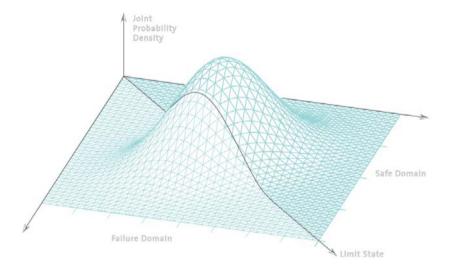
Statistics and Probability Theory

Risk and Safety *ibk* 1



Exercises Tutorial 4

Statistics and Probability Theory

Prof. Dr. Michael Havbro Faber Swiss Federal Institute of Technology Zurich ETHZ

- General
- <u>Correlation plots:</u>
 Plot the UNORDERED observations
- Quantile estimation:

Order the available data, calculate then the corresponding quantiles

What do we want to know?

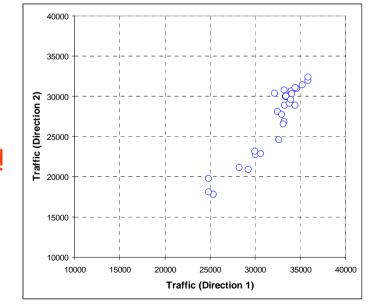
Which is the best way to know it? - plot, histogram, statistics etc.

For example,

if you are interested in:

the relation between the traffic of direction 1 and that of direction 2, but you are not interested in the time element

The graph is correct! Check the unordered pairs of the data!

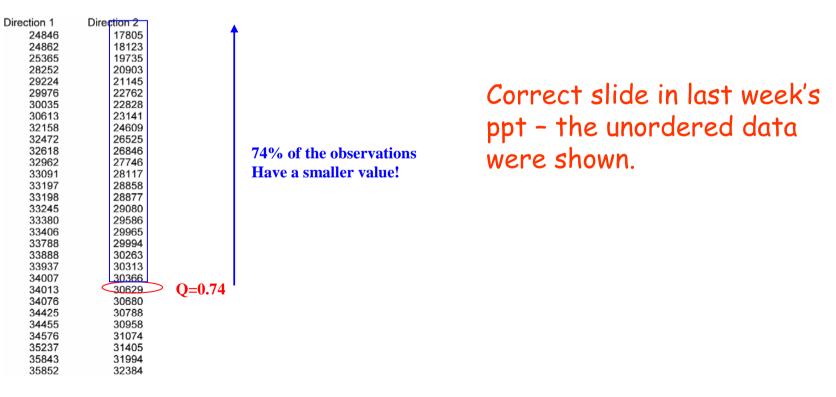


Correlated!

Quantiles

A quantile is related to a given percentage α , for which α % of all observations in the data set have smaller values.

e.g. the 0.74 quantile of a given data set of observations corresponds to the observation for which 74% of all observations in the data set have smaller values



Exercise 3.4 (Group Exercise)

Resistivity measurements help to predict the possible corrosion of bridge structures. During a general bridge inspection the data shown in Table 3.4.1 were obtained from resistivity measurements along the two bridge lanes (direction 1 and 2):

- a. Draw two box plots for the data provided in Table 3.4.1 (direction 1 and direction 2). Show the main features of the box plots and write their values next to the corresponding points on the diagrams. Plot also the outside values, if any.
- b. Tukey box plot is a helpful tool for assessing the symmetry of data sets. Discuss the symmetry/skewness of the resistivity data for both lanes.
- c. Choose a suitable number of intervals and plot the histogram for the resistivity data of direction 1.

Exercise 3.4 (Group Exercise)

Resistivity measurements help to predict the possible corrosion of bridge structures. During a general bridge inspection the data shown in Table 3.4.1 were obtained from resistivity measurements along the two bridge lanes (direction 1 and 2):

- a. Draw two box plots for the data provided in Table 3.4.1 (direction 1 and direction 2). Show the main features of the box plots and write their values next to the corresponding points on the diagrams. Plot also the outside values, if any.
- b. Tukey box plot is a helpful tool for assessing the symmetry of data sets. Discuss the symmetry/skewness of the resistivity data for both lanes.
- c. Choose a suitable number of intervals and plot the histogram for the resistivity data of direction 1.

Steps

- 1. calculate the median
- 2. calculate the 75%- and 25%- quantile
- 3. calculate the adjacent values
- 4. check for outside values
- 5. draw the Tukey box plot

	Steps	
	1. calculate the median	
	2. calculate the 75%- and 25%- quantile	
Step 1 (calculate the median)	3. calculate the adjacent values.	
	4. check for outside values	
	5. draw the Tukey box plot	
50%-quantile		

 $v = nQ_v + Q_v$

Median is the value at location:

	Steps	
	1.	calculate the median
	2.	calculate the 75%- and 25%- quantile.
Stop 2 (poloulate the 75% and 25% quantile)	3.	calculate the adjacent values.
Step 2 (calculate the 75%- and 25%- quantile)	4.	check for outside values
	5.	draw the Tukey box plot

 $v = nQ_v + Q_v$

Upper quartile (75% quantile):

Lower quartile (25% quantile):

	Steps	
	1. calculate the median	
	2. calculate the 75% and 25% quantile.	
Stop 2 (coloulate the adjacent values)	3. calculate the adjacent values.	
Step 3 (calculate the adjacent values)	4. check for outside values	
	5. draw the Tukey box plot	

<u>Upper adjacent value</u>: largest observation \leq (75% *quantile*) + 1.5*r*

In this case, largest value less than

If the largest observation is less than that value, take the largest observation as the upper adjacent value.

Upper adjacent value =

	Steps	
	1. calculate the median	
	2. calculate the 75% and 25% quantile.	
Stop 2 (coloulate the adjacent values)	3. calculate the adjacent values.	
Step 3 (calculate the adjacent values)	4. check for outside values	
	5. draw the Tukey box plot	

<u>Lower adjacent value</u>: smallest observation $\geq (25\% \ quantile) - 1.5r$

In this case, lowest value larger than

If the lowest observation is more than that value, take the lowest observation as the lower adjacent value.

lower adjacent value :

Try the same steps for Direction 2!

Steps

- 1. calculate the median
- 2. calculate the 75% and 25% quantile.
- 3. calculate the adjacent values.
- 4. check for outside values
- 5. draw the Tukey box plot

3.4.c	
Steps	
 Define number of intervals Count no. of observations within each Plot histogram. 	ו interval

- Make a Q-Q plot (Quantile-Quantile plot) to compare the two data sets of Table 3.1.1.
- What do you observe in regard to the traffic flows in directions 1 and 2?
- Provide an approximate value of the difference in the daily traffic flow between the two directions using a Tukey mean-difference plot.

Date	Direction 1	Direction 2
01.04.2001	32618	24609
02.04.2001	33380	29965
03.04.2001	34007	30629
04.04.2001	33888	30263
05.04.2001	35237	31405
06.04.2001	35843	31994
07.04.2001	33197	26846
08.04.2001	30035	22762
09.04.2001	32158	30366
10.04.2001	33406	29994
11.04.2001	34576	30958
12.04.2001	34013	30680
13.04.2001	24846	19735
14.04.2001	28252	21145
15.04.2001	25365	17805
16.04.2001	24862	18123
17.04.2001	32472	28117
18.04.2001	33245	28858
19.04.2001	33788	29080
20.04.2001	34076	30313
21.04.2001	29976	23141
22.04.2001	29224	20903
23.04.2001	32962	27746
24.04.2001	33937	29586
25.04.2001	33198	30788
26.04.2001	34455	31074
27.04.2001	35852	32384
28.04.2001	33091	26525
29.04.2001	30613	22828
30.04.2001	34425	28877

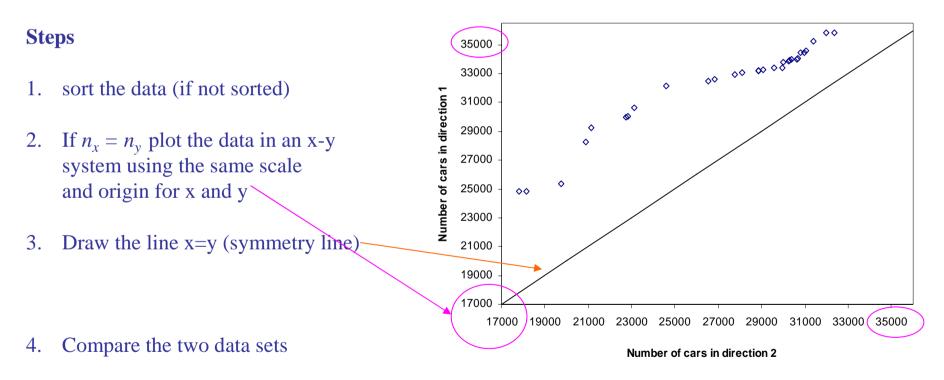
32384

35852

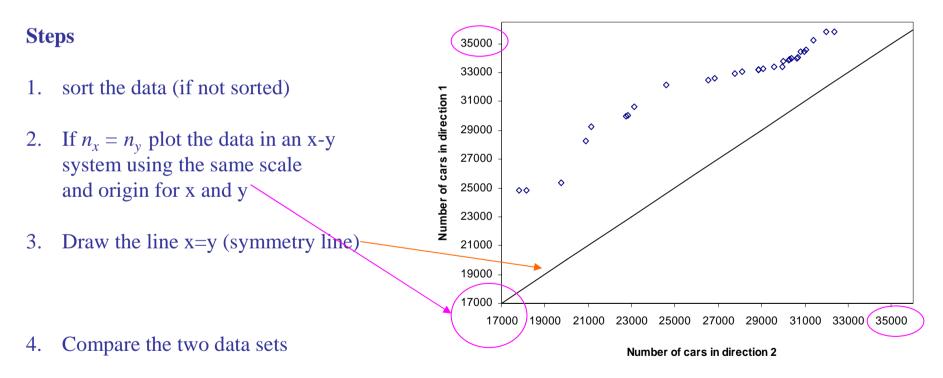
- Make a Q-Q plot (Quantile-Quantile plot) to compare the two data sets of Table 3.1.1.
- What do you observe in regard to the traffic flows in directions 1 and 2?

Direction 2	Direction 1	
17805	24846	
18123	24862	Steps
19735	25365	Steps
20903	28252	
21145	29224	
22762	29976	1. sort the data (if not sorted)
22828	30035	1. Soft the data (if not softed)
23141	30613	
24609	32158	
26525	32472	2. If $n = n$ plot the data in an x y system using the same scale
26846	32618	2. If $n_x = n_y$ plot the data in an x-y system using the same scale
27746	32962	
28117	33091	and origin for x and y
28858	33197	
28877	33198	
29080	33245	
29586	33380	3. Draw the line $x=y$
29965	33406	
29994	33788	
30263	33888	
30313	33937	4. Compare the two data sets
30366	34007	
30629	34013	
30680	34076	
30788	34425	
30958	34455	
31074	34576	
31405	35237	
31994	35843	

- Make a Q-Q plot (Quantile-Quantile plot) to compare the two data sets of Table 3.1.1.



- Make a Q-Q plot (Quantile-Quantile plot) to compare the two data sets of Table 3.1.1.



The data lie far from the symmetry line Concentrated on the side of direction 1- higher traffic flow in direction 1

- Provide an approximate value of the difference in the daily traffic flow between the two directions using a Tukey mean-difference plot.

Date		Direction 1	Direction 2
	01.04.2001	32618	24609
	02.04.2001	33380	29965
	03.04.2001	34007	30629
	04.04.2001	33888	30263
	05.04.2001	35237	31405
	06.04.2001	35843	31994
	07.04.2001	33197	26846
	08.04.2001	30035	22762
	09.04.2001	32158	30366
	10.04.2001	33406	29994
	11.04.2001	34576	30958
	12.04.2001	34013	30680
	13.04.2001	24846	19735
	14.04.2001	28252	21145
	15.04.2001	25365	17805
	16.04.2001	24862	18123
	17.04.2001	32472	28117
	18.04.2001	33245	28858
	19.04.2001	33788	29080
	20.04.2001	34076	30313
	21.04.2001	29976	23141
	22.04.2001	29224	20903
	23.04.2001	32962	27746
	24.04.2001	33937	29586
	25.04.2001	33198	30788
	26.04.2001	34455	31074
	27.04.2001	35852	32384
	28.04.2001	33091	26525
	29.04.2001	30613	22828
	30.04.2001	34425	28877

Steps

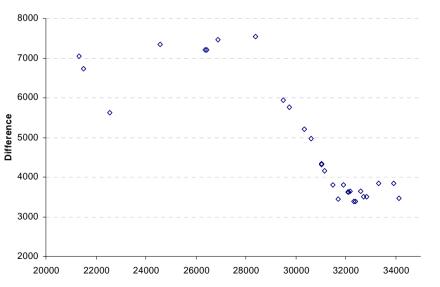
- 1. sort the data (if not sorted)
- 2. Calculate $y_i x_i$ and plot it on the y-axis
- 3. Calculate $(y_i + x_i)/2$ and plot it on the x-axis

4. Discuss...

- Provide an approximate value of the difference in the daily traffic flow between the two directions using a Tukey mean-difference plot.

Steps

- 1. sort the data (if not sorted)
- 2. Calculate $y_i x_i$ and plot it on the y-axis
- 3. Calculate $(y_i + x_i)/2$ and plot it on the x-axis



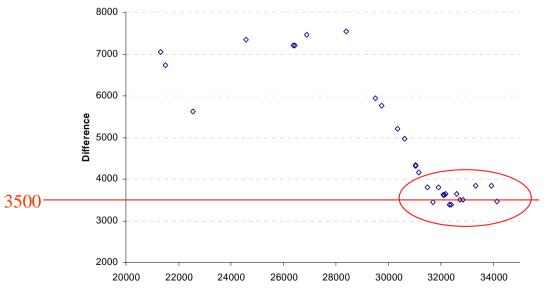
<i>x</i> _i	y_i	$y_i - x_i$	$(y_i + x_i)/2$
Direction 2	Direction 1	$y_i - x_i$	$(y_i + x_i)/2$
17805	24846	7041	21325.5
18123	24862	6739	21492.5
19735	25365	5630	22550.0
20903	28252	7349	24577.5
21145	29224	8079	25184.5
22762	29976	7214	26369.0
22828	30035	7207	26431.5
23141	30613	7472	26877.0
24609	32158	7549	28383.5
26525	32472	5947	29498.5
26846	32618	5772	29732.0
27746	32962	5216	30354.0
28117	33091	4974	30604.0
28858	33197	4339	31027.5
28877	33198	4321	31037.5
29080	33245	4165	31162.5
29586	33380	3794	31483.0
29965	33406	3441	31685.5
29994	33788	3794	31891.0
30263	33888	3625	32075.5
30313	33937	3624	32125.0
30366	34007	3641	32186.5
30629	34013	3384	32321.0
30680	34076	3396	32378.0
30788	34425	3637	32606.5
30958	34455	3497	32706.5
31074	34576	3502	32825.0
31405	35237	3832	33321.0
31994	35843	3849	33918.5
32384	35852	3468	34118.0

- Provide an approximate value of the difference in the daily traffic flow between the two directions using a Tukey mean-difference plot.

Steps

4. Discuss

for a large part of the data sets the traffic flow in direction 1 is about 3500 cars per day higher than in direction 2



The monthly expense [CHF] for water consumption including sewage fee for a 2-persons household may be considered as a random variable with the following density function:

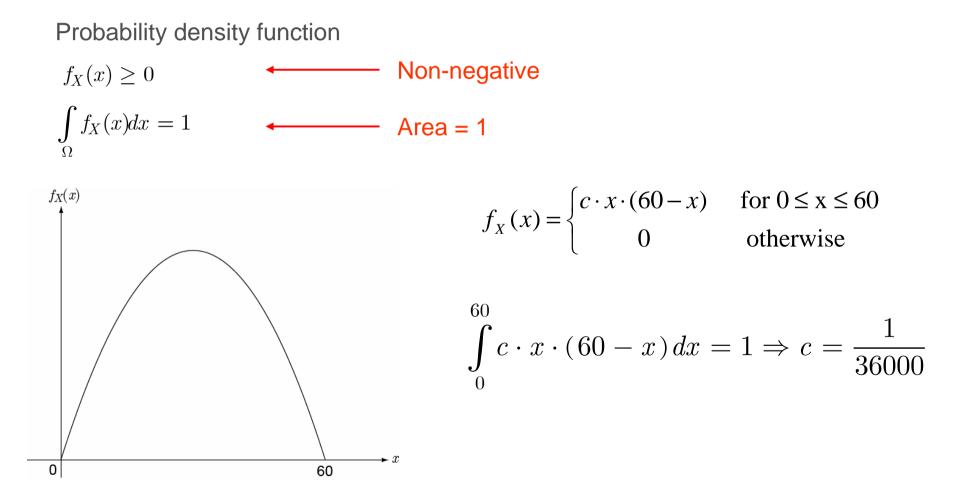
$$f_{X}(x) = \begin{cases} c \cdot x \cdot (60 - x) & \text{for } 0 \le x \le 60 \\ 0 & \text{otherwise} \end{cases} \xrightarrow{\text{Change to}} f_{X}(x) = \begin{cases} c \cdot x \cdot (15 - \frac{x}{4}) & \text{for } 0 \le x \le 60 \\ 0 & \text{otherwise} \end{cases}$$

- a. Which value of *c* should be chosen?
- b. Describe the cumulative distribution function $F_X(x)$ of the random variable X.
- c. Which of the following four values, 30.00 CHF, 40.00 CHF, 50.00 CHF and 60.00 CHF does not exceed the 90%-quantile of the monthly expense?
- d. How large is the mean monthly expense for water consumption including sewage fee for a 2-persons household?

Solution 4.1 a. Which value of *c* should be chosen?

Probability density function

Solution 4.1 a. Which value of *c* should be chosen?



Solution 4.1 b. Describe the cumulative distribution function $F_X(x)$ of the random variable X.

Cumulative distribution function

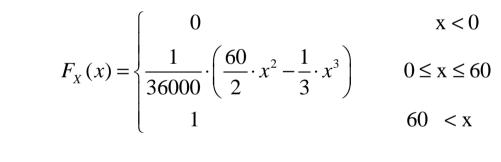
$$F_X(x) = \int_{\Omega} f_X(x) dx$$

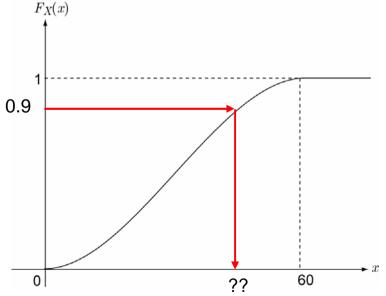
$$f_{X}(x) = \begin{cases} c \cdot x \cdot (60 - x) & \text{for } 0 \le x \le 60\\ 0 & \text{otherwise} \end{cases}$$

$$F_{X}(x) = \begin{cases} 0 & x < 0\\ \frac{1}{36000} \cdot \left(\frac{60}{2} \cdot x^{2} - \frac{1}{3} \cdot x^{3}\right) & 0 \le x \le 60\\ 1 & 60 < x \end{cases}$$

Solution 4.1 c. Which of the following four values, 30.00 CHF, 40.00 CHF, 50 CHF and 60 CHF does not exceed the 90%-quantile of the monthly expense?

First we need to find the value corresponding to the 90% quantile

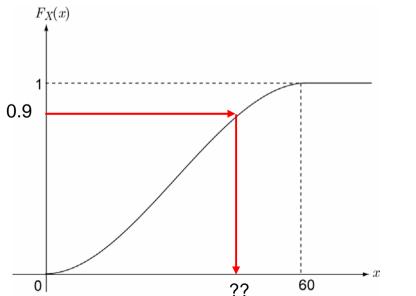




Solution 4.1 c. Which of the following four values, 30.00 CHF, 40.00 CHF, 50 CHF and 60 CHF does not exceed the 90%-quantile of the monthly expense?

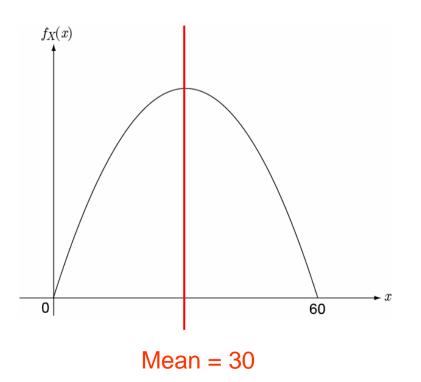
First we need to find the value corresponding to the 90% quantile

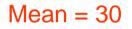
$$F_{X}(x) = \begin{cases} 0 & x < 0\\ \frac{1}{36000} \cdot \left(\frac{60}{2} \cdot x^{2} - \frac{1}{3} \cdot x^{3}\right) & 0 \le x \le 60\\ 1 & 60 < x \end{cases}$$



$$P(X \le a) = F_X(x) = 0.9$$
$$P(X \le a) = \frac{1}{36000} \cdot \int_0^{\alpha} x(60-x) \, dx \Rightarrow \alpha = \dots$$

Solution 4.1 d. How large is the mean monthly expense for water consumption including sewage fee for a 2-persons household?



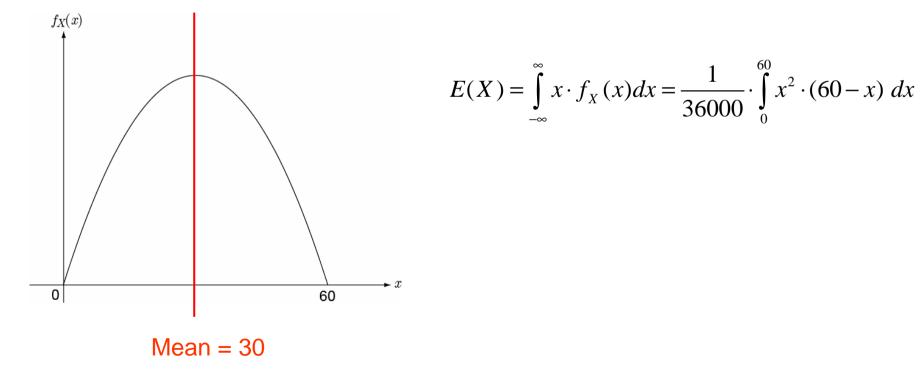


We can say this directly by looking at the Probability density function. WHY???

Solution 4.1 d. How large is the mean monthly expense for water consumption including sewage fee for a 2-persons household?

Mean---First moment

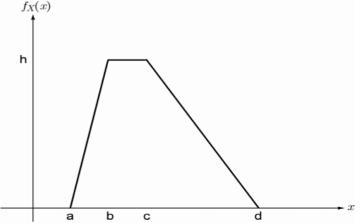
$$\mu = E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$



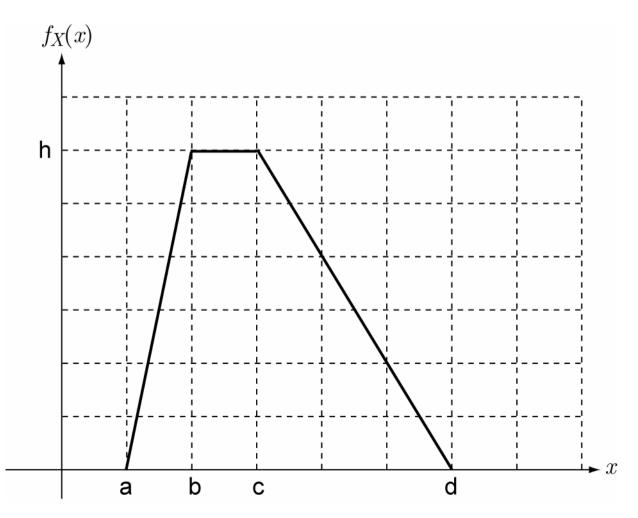
The probability function of a basic variable is shown in the following figure. a. determine analytically the PDF and the CDF.

Let a=1, b=2, c=3, d=6. (Change in the exercise)

- b. Define the mode and the parameter h.
- c. Calculate the mean value.
- d. Calculate the value of the median.
- e. Obtain graphically the median of the pdf. Discuss how the mean value may be evaluated graphically.



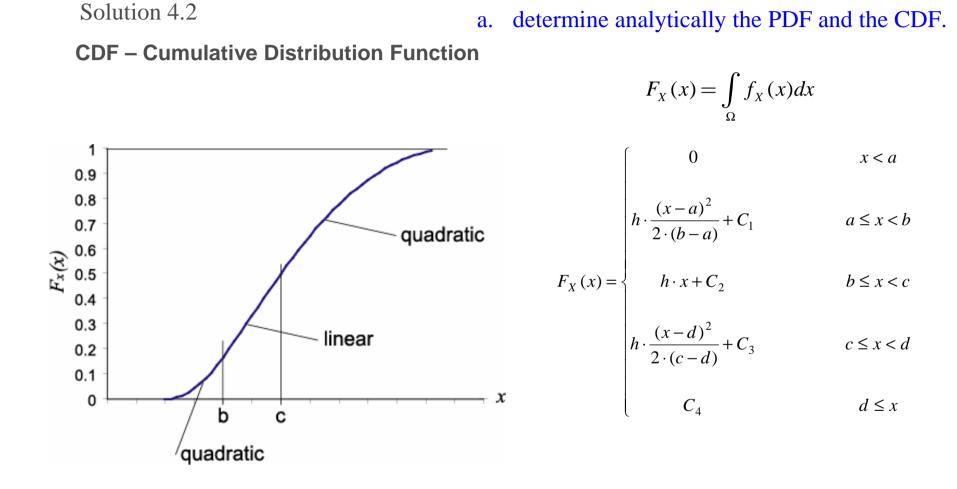
First think along with the definition, then think it again graphically.



PDF – Probability Density Function

 $f_X(x)$ 0 x < ah $h \cdot \frac{(x-a)}{(b-a)}$ $a \le x < b$ $f_X(x) =$ $b \le x < c$ h $h \cdot \frac{(x-d)}{(c-d)}$ $c \leq x < d$ - x 0 $d \leq x$ а b С d

a. determine analytically the PDF and the CDF.

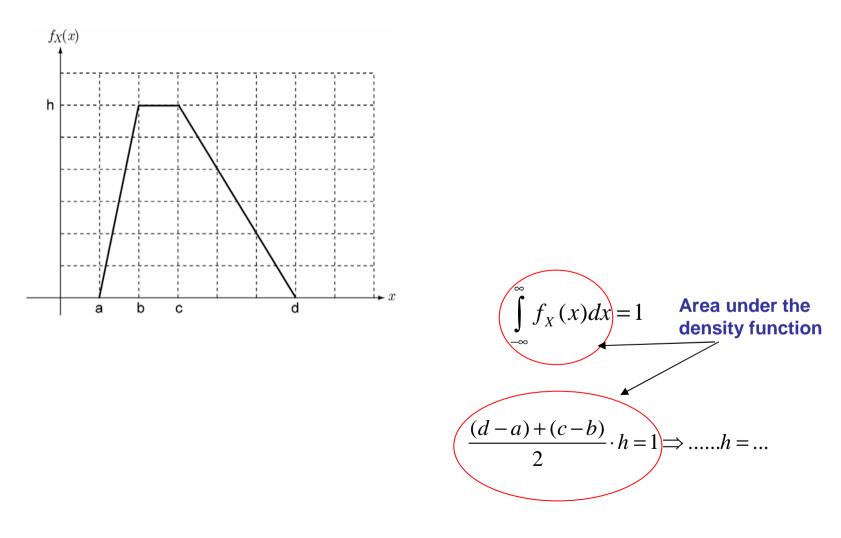


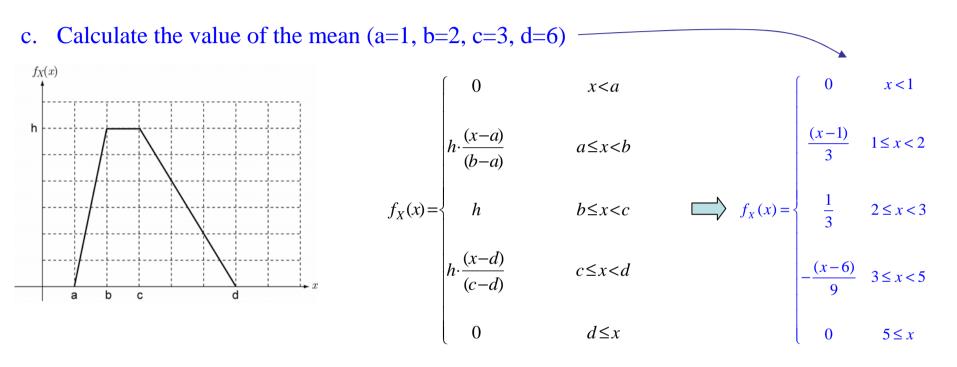
The four constants can be calculated by using the boundary conditions

b. define the mode and the parameter h. (a=1, b=2, c=3, d=6)



b. define the mode and the parameter h. (a=1, b=2, c=3, d=6)

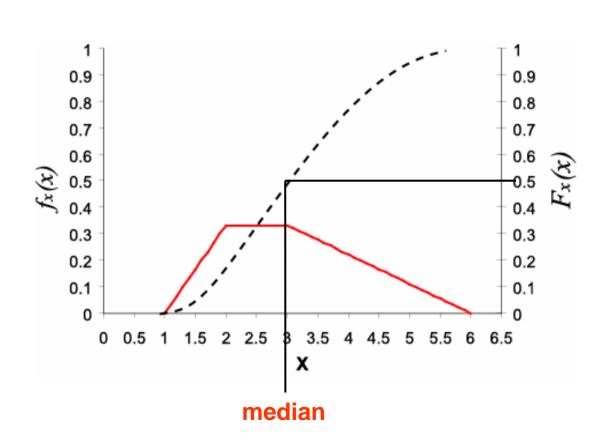




$$\mu_{x} = E[x] = \int_{-\infty}^{\infty} x \cdot f_{x}(x) \cdot dx = \int_{1}^{2} \frac{x \cdot (x-1)}{3} dx + \int_{2}^{3} \frac{x}{3} \cdot dx + \int_{3}^{6} \frac{-x \cdot (x-6)}{9} dx = \dots$$

d. Calculate the value of the median.

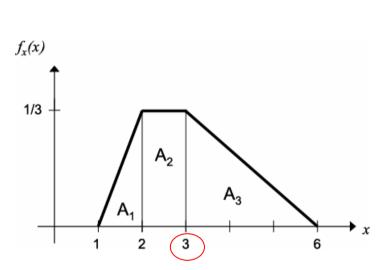
Graphically from the CDF

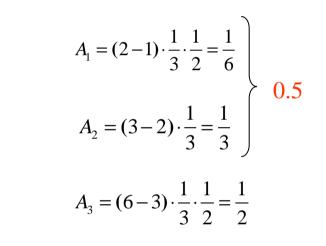


Analytically

$$P(X \le x) = \int_{1}^{x} f_X(x) \, dx = 0.5$$

e. Obtain graphically the median of the pdf. Discuss how the mean value may be evaluated graphically.



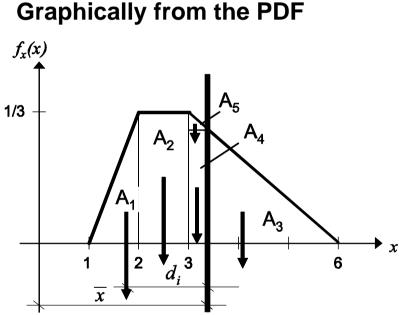


Median: location at which the area under the density function is equal to 0.5

Risk and Safety ibk 37

Solution 4.2

e. Obtain graphically the median of the pdf. Discuss how the mean value may be evaluated graphically.

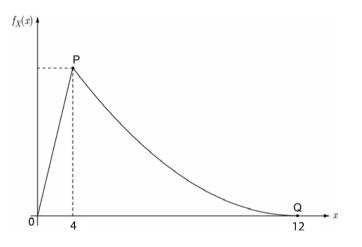


$$\sum_{i=1}^{5} \mathbf{A}_i \cdot d_i = 0$$

- Estimate moments for each 1. shape
- 2. Take equilibrium around the hypothesized location of the center of gravity

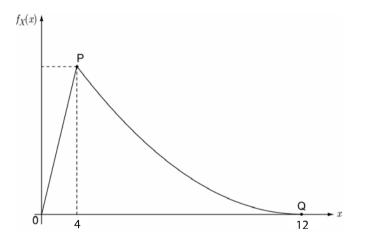
Mean: center of gravity of the shape of the probability density function.

The probability density function of a random variable X is shown in Figure 4.3.1. In the interval [0, 4] the function is linear and in the interval [4, 12] the function is parabolic which is tangent to x-axis at point Q.



- a. Determine the coordinate of point P(x,y) and then describe the probability density function.
- b. Describe and draw the cumulative distribution function of *X* with some characteristic numbers in the figure.
- c. Calculate the mean value of *X*.
- d. Calculate *P*[X>4].

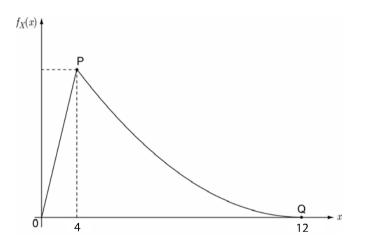
a. Determine the coordinate of point P(x,y) and describe the probability density function.



Steps:

- Define the pdf in the interval [0,12]
- Find coordinates of P by remembering that the area under the density function is equal to 1!

b. Describe and draw the cumulative distribution function of *X* with some characteristic numbers in the figure.



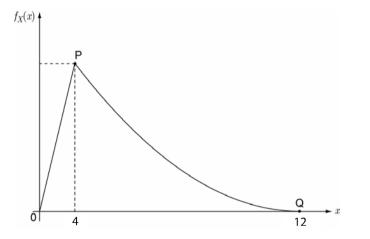
Steps:

$$\int_{\Omega} f_X(x) dx = 1$$

2. Draw...!

c. Calculate the mean value

Steps (Remember Exercise 4.2):

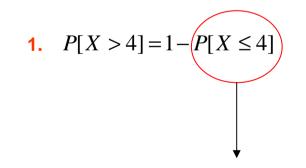


$$\mathbf{1.} \quad \boldsymbol{\mu}_{x} = E\left[x\right]$$

d. Calculate *P*[*X*>4].

 $f_X(x)$

Exceedance probability $P[X > \alpha]$ is $1 - P[X \le \alpha]$



How can this be expressed???