X is smaller 
than x is denoted the 
probability distribution function

The probability density function for a 
continuous random variable is defined by 

( ) ( )XF x P X x= <

( ) ( )X
X

F xf x
x

∂
=

∂
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Random Variables

• Moments of random variables and the expectation operator

Probability distribution and density function can be described in terms of 
their parameters    or their moments 

Often we write 

The parameters can be related to the moments and visa versa

),( pxFX ),( pxf X

Parameters

p
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Random Variables

• Moments of random variables and the expectation operator

The i‘th moment mi for a continuous random variable X is defined through

The expected value E[X] of a continuous random variable X is defined 
accordingly as the first moment 

∫
∞

∞−

⋅= dx)x(fxm X
i

i
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Random Variables

• Moments of random variables and the expectation operator

The i‘th moment mi for a discrete random variable X is defined through

The expected value E[X] of a discrete random variable X is defined 
accordingly as the first moment 

1

( )
n

i
i j X j

j

m x p x
=

= ⋅∑

[ ]
1

( )
n

X j X j
j

E X x p xμ
=
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Random Variables

• Moments of random variables and the expectation operator

The standard deviation of a continuous random variable is defined as the 
second central moment i.e. for a continuous random variable X we have

for a discrete random variable we have correspondingly

[ ] [ ] ( ) ( )dxxfxXE XXXX ∫
∞

∞−

⋅−=−== 222 )(XVar μμσ

Xσ

Variance Mean value

[ ]2 2

1
( ) ( )

n

X j X X j
j

Var X x p xσ μ
=

= = − ⋅∑
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Random Variables

• Moments of random variables and the expectation operator

The ratio between the standard deviation and the expected value of a 
random variable is called the Coefficient of Variation CoV and is defined as

a useful characteristic to indicate the variability of the random variable 
around its expected value

[ ] X

X

CoV X σ
μ

=

Dimensionless
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Random Variables

• Typical probability distribution
functions in engineering

Normal : sum of random effects

Log-Normal: product of random
effects

Exponential: waiting times

Gamma: Sum of waiting times

Beta: Flexible modeling function

Distribution type Parameters Moments
Rectangular 

a x b≤ ≤  

ab
)x(f X −
=

1
 

ab
axxFX −

−
=)(  

a 
b 2

ba +
=μ  

12
ab −

=σ  

Normal 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

−=
2

2
1

2
1

σ
μ

πσ
xexp)x(f X  

dxxexp)x(F
x

X ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

−= ∫
∞−

2

2
1

2
1

σ
μ

πσ
 

μ 
σ > 0 

μ 
σ 

Shifted Lognormal 
x > ε  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
−

−
=

2
)ln(

2
1exp

2)(
1)(

ζ
λε

πζε
x

x
xf X  

2

Φ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
=

ζ
λε )xln()x(FX  

λ 
ζ > 0 
ε 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

2
exp

2ζ
λεμ  

1)exp(
2

exp 2
2

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ζζλσ

Shifted Exponential 
x ≥ ε  

))(exp()( ελλ −−= xxf X  
( )ex

X e)x(F −−−= λ1  

ε 
λ > 0 

λ
εμ 1
+=  

λ
σ 1
=  

Gamma 
x ≥ 0  

1)exp(
)(

)( −−
Γ

= p
p

X xbx
p

bxf  

( )
)(

,)(
p

pbxxFX Γ
Γ

=  

p > 0 
b > 0 b

p
=μ  

b
p

=σ  

Beta 
a x b r t≤ ≤ ≥, , 1  

( )
( ) ( ) 1

11

−+

−−

−
−−

Γ⋅Γ
+Γ

= tr

tr

X )ab(
)xb()ax(

tr
tr)x(f  

( )
( ) ( ) du

)ab(
)ub()au(

tr
tr)x(F tr

tru

a
X 1

11

−+

−−

−
−−

⋅
Γ⋅Γ
+Γ

= ∫

a 
b 
r > 1 
t > 1 

1+
−+=

r
ra)(baμ  

1+++
−

=
tr
rt

tr
abσ  



Swiss Federal Institute of Technology

Random Variables

• The Normal distribution

The analytical form of the Normal distribution may be derived by
repeated use of the result regarding the probability density function 
for the sum of two random variables

The normal distribution is very frequently applied in engineering 
modelling when a random quantity can be assumed to be composed as 
a sum of a number of individual contributions.

A linear combination S of n Normal distributed random variables 
is thus also a Normal distributed random variable , 1,2,..,iX i n=

0
1

n

i i
i

S a a X
=

= +∑
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Random Variables

• The Normal distribution:

In the case where the mean value is equal to zero and the standard 
deviation is equal to 1 the random variable is said to be standardized.

21 1( ) ( ) exp
22Zf z z zϕ

π
⎛ ⎞= = −⎜ ⎟
⎝ ⎠
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22
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σ
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Standard normal 
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Stochastic Processes and Extremes

• Random quantities may be “time variant” in the sense that they take new 
values at different times or at new trials.

- If the new realizations occur at discrete times and have discrete values the 
random quantity is called a random sequence

failure events, traffic congestions,…

- If the new realizations occur continuously in time and take continuous values 
the random quantity is called a random process or stochastic process

wind velocity, wave heights,…
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Stochastic Processes and Extremes

• Random sequences

The Poisson counting process is one of the most commonly applied families of 
probability distributions applied in reliability theory

The process N(t) denoting the number of events in a (time) interval (t, t+Dt[
is called a Poisson process if the following conditions are fulfilled:

1) the probability of one event in the interval (t, t+Dt[  is asymptotically    
proportional to Dt.

2) the probability of more than one event in the interval (t, t+Dt[ is a 
function of higher order of Dt for Dt→0.

3) events in disjoint intervals are mutually independent.
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Stochastic Processes and Extremes

• Random sequences

The probability distribution function of the (waiting) time till the first 
event T1 is now easily derived recognizing that the probability of T1 >t
is equal to P0(t) we get:

1T 1 0 1

t

0

F (t )=1-P (t )

=1-exp(- ν(τ)dτ )∫

1T 1F (t )=1-exp(-νt)

Homogeneous case !

Exponential probability distribution
Exponential probability density

1T 1f (t )=ν exp(-νt)⋅
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Stochastic Processes and Extremes
• Continuous random processes

A continuous random process is a random process which has realizations 
continuously over time and for which the realizations belong to a 
continuous sample space.

Variations of: 
water levels
wind speed
rain fall

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
1.50

2.00

2.50

3.00

3.50

W
at

er
 le

ve
l [

m
]

Time [days]



Swiss Federal Institute of Technology

Stochastic Processes and Extremes
• Continuous random processes

The mean value of the possible realizations of a random process is given as:

The correlation between realizations at any two points in time is given as:

[ ]( ) ( ) ( , )X Xt E X t x f x t dxμ
∞

−∞

= = ⋅∫

Function of time !

[ ] 212121212121 dxdx)t,t;x,x(fxx)t(X)t(XE)t,t(R XXXX ⋅⋅== ∫ ∫
∞

∞−

∞

∞−

Auto-correlation function – refers to a scalar valued random process
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Stochastic Processes and Extremes

Extreme Value Distributions

In engineering we are often interested in extreme values i.e. the
smallest or the largest value of a certain quantity within a certain
time interval e.g.:

The largest earthquake in 1 year

The highest wave in a winter season

The largest rainfall in 100 years
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Stochastic Processes and Extremes

Extreme Value Distributions

We could also be interested in the smallest or the largest value of a 
certain quantity within a certain volume or area unit e.g.:

The largest concentration of pesticides in a volume of soil

The weakest link in a chain

The smallest thickness of concrete cover
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Stochastic Processes and Extremes

Extremes of a random process:



Swiss Federal Institute of Technology

Stochastic Processes and Extremes

Return period for extreme events:

The return period for extreme events TR may be defined as

If the probability of exceeding x during a reference period of 1 year
is 0.01 then the return period for exceedances is

))(1(
1
max

, xF
TnT

TX
R −

=⋅=

1001100
01.0
1

=⋅==⋅= TnTR
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Overview of Estimation and Model Building

Different types of information is used when
developing engineering models

- subjective information
- frequentististic information

Frequentistic
- Data

Subjective
- Physical understanding
- Experience
- Judgement

Distribution family

Distribution parameters

Probabilistic model
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Overview of Estimation and Model Building

Model building may be seen to consist of five steps

1) Assessment and statistical quantification of the available data

2) Selection of distribution function

3) Estimation of distribution parameters

4) Model verification

5) Model updating
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Overview of Estimation and Model Building

Different types of information is used when
developing engineering models

- subjective information
- frequentististic information

Frequentistic
- Data

Subjective
- Physical understanding
- Experience
- Judgement

Distribution family

Distribution parameters

Probabilistic model
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Estimation and Model Building

Selection of probability distribution function

In engineering application it is often the case that

the available data is too sparse

to be able to support/reject the hypothesis of a given probability
distribution – with a reasonable significance

Therefore it is necessary to use common sence i.e. :

First to consider physical reasons for selecting a given distribution

Thereafter to check if the available data are in gross contradiction
with the selected distribution
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Estimation and Model Building

Model selection by use of probability paper
Plotting the sample probability distribution function in the
probability paper yields



Swiss Federal Institute of Technology

Overview of Estimation and Model Building

Different types of information is used when
developing engineering models

- subjective information
- frequentististic information

Frequentistic
- Data

Subjective
- Physical understanding
- Experience
- Judgement

Distribution family

Distribution parameters

Probabilistic model
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Estimation of Distribution Parameters

We assume that we have identified a plausible family of probability
distribution functions – as an example : 

and thus now need to determine – estimate - its parameters
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Estimation of Distribution Parameters

The method of moments (MoM)

The idea behind the method of moments is to determine the
distribution parameters such that the sample moments (from
the data) and the analytical moments (from the assumed
distribution) are identical. 
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To start with we assume that we have data on the basis of 
which we can estimate the distribution parameters T
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Estimation of Distribution Parameters

The Maximum Likelihood Method (MLM)

The idea behind the method of maximum likelihood is that

the parameters are determined such that the likelihood of the
observations is maximized

The likelihhod can be understood as the probability of 
occurence of the observed data conditional on the model

The Maximum Likelihood Method may seem to be more
complicated than the MoM but has a number of attractive
properties which we shall see later
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Estimation of Distribution Parameters

Summary

Method of Moments provides point estimates of the parameters

- No information about the uncertainty with which the
parameter estimates are associated. 

Maximum Likelihood Method provides point estimates of the
estimated parameters

- Full distribution information – normal distributed
parameters, mean values and covariance matrix.


