Risk and Safety

in

Civil, Surveying and Environmental

Engineering

Prof. Dr. Michael Havbro Faber

Swiss Federal Institute of Technology

ETH Zurich, Switzerland

Contents of Presentation

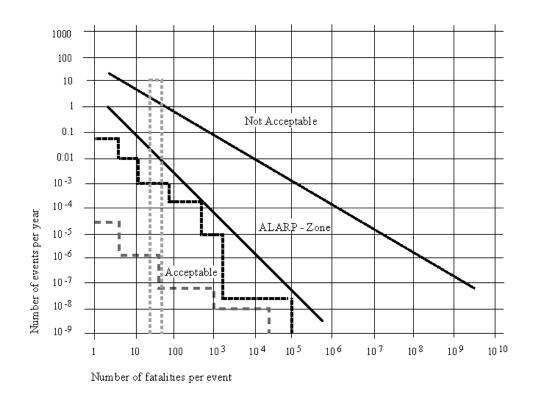
- Fundamental Societal Value Settings
- Preferences in Societal Decision Making
- Commonly Applied Formats for Risk Acceptance
- Revealed Risks in Society
- Life Saving and the Performance of Society
- Modelling Socio-Economically Acceptable Risks
- Sustainable Decision Making

Fundamental Societal Value Settings

- Most nations of the world adhere to fundamental principles similar to the UN Charter on Human Rights
- Article 1
 All human beings are born free

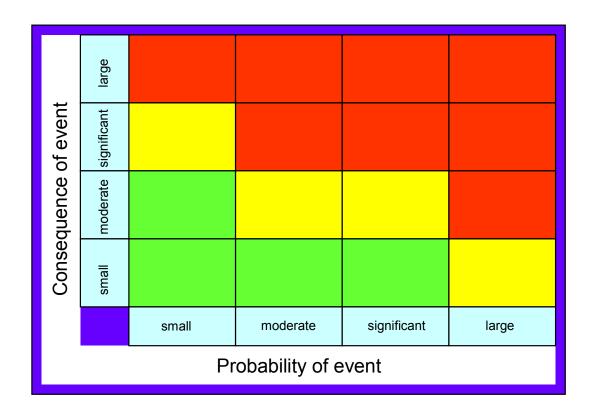
All human beings are born free and equal in dignity and rights. They are endowed with reason and conscience and should act towards one another in a spirit of brotherhood.

- Article 3
 Everyone has the right to life, liberty and security of person.
- Article 7


All are equal before the law and are entitled without any discrimination to equal protection of the law. All are entitled to equal protection against any discrimination in violation of this Declaration and against any incitement to such discrimination

Preferences in Societal Decision Making

- To enable societal decision making it is required to understand the preferences of society – not least concerning investments into life saving and preservation of the environment.
- Preferences are unfortunately difficult to describe
- Most approaches attempt to establish preferences through questionnaires – this kind of preferences are called stated preferences
- However, by observing the behaviour of individuals as well as groups of individuals it is possible to assess so-called revealed preferences – these are far better than stated preferences
- The best option is to assess *informed preferences* this is a dynamic process involving a high degree of knowledge.


Commonly Applied Formats of Risk Acceptance

 Most existing formats for risk acceptance take basis in the socalled Farmer diagrams

Commonly Applied Formats of Risk Acceptance

 Most existing formats for risk acceptance take basis in the socalled Farmer diagrams

Commonly Applied Formats of Risk Acceptance

 In the offshore industry the concept of acceptable fatal accident rate (FAR) has been introduced

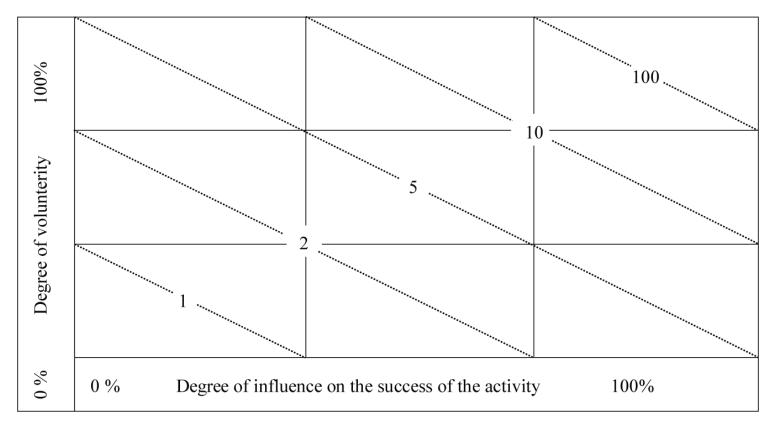
$$FAR = \frac{PLL \cdot 10^8}{N_P \cdot H_P}$$

 N_P : Number of exposed persons

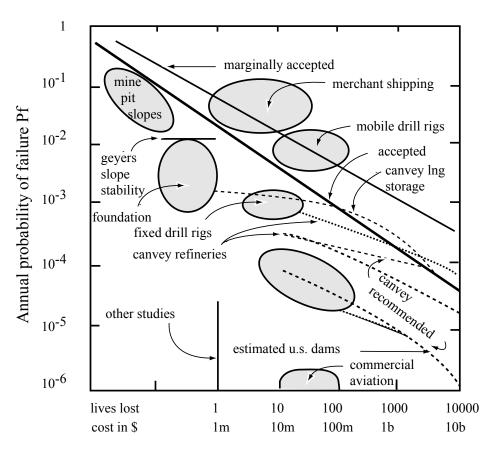
 H_P : Yearly number of exposure hours

PLL: Expected number of fatalities per year

Typically accepted values for the FAR lie between 10-15.


Experienced life safety risks (rate of death per 100000 persons per year)

Average over all causes		Occupational rate of death	
110	25 years	100	Lumber Jack's and timber transport
100	35 years	90	Forestry
300	45 years	50	Construction work
800	55 years	15	Chemical industry
2000	65 years	10	Mechanical productions
5000	75 years	5	Office work
Miscellaneous risks		Miscellaneous risks	
400	20 cigarettes per day	5	Mountain trekking
300	1 bottle of wine per day	3	10000 km highway transport
150	"Motor biking"	1	Air plane crash (per travel)
100	Hand-gliding	1	Fire in buildings
20	Car driving (20-24 years)	1	10000 km train transport
10	Pedestrians (household)	0.2	Death due to earth-quakes (California)
10	10000 km car transport	0.1	Death due to lightening

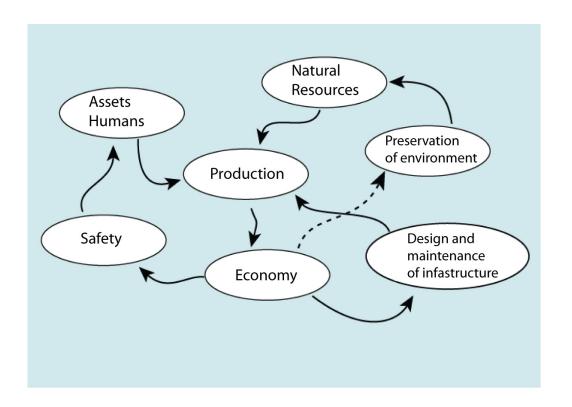

 It is possible to organize activities according to the degree of voluntarism and degree of personal influence/control

100%		Soccer Mountain climbing	Hazardous mountain climbing
	***************************************	Motorbiking	***************************************
ity	Air travel		
volunteri	Train transport	Car transport	Occupation
Degree of volunterity		Work at home	
	***************************************	***************************************	
% 0	0 % Degree of influence on the success of the activity 100%		

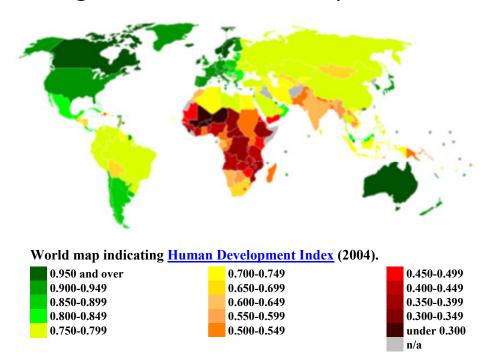
 By study of statistics it is then possible to organize revealed risks according to degree of voluntarism and degree of personal influence/control

Experienced risks in selected commercial activities

 Life safety is provided by many different sectors and through very different activities

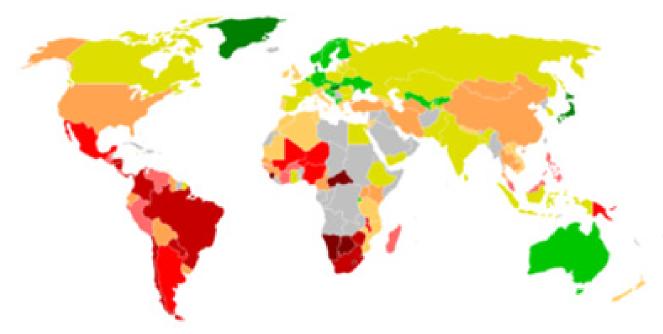

Risk reduction cost in SFr per saved person life				
100	Multiple vaccination - third world			
1.10^{3}				
2.10^{3}	Medical X-ray facility			
5.10^{3}	Wearing motorbike helmet			
10.10^{3}	Cardiac ambulance			
20.10^3	Emergency helicopter service			
$100 \cdot 10^3$	Safety belts in cars			
to	Crossway restructuring			
to	Kidney dialysis			
$500 \cdot 10^3$	Structural reliability			
1.10^{6}				
2.10^{6}				
$5 \cdot 10^6$	City railway Zurich, Alp Transit			
10·10 ⁶	Earthquake standard SIA			
20.10^6	Mine safety USA			
50·10 ⁶	DC 10 out of service			
100·10 ⁶	Multi-storey buildings regulation			
1·10 ⁹	Removal of asbestos from public buildings			

Efficiency is markedly different from sector to sector and from activity to activity!


It is a societal responsibility to spend public resources efficiently!

If this is not done – life is taken away from some individuals in society

Prioritization in society must be subject to a holistic perspective


The performance of the nations of the world is measured through the *Human Development Index (HDI)*

$$HDI = \frac{1}{3}GDP\ Index + \frac{1}{3}EI + \frac{1}{3}LEI$$

It is also interesting to observe how the income of nations is distributed between the individuals of the nations (Gini -*Index*)

Color	Gini coefficient
	< 0,25
	0,25 - 0,29
	0,30 - 0,34
	0,35 - 0,39
	0,40 - 0,44
	0,45 - 0,49
	0,50 - 0,54
	0,55 - 0,59
	> 0,60
	NA

$$HDI = \frac{1}{3}GDP\ Index + \frac{1}{3}EI + \frac{1}{3}LEI$$

Taking basis in the philosophical insight that the basic asset individuals have is time – Nathwani, Pandey and Lind developed the *Life Quality Index* – a preference model – which at a societal level acts as a revealed preference on how we weight money against life time and time for private activities

$$L(g,\ell) = g^q \ell$$

g: is the part of the GDP available for investment into life safety

 ℓ : is the life expectancy at birth

w: is the part of life spent for work

$$q = \frac{1}{\beta} \frac{w}{1 - w}$$

 β : is a factor which takes into account that only a part of the GDP is based on human labour

Based on the LQI – the consideration that every investment into life safety should lead to an increase in life-expectancy results in a risk acceptance criterion:

$$\frac{dg}{g} + \frac{1}{q} \frac{d\ell}{\ell} \ge 0$$

which leads to the important Societal Willingness To Pay (SWTP) criterion:

$$SWTP = dg = -\frac{g}{q} \frac{d\ell}{\ell}$$

GDP	59451 SFr	
l	80.4 years	
w	0.112	
β	0.722	
g	35931 SFr	
q	0.175	

 The SWTP criterion is readily applied for the purpose of determining acceptable structural failure probabilities

$$\frac{d\ell}{\ell} \approx C_x d\mu = C_x k dm$$

where

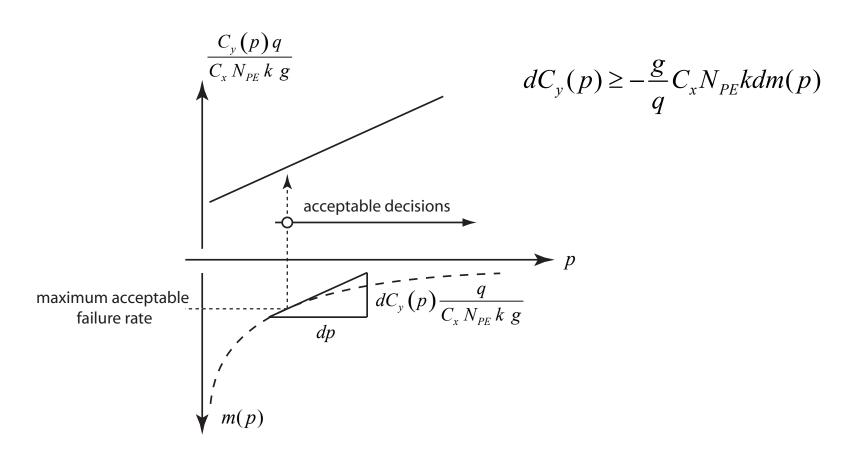
 C_x is a demographical constant

k is the probability of dying in case of structural failure

m is the failure rate of a considered structural system

 The SWTP criterion is readily applied for the purpose of determining acceptable structural failure probabilities

$$dC_{y}(p) \ge -\frac{g}{q}C_{x}N_{PE}kdm(p)$$

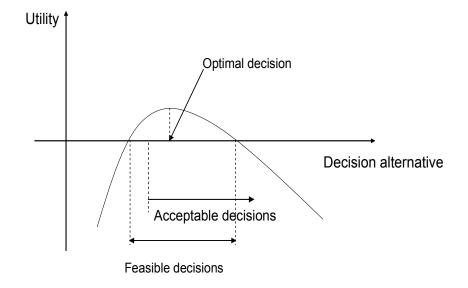

where

 $dC_y(p)$ are the annual costs spent for risk reduction

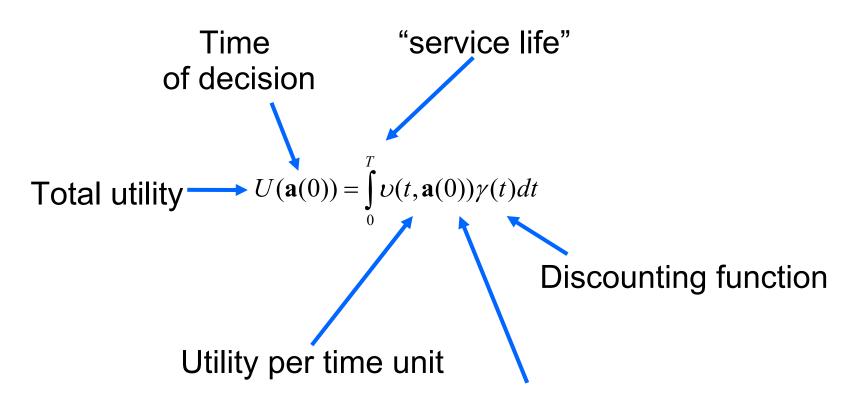
 N_{PE} is the number of people exposed to the structural failure

p is a decision alternative e.g. a structural dimension

The SWTP criterion can be visualized

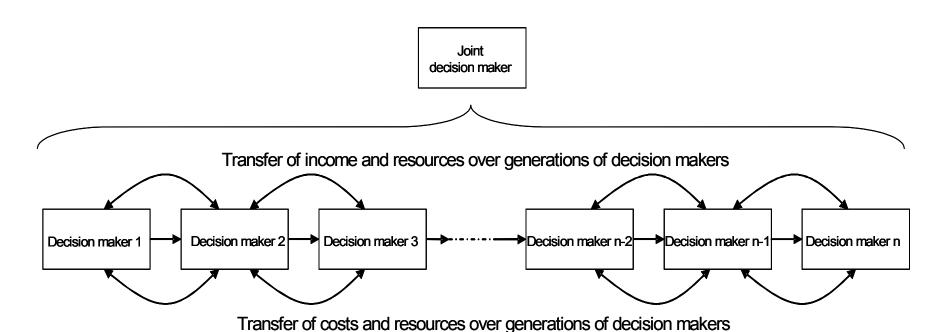


 Based on the LQI – also the costs of compensation for a lost life can be assessed – Societal Value of a Statistical Life (SVSL).


$$SVSL = \frac{g}{q}E$$

For Switzerland this amounts to about 6 million SFr

Now the optimization problem can be reassessed –
 Acceptable decisions are limited by the SWTP criterion
 Costs of failure include compensation – through the SVSL



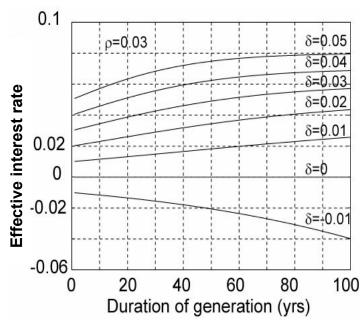
In intra-generational decision making we use

Decision alternatives

• If we assume intergenerational equity as a principle we get

Utility may be assessed as the sum of the utility for all generations

- The discounting to be considered for present and future generations should include
 - economic growth (2 % per annum)
 - preference to spend early rather than late (3% per annum)


Equity implies that the utility for future generations should be reduced corresponding to the assumed economic growth

$$U(\mathbf{a}(\mathbf{T})) = \sum_{i=1}^{n} \delta(t_i) \left[\int_{t_i}^{t_{i+1}} \upsilon_{G_i}(\tau, \mathbf{a}(t_i), t_i) \gamma(\tau - t_i) d\tau \right]$$

Economic growth Usual discounting

Assuming that the rate of benefit is constant over time we get

$$\int_{0}^{T} \upsilon(t, \mathbf{a}(0)) \gamma^{*}(t) dt = \sum_{i=1}^{n} \delta(t_{i}) \left[\int_{t_{i}}^{t_{i+1}} \upsilon_{G_{i}}(\tau, \mathbf{a}(t_{i}), t_{i}) \gamma(\tau - t_{i}) d\tau \right]$$

$$\gamma^* = \frac{1 - \exp(-\delta L)}{1 - \exp(-\gamma L)} \gamma$$

Socio-economic sustainable decision making results in:

All benefits and investments must be discounted – also expenditures of life saving!

Effective discounting rates to be applied in usual formulations of design and inspection and maintenance problems is close to the rate of economic growth!

Differences in discounting rates observed in different economic activities become irrelevant!