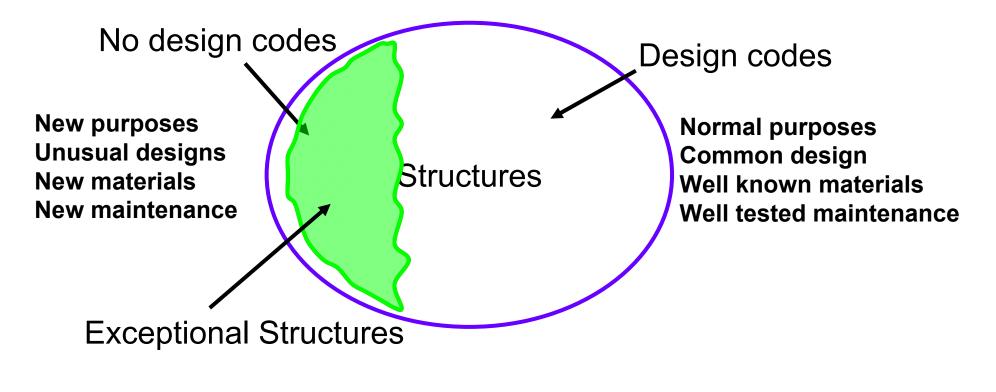
Risk and Safety

in

Civil, Surveying and Environmental Engineering

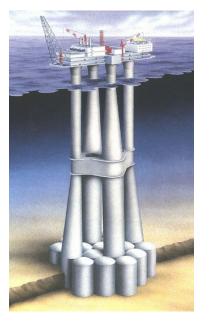
Prof. Dr. Michael Havbro Faber Swiss Federal Institute of Technology ETH Zurich, Switzerland


Contents of Presentation

- Codes and design of structures
- Structural reliability and safety formats
- Code calibration as a decision problem
- Target reliabilities for the design of structures
- The JCSS approach to code calibration
- The software CodeCal for calibration of design codes

Codes and design of structures

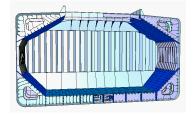
• "Normal structures" are designed according to structural design codes



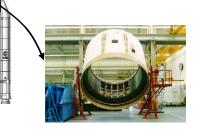
Codes and design of structures

• Exceptional structures are often associated with structures of

"Extreme Dimensions"


Great Belt Bridge under Construction Concept drawing of the Troll platform

Codes and design of structures


• or associated with structures fulfilling

"New and Innovative Purposes"

Concept drawing of Floating Production, Storage and Offloading unit Illustrations of the ARIANE 5 rocket

Structural performance is subject to uncertainty due to:

- Natural variability in material properties and loads or load effects
- Statistical uncertainties due to lack of or insufficient data
- Model uncertainties due to idealisations and lack of understanding in the physical modelling of the structural performance

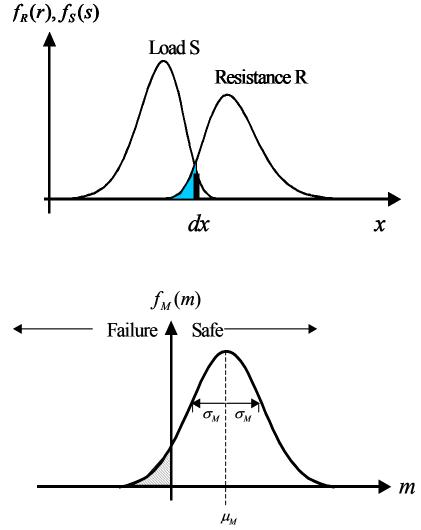
- Structural performance may be treated in probabilistic terms by means of limit state functions i.e. defining the events of special concern (large consequences) – failure events such as $F = \{g(\mathbf{x}) \leq 0\}$
- Collapse
 Inserviceability
 Deterioration
 As functions of the most important uncertainties the basic random variables

Limit state functions

Outcome of basic random variables

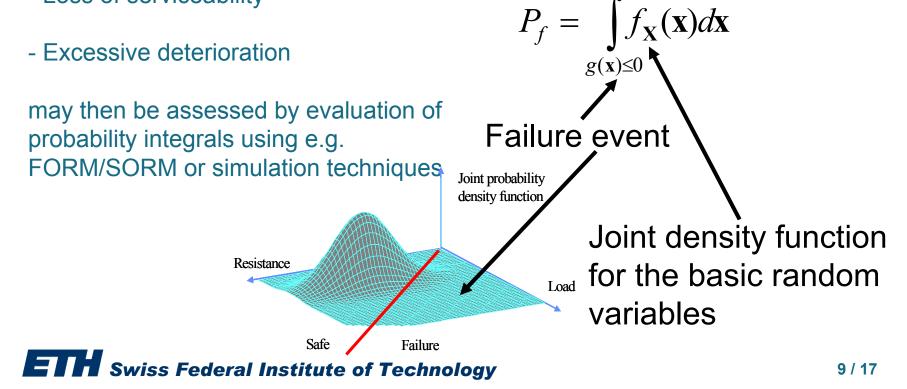
D(M < 0)

- The fundamental case $P_F = P(R \le S) = P(R - S \le 0) = \int_{-\infty}^{\infty} F_R(x) f_S(x) dx$
- Normal distributed safety margin

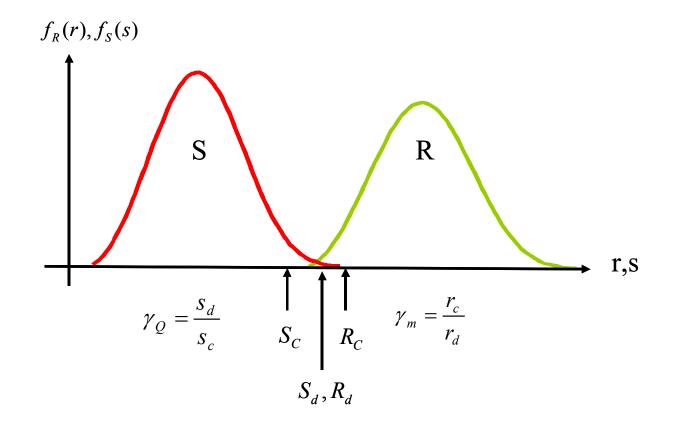

ת)ת

D

$$P_F = P(R - S \le 0) = P(M \le 0)$$
$$\mu_M = \mu_R - \mu_S$$
$$\sigma_M = \sqrt{\sigma_R^2 + \sigma_S^2} \qquad \mu_M / \sigma_M = \beta$$
$$P_F = \Phi\left(\frac{0 - \mu_M}{\sigma_M}\right) = \Phi(-\beta)$$


C < 0

ETH Swiss Federal Institute of Technology


8 / 17

- The probability of failure • in regard to:
 - Ultimate collapse
 - Loss of serviceability
 - Excessive deterioration

- The Load and Resistance Factor Design safety format is built up by the following components
 - Design situationsUltimate, serviceability, accidentalDesign equations $g = \mathbf{z}R_c / \gamma_m (\gamma_{G_a}G_c + \gamma_QQ_c) = 0$ Design variables \mathbf{Z} Characteristic values $G_c \quad Q_c$ Partial safety factors $\gamma_m \quad \gamma_G \quad \gamma_Q$ Design values $\gamma_m = \frac{x_c}{x_d} \qquad \gamma_Q = \frac{x_d}{x_c}$

• The results of a FORM/SORM reliability analysis can be related to the parameters of a LRFD safety format

Code calibration as a decision problem

 The code calibration problem can be seen as a decision problem with the objective to maximize the life-cycle benefit obtained from the structures by "calibrating" (adjusting) the partial safety factors

$$\max_{\gamma} \quad W(\gamma) = \sum_{j=1}^{L} w_j \Big[B_j - C_{Ij}(\gamma) - C_{Rj}(\gamma) - C_{Fj} P_{Fj}(\gamma) \Big]$$

s.t. $\gamma_i^l \le \gamma_i \le \gamma_i^u$, $i = 1, ..., m$

• The "optimal" design is determined from the design equations

$$\min_{\gamma} \quad C_{ij}(\mathbf{z}) \qquad \qquad G_j(\mathbf{x}_c, \mathbf{p}_j, \mathbf{z}, \gamma) \ge 0$$
s.t.
$$G_j(\mathbf{x}_c, \mathbf{p}_j, \mathbf{z}, \gamma) \ge 0$$

$$z_i^l \le z_i \le z_i^u \quad , i = 1, ..., N$$

Target reliabilities for the design of structures

• Target reliabilities for Ultimate Limit State verification

Relative cost of safety measure	Minor consequences of failure	Moderate consequences of failure	Large consequences of failure
High	$\beta=3.1 (P_F \approx 10^{-3})$	$\beta=3.3 (P_F \approx 5 \ 10^{-4})$	$\beta=3.7 (P_F \approx 10^{-4})$
Normal	$\beta=3.7 (P_F \approx 10^{-4})$	$\beta=4.2(P_F \approx 10^{-5})$	$\beta=4.4 (P_F \approx 5 \ 10^{-5})$
Low	$\beta=4.2(P_F \approx 10^{-5})$	$\beta=4.4 (P_F \approx 10^{-5})$	$\beta=4.7 (P_F \approx 10^{-6})$

• Target reliabilities for Serviceability Limit State Verification

Relative cost of	Target index	
safety measure	(irreversible SLS)	
High	$\beta = 1.3 (P_F \approx 10^{-1})$	
Normal	$\beta=1.7 (P_F \approx 5 \ 10^{-2})$	
Low	$\beta=2.3 (P_F \approx 10^{-2})$	

The JCSS approach to code calibration

- A seven step approach
 - 1. Definition of the scope of the code
 - Class of structures and type of failure modes
 - 2. Definition of the code objective
 - Achieve target reliability/probability
 - **3.** Definition of code format
 - how many partial safety factors and load combination factors to be used
 - should load partial safety factors be material independent
 - should material partial safety factors be load type independent
 - how to use the partial safety factors in the design equations
 - rules for load combinations

The JCSS approach to code calibration

- A seven step approach
 - **4.** Identification of typical failure modes and of stochastic model
 - relevant failure modes are identified and formulated as limit state functions/design equations
 - appropriate probabilistic models are formulated for uncertain variables

5. Definition of a measure of closeness

- the objective function for the calibration procedure is formulated e.g.

The JCSS approach to code calibration

- A seven step approach
 - 6. Determination of the optimal partial safety factors for the chosen code format min $C(\mathbf{z})$

s.t.
$$c_i(\mathbf{x}_c, \mathbf{p}_j, \mathbf{z}, \gamma) = 0$$
, $i = 1, ..., m_e$
 $c_i(\mathbf{x}_c, \mathbf{p}_j, \mathbf{z}, \gamma) \ge 0$, $i = m_e + 1, ..., m$
 $z_i^1 \le z_i \le z_i^u$, $i = 1, ..., N$

- 7. Verification
 - incorporating experience of previous codes and practical aspects

The code calibration software CodeCal

<u>CodeCal</u>

