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PREAMBLE 

 

Introduction 
The present script serves as study guidance for the students taking the course on Statistics and 
Probability Theory at the summer semester at ETH. The present script provides information 
concerning the: 

• Aim of the course. 

• Structure and organisation of the course. 

• Educational support material for the course. 

• Mode of tests and exam. 

• Lecture notes for each of the 13 lectures with bibliography and index. 

Information about the contents of the course and the organization of the course is also 
available on http://www.ibk.ethz.ch/fa/. 

Aim of the course 
The aim of the present course is to provide to the students the basic skills and tools of 
statistics and probability. Emphasis is directed on the application and the reasoning behind the 
application of these skills and tools for the purpose of enhancing engineering decision making.  

It is expected that the students have only little or no prior knowledge on the subject of 
statistics and probability. The purpose of the present course is thus to ensure that the students 
will acquire during the course the required theoretical basis and technical skills such as to feel 
comfortable with the theory of basic statistics and probability. Moreover, in the present course 
as opposed to many standard courses on the same subject, the perspective is to focus on the 
use of the theory for the purpose of engineering model building and decision making.  

The course is subdivided into the following seven modules, each consisting of one or more 
lectures (see also Figure 1): 

• Module A - Engineering decisions under uncertainty  
Module B - Basic probability theory  
Module C - Descriptive statistics  
Module D - Uncertainty modelling  
Module E – Estimation and model building  
Module F – Methods of structural reliability  
Module G – Bayesian decision analysis  
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Module A 

Module B - Basic probability theory Module C  - Descriptive statistics

Module E - Estimation and model building 

Module G - Bayesian decision analysis Module F - Methods of structural reliability

Module D - Uncertainty modeling
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Figure 1: Illustration of the modules of the course and their didactical roles. 

The didactical logic behind the presentation of the material in the course is first to provide a 
motivation for the application of statistics and probability as a basis for developing 
engineering models and for risk based decision making (Module A, see Figure 1). Thereafter, 
a basic introduction on the theory of probability (Module B) is provided. This is meant as a 
“brush up” of the knowledge already acquired by the students during high-school. 
Subsequently in Module C a selection of tools is provided, which enables engineers to assess 
and communicate data in a condensed form, namely the descriptive statistics. In Module D an 
introduction to uncertainty is provided together with a description of the various building 
stones required to represent uncertainties in engineering modelling in terms of random 
variables and processes. In Module E the main focus is directed on the aspects of postulating 
models, assessing model parameters and verifying models. Subsequently in Module F it is 
shown how, on the basis of formulated probabilistic models of uncertain variables, 
probabilities of events of significance for engineering decision making may be assessed. 
Finally in Module G it is shown how the engineering models of uncertainties and their 
probabilistic descriptions can be utilized in a systematic framework for engineering decision 
making. 

It is believed that students having completed the present course will be able to: 

• assess data based on observations and/or experiment results and present these in a 
standardized and unambiguous form, 
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• formulate and validate simple engineering models with due consideration of the associated 
uncertainties due to lack of knowledge and data as well as natural inherent variability, 

• perform simple probability assessments such as to evaluate the probability of the 
appropriate performance of engineering activities,  

• formulate and solve simple risk based decision problems. 

Structure and organization of the course 

With the aim of supporting the students in learning the specified curriculum, the course is 
built up by four main components, namely lectures, tutorials, assessments and self study: 

• 13 weekly lectures of each two sessions of 45 minutes 

• 11 weekly exercise tutorials of each two sessions of 45 minutes 

• 2 assessments of each 90 minutes 

• Self study estimated to 4 times by 45 minutes per week 

This scheme is in accordance with the presently considered best ETH practice which assumes 
that the total efforts required to complete the course correspond to; lectures + exercise 
tutorials+assessment = 50%, self study = 50%.   
 
Lectures: 

The lectures are targeted at providing the students with the most important aspects of the 
theoretical and methodical material which may also be found in the present lecture notes. 
However, the lectures will also focus on the philosophical background for the development 
and use of the theoretical background and are thus to be understood as partly complementary 
to the material of the lecture notes. It is assumed and strongly suggested that the students 
study the lecture notes and become familiar with this. 

 
Exercise Tutorials: 

The exercise tutorials serve as a means of learning how to apply the theories and 
methodologies presented in the lectures and in the script. It is expected that the student will 
actively engage themselves in the tutorial work. During the tutorials, provided that there is 
sufficient time, the students may also use the possibility to ask about any problems related to 
the solutions of the solved exercises which are provided on the home page.  

The students, furthermore, have the possibility to consult the teaching staff at defined office 
hours in regard to the contents of the lectures and the exercise tutorials. In order to enable the 
complete clarification of problems and questions regarding the teaching material, it is 
advisable to contact personally the teaching assistants, rather than making requests through E-
mails.  
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For the purpose of supporting the students in their self evaluation, solved exercises, including 
previous exam exercises are made available on the home page http://www.ibk.ethz.ch/fa/. 

In addition, in the lecture notes at the end of each chapter, there is a set of small principal 
exercises which the students can use to check and practice their knowledge and skills.  

During the first exercise tutorial the students will be sub-divided into groups which will have 
to present the solution of a representative exercise during the course.  

Each individual exercise tutorial includes the following activities: 

• Presentation of 2 or more new exercises (corresponding to the subjects presented in 
the last lecture) in steps that will enable their solution by the students. 

• Presentation by the teaching assistants of the solutions of 1 or more exercises of those 
presented in the previous exercise tutorial.  

• Presentation by one group of students of the solution of one of the exercises presented 
in the previous exercise tutorial. Student colleagues and teaching assistants may ask 
questions for clarification during the presentation. 

Educational support material for the course 
The course is supported by the present script which provides the theory being taught during 
the lectures. All material for the course will be made available partly prior to the start of the 
course and partly during the course on the home page http://www.ibk.ethz.ch/fa/. 

The course material contains besides the lecture notes also the Power Point presentations used 
for the lectures as well the solved exercises for each exercise tutorial. The lecture notes will 
be made available on the home page prior to the start of the course. The Power Point files of 
both lecture and exercise tutorials will be uploaded on the course’s web page the latest one 
day before the respective class. 

All solutions to the exercises, except the exercises for which the solutions will be presented 
by the students during the exercise tutorials will be made available on the home page prior to 
the start of the course. The solutions of the latter mentioned exercises will appear immediately 
after the presentations. 

The Power Point presentations are only meant as a support for the lectures and can be used 
only as a support for the learning and preparation before each lecture. It is important to note 
that it is expected that the students read all the material contained in the lecture notes from 
lecture to lecture. Reading the Power Point presentations is not a substitute for reading the 
lecture notes which in many cases provide more detailed information.  

Mode of Assessment (Tests and Exams) 
The course performance comprises of a joint evaluation of:  
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• The results of the two assessments, one midterm (03.05.07) and the other one towards 
the end of the course (14.06.07)  

• The final exam which will take place in the autumn (close or within October) as a part 
of the “Basisprüfung” (to be announced by the ETH Prüfungsplan). 

The two assessments during the course have equal weight and must be attended by all 
students. In case documentation from a medical doctor or a military superior confirming 
illness or military duties, is presented to Prof. Faber before or within one week after a test 
which is not attended, arrangements for a substitute examination can be made. In case that an 
assessment is not attended by a student and no documentation is presented, the assessment 
will automatically be marked with 1 (1 out of 6, in the formal ETH scale with 6 being the best 
mark).  

At each of the two assessments during the course a maximum mark of 6 can be obtained (in 
the formal ETH scale with 6 being the best mark). .  

The mark achieved at the “Basisprüfung” will be based on the mark obtained at the final exam 
(autumn) weighted by 2/3 and the mark obtained from the two assessments weighted by 1/3.  

The above mode of assessment applies also for PhD students attending the course with the 
aim to achieve the provided 5 credit points. 

 

REPETITION OF THE BASIC EXAM 

 

In the case that the mark at the “Basisprüfung” does not lead to a successful pass of the course 
the students have the opportunity to repeat the basic exam according to the ETH rules. In such 
a case the same conditions as above apply, meaning that the final mark will be based on the 
mark obtained at the basic exam weighted by 2/3 and the mark obtained from the two 
assessments during the course weighted by 1/3. The mark of the two assessments counts for 
whenever a student decides to repeat the basic exam. However the opportunity is provided to 
the students to follow again the course the next time that it takes place and repeat the two 
assessments. In that case the mark obtained at the repetition will count weighed by 1/3. 
Students who will decide to take that opportunity should keep in mind that they need to 
subscribe themselves for this course before the beginning of the respective semester. 

Students who have already attended the course before the summer semester 2007 and need 
repeat the basic exam they have two opportunities: either to go directly to the basic 
examination or subscribe again for the course. In the first case the mark obtained at the basic 
exam will count for 3/3 of the total mark. In the second case the students will take part in the 
two assessments, the mark of which will count for 1/3 of the final mark and the other 2/3 will 
come from the mark obtained at the basic exam. 

 

We will try to do our best for achieving the aims of this course and we are looking forward to 
a good cooperation with all of you.  
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MODULE A – ENGINEERING DECISIONS UNDER 
UNCERTAINTY 

1st Lecture 

Aim of the present lecture 
The aim of the present lecture is to introduce the problem context of societal decision making 
and to outline how the concept of risk may provide a means for rational decisions in 
engineering. Focus is directed on the understanding of role of the engineer for the 
development and maintenance of societal functions.     

On the basis of the lecture it is expected that the students should acquire knowledge on the 
following issues: 

• What is sustainability? 

• What is the role of the engineering in society? 

• How may aspects of sustainability be related to life safety and cost optimal decision 
making? 

• Which are the main different types of consequences to be considered in risk assessment?  

• Why are there possible conflicts between economy, safety and environment? 

• Why is engineering decision making influenced by uncertainties? 

• What is the role of probability and consequence in decision making? 

• What is the definition of risk? 

• Which are the main phases to be considered in life cycle risk assessments in engineering 
decision making? 
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A.1  Introduction 
During the last two decades, there is growing awareness that our world only has limited non-
renewable natural resources such as energy and materials but also limited renewable resources 
like drinking water, clean air etc.. This led the so-called Brundtland Commission (1987) to the 
conclusion that a sustainable development is defined as a development ''that meets the needs 
of the present without compromising the ability of future generations to meet their own needs''. 
Sustainable decision making is thus presently understood as based on a joint consideration of 
society, economy and environment. In regard to environmental impacts the immediate 
implications for the planning, design and operation of civil engineering infrastructures are 
clear: Save energy, save non-renewable resources and find out about re-cycling of building 
materials, do not pollute the air, water or soil with toxic substances, save or even regain arable 
land and much more. 

For civil engineering infrastructures and facilities in general, but not only for those, also the 
financial aspect is of crucial importance. Civil engineering infrastructures are financed by the 
public via taxes, public charges or other. In the end it is the individuals of society who pay 
and, of course, also enjoy the benefits derived from their existence. However, seen in the light 
of the conclusions of the Brundtland report (Brundtland, 1987), the intergenerational equity 
must be accounted for. Our generation must not leave the burden of maintenance or 
replacement of too short-lived structures to future generations and it must not use more of the 
financial resources than those really available. In this sense, civil engineering facilities should 
be optimal not only from a technological point of view but also from a sustainability point of 
view. 

It is in general a concern how society may maintain and even improve the quality of life. All 
activities in society should thus aim at improving the life expectancy and increasing the gross 
domestic product (GDP); resulting in the conclusion that investments into life saving 
activities must be in balance with the resulting increase in life expectancy. For the present it is 
just stated that this problem constitutes a decision problem that can be analyzed using cost 
benefit analysis. 

At present approximately 10 to 20% of the GDP for developed countries is being re-invested 
into life saving activities, such as public health, risk reduction and safety. Furthermore, the 
economical burden of degradation of infrastructure amounts for example for the USA to about 
10% of the GDP in 1997 (see Alsalam et al., 1998). From these numbers it becomes apparent 
that the issue of safety and well being of the individuals in society as well as the durability of 
infrastructure facilities has a high importance for the performance of society and the quality of 
life of the individuals of society.  

The present course attempts to provide the basic tools for supporting decision making in the 
context of planning, design and maintenance of civil engineering activities and structures.  

Engineering facilities such as bridges, power plants, dams and offshore platforms are all 
intended to benefit, some way or another, the quality of life of the individuals of society. 
Therefore, whenever such facilities are planned, it is a prerequisite that the benefit of the 
facility can be proven considering all phases of the life of the facility, i.e. including design, 
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manufacturing, construction, operation and eventually decommissioning. If this is not the case, 
clearly the facility should not be established. 

A.2  Societal Decision Making and Risk 
On a societal level a beneficial engineering facility is normally understood as: 

• being economically efficient in serving a specific purpose  

• fulfilling given requirements in regard to the safety of the personnel directly involved with 
or indirectly exposed to the facility 

• fulfilling given requirements to limit the adverse effects of the facility on the environment. 

Taking basis in these requirements it is realised that the ultimate task of the engineer is to 
make decisions or to provide the decision basis for others such that it may be ensured that 
engineering facilities are established in such a way that they provide the largest possible 
benefit; if they cannot be proven to benefit they are not realized at all. 

Example A.1 – Feasibility of hydraulic power plant 

Consider as an example the decision problem of exploitation of hydraulic power. A hydraulic 
power plant project involving the construction of a water reservoir in a mountain valley is 
planned. The benefit of the hydraulic power plant is for simplicity assumed associated only 
with the monetary income from selling electricity to consumers. The decision problem thus 
simplifies to comparing the costs of establishing, operating and eventually decommissioning 
the hydraulic power plant with the incomes to be expected during the service life of the plant. 
In addition it must of course be ensured that the safety of the personnel involved in the 
construction and operation of the plant and the safety of third persons, i.e. the individuals of 
the society in general, is satisfactorily high. 

Different solutions for establishing the power plant may be considered and their efficiency 
can be measured in terms of the expected income relative to the costs of establishing the 
power plant. However, a number of factors are important for the evaluation of the income and 
the costs of establishing the power plant. These are e.g. the period of time where the plant will 
be operating and produce electricity and the capacity of the power plant in terms of kWh. 
Moreover, the future income from selling electricity will depend on the availability of water, 
which depends on the future snow and rainfall. But also the market situation may change and 
competing energy recourses such as thermal and solar power may cause a reduction of the 
market price on electricity in general.  

In addition the different possible solutions for establishing the power plant will have different 
costs and different implications on the safety to personnel. Obviously, the more capacity of 
the power plant, i.e. the higher the dam the larger the construction costs will be, but also the 
potential flooding (consequence of dam failure) will be larger in case of dam failure and more 
people would be injured or die, see Figure A.1. 
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Water reservoir Dam

Town

Figure A.1: Water reservoir/dam for exploitation of hydraulic power. 

The safety of the people in a town downstream of the reservoir will also be influenced by the 
load carrying capacity of the dam structure relative to the pressure loading due to the water 
level in the reservoir. The strength of the dam structure depends in turn on the material 
characteristics of the dam structure and the properties of the soil and rock on which it is 
founded. As these properties are subject to uncertainty of various sources as shall be seen later, 
the load carrying capacity relative to the loading may be expressed in terms of the probability 
that the loading will exceed the load carrying capacity or equivalently the probability of dam 
failure.  

Finally, the environmental impact of the power plant will depend on the water level in the 
reservoir, the higher the water level the more land will be flooded upstream of the dam 
structure and various habitats for animals and birds will be destroyed. On the other hand the 
water reservoir itself will provide a living basis for new species of fish and birds and may 
provide a range of recreational possibilities for people such as sailing and fishing which 
would not be possible without the reservoir. 

In order to evaluate whether or not the power plant is feasible it is useful to make a list of the 
various factors influencing the benefit and their effects. As the problem may be recognized to 
be rather complex only the interrelation of the water level in the reservoir will be considered, 
the load carrying capacity of the dam structure, the costs of constructing the dam structure and 
the implications on the safety of the people living in a town down-stream the power plant. 

Reservoir
water level

Load carrying
capacity of
dam structure

Income Costs
Consequence
of dam
failure

Probability
of dam
failure

Low
Low

Medium
High

Small
Low

Medium
High

Small
High

Medium
Low

Medium
Low

Medium
High

Medium
Low

Medium
High

Medium
High

Medium
Low

High
Low

Medium
High

Large
Low

Medium
High

Large
High

Medium
Low

Table A.1: Interrelation of benefits, costs and safety for the reservoir. 

From Table A.1, which is clearly a simplified summary of the complex interrelations of the 
various factors influencing the benefit of realizing the power plant, it is seen that the various 
factors have different influences and that the different attributes such as income, costs and 
safety are conflicting. In the table it is assumed that the medium load carrying capacity of the 
dam structure corresponds to a medium probability of dam failure but of course other 
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combinations are also possible. Consider the case with a high water level in the reservoir. In 
this case the potential income is large but the costs of constructing the dam structure will also 
be high. Furthermore, the potential consequences in case of dam failure will be large as well. 
Table A.1 clearly points to the true character of the decision problem, namely that the optimal 
decision depends on the consequences should something go wrong and moreover the 
probability that something goes wrong. The product of these two factors is denoted the risk, a 
measure that will be considered in much more detail in the chapters to follow. Furthermore, 
not only the load carrying capacity of the dam structure is associated with uncertainty but in 
fact as indicated previously also the income expected from the power plant, due to 
uncertainties in the future market situation. In a similar way the costs of constructing the 
power plant are uncertain as also various difficulties encountered during the construction, 
such as unexpected rock formations, delay in construction works due to problems with 
material supplies, etc. may lead to additional costs.  

When deciding on whether or not to establish the hydraulic power plant it is thus necessary to 
be able to assess consequences and probabilities; two key factors for the decision problem.  

Both consequences and probabilities vary through the life of the power plant and this must be 
taken into account as well. In the planning phase it is necessary to consider the risk 
contributions from all subsequent phases of its life-cycle including decommissioning, see 
Figure A.2. 

Figure A.2: Risk contributions from different service life phases to be considered at the planning stage. 

It is important to recognize that different things may go wrong during the different phases of 
the service life including events such as mistakes and errors during design and failures and 
accidents during construction, operation and decommissioning. The potential causes of errors, 
mistakes, failures and accidents may be numerous, including human errors, failures of 
structural components, extreme load situations and not least natural hazards. Careful planning 
during the very first phase of a project is the only way to control the risks associated with 
such events. 

As an illustration the dam structures must be designed such that the safety of the dam is 
ensured in all phases of the service life, taking into account yet another factor of uncertainty, 
namely the future deterioration, but also taking into account the quality of workmanship, the 
degree of quality control implemented during construction and not least the foreseen 
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strategies for the inspection and maintenance of the structures and mechanical equipment 
during the operation of the power plant. As a final aspect concerning the structures these 
should at the end of the service life be in such a condition that the work to be performed 
during the decommissioning of the power plant can be performed safely for both the persons 
involved and the environment. 

A final fundamental problem arises in regard to the question – what are the acceptable risks? - 
what is one prepared to invest and/or pay for the purpose of getting a potential benefit? The 
decision problem of whether or not to establish the hydraulic power plant is thus seen to be a 
decision problem involving a significant element of uncertainty. 

The mathematical basis for the treatment of such decision problems is the decision theory. 
Important aspects of decision theory are the assessment of consequences and probabilities and 
in a very simplified manner one can say that risk and reliability analysis in civil engineering is 
concerned with the problem of decision making subject to uncertainty.  

A.3  Definition of Risk  
In daily conversation risk is a rather common notion used interchangeably with words like 
chance, likelihood and probability to indicate that people are uncertain about the state of the 
activity, item or issue under discussion. For example the risk of getting cancer due to cigarette 
smoking is discussed, the chance of succeeding to develop a vaccine against the HIV virus in 
2007, the likelihood of getting a “Royal Flush” in a Poker game and the probability of a major 
earthquake occurring in the Bay area of San Francisco within the next decade. 

Even though it may be understandable from the context of the discussion what is meant by the 
different words it is necessary in the context of engineering decision making that those 
involved are precise in our understanding of risk. Risk is to be understood as the expected 
consequences associated with a given activity, the activity being e.g. the construction, 
operation and decommissioning of a power plant. 

Considering an activity with only one event with potential consequences C  the risk R  is the 
probability that this event will occur P  multiplied with the consequences given the event 
occurs i.e.: 

 R P C=  ( .1) 

If e.g. n events with consequences iC  and occurrence probabilities iP  may result from the 
activity the total risk associated with the activity is simply assessed through the sum of the 
risks from the individual events, i.e.: 

1
 

n

i i
i

R P C
=

=∑  ( .2) 

This definition of risk is consistent with the interpretation of risk used e.g. in the insurance 
industry and risk may e.g. be given in terms of Euros, Dollars or the number of human 
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fatalities. Even though most risk assessments have some focus on the possible negative 
consequences of events the definitions in Equations ( .1)-( .2) are also valid in the case where 
benefits are taken into account. In fact and as will be elaborated in Module F, in this case the 
definitions in Equations ( .1)-( .2) are more general and consistent with expected utility 
utilized as basis for decision analysis.  

Self Assessment Questions/Exercises 
A.1 What is meant by the term “sustainable development” and why is it important for 

engineering decision making? 

A.2 How a beneficial engineering facility is normally understood on a societal level? 

A.3 How may the risk of an event be defined and how may be expressed analytically? 

A.4 What is meant by the term “acceptance risks”? 

A.5 Considering an activity with only one event with potential consequences, the risk is 
that probability that this event will occur multiplied with the consequences given the 
event occurs. 

 Which of the following events is associated with the highest risk? 

Event 1 2 3 

Event probability 10% 1% 20% 

Consequences 100 SFr 500 SFr 100 SFr 

Risk    
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MODULE B – BASIC PROBABILITY THEORY 

 

2nd Lecture 

Aim of the present lecture 
The aim of the present lecture is to introduce the basics of set and probability theory. 
Different interpretations of the important concept of probability are provided and it is outlined 
that the Bayesian probability interpretation facilitates for an integration of the other 
interpretations. The very simple and few axioms of probability theory are given and the 
important results regarding conditional probabilities and the associated Bayes’ rule are 
outlined. 

On the basis of the lecture it is expected that the students should acquire knowledge and skills 
in regard to: 

• Which are the different interpretations of probability? 

• What is a sample space and how may events be illustrated? 

• What is an event and what is a complementary event? 

• How are intersections and unions of sets defined? 

• How may operations involving intersections and unions of events be performed?  

• Which are the axioms of probability theory? 

• Which are the implications of mutual exclusivity between events? 

• What is a conditional probability and how may it be evaluated? 

• Which are the implications of independence? 

• What is Bayes’ rule, and how can it be interpreted? 

• How can Bayes’ rule be applied for probability updating? 
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B.1  Introduction 
Probability theory forms the basis of the assessment of probabilities of occurrence of 
uncertain events and thus constitutes a cornerstone in risk and decision analysis. Only when a 
consistent basis has been established for the treatment of the uncertainties influencing the 
probability that events with possible adverse consequences may occur, it is possible to assess 
the risks associated with a given activity and thus to establish a rational basis for decision 
making.  

The level of uncertainty associated with a considered activity or phenomenon may be 
expressed by means of purely qualitative statements such as “the chance is good” or “the 
likelihood is low” but may also be quantified in terms of numbers or percentages. However, 
the different words in fact all have the meaning of probability and in the following section this 
notion will be investigated and especially the theoretical framework for its quantification in 
more detail. 

B.2  Definition of Probability  
The purpose of the theory of probability is to enable the quantitative assessment of 
probabilities but the real meaning and interpretation of probabilities and probabilistic 
calculations as such is not a part of the theory. Consequently two people may have completely 
different interpretations of the probability concept, but still use the same calculus. In the 
following, three different interpretations of probability are introduced and discussed based on 
simple cases. A formal presentation of the axioms of probability theory is provided in Section 
B.4. 

Frequentistic Definition 

The frequentistic definition of probability is the typical interpretation of probability of the 
experimentalist. In this interpretation the probability ( )P A  is simply the relative frequency of 
occurrence of the event A  as observed in an experiment with n  trials, i.e. the probability of 
an event A  is defined as the number of times that the event A  occurs divided by the number 
of experiments that are carried out: 

exp
exp

( )=lim                           for        ANP A n
n

→∞  (B.1)

AN = number of experiments where A  occurred 

expn = total number of experiments. 

If a frequentist is asked what the probability is for achieving a “head” when flipping a coin 
she would principally not know what to answer until she would have performed a large 
number of experiments. If say after 1000 experiments (flips with the coin) it is observed that 
“head” has occurred 563 times the answer would be that the probability for “head” is 0.563. 
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However, as the number of experiments is increased the probability would converge towards 
0.5. In the mind of a frequentist, probability is a characteristic of nature. 

Classical Definition 

The classical probability definition originates from the days when the probability calculus 
was founded by Pascal and Fermat1. The inspiration for this theory was found in the games of 
cards and dice. The classical definition of the probability of the event A  can be formulated as: 

( ) A

tot

nP A
n

=  (B.2)

An    =  number of equally likely ways by which an experiment may lead to A  

totn   =  total number of equally likely ways in the experiment. 

According to the classical definition of probability, the probability of achieving a “head” 
when flipping a coin would be 0.5 as there is only one possible way to achieve a “head” and 
there are two equally likely outcomes of the experiment.  

In fact there is no real contradiction to the frequentistic definition, but the following 
differences may be observed: 

• The experiment does not need to be carried out as the answer is known in advance.  

• The classical theory gives no solution unless all equally possible ways can be derived 
analytically. 

Bayesian Definition 

In the Bayesian interpretation the probability ( )P A  of the event A  is formulated as a degree 
of belief that A  will occur: 

degree  of belief  that    will  occur( ) =   AP A  (B.3)

Coming back to the coin-flipping problem the Bayesian would argue that there are two 
possibilities, and as she has no preferences as to “head” or “tail” she would judge the 
probability of achieving a “head” to be 0.5. 

The degree of belief is a reflection of the state of mind of the individual person in terms of 
experience, expertise and preferences. In this respect the Bayesian interpretation of 
probability is subjective or more precisely person-dependent. This opens up the possibility 
that two different persons may assign different probabilities to a given event and thereby 
contradicts the frequentist interpretation that probabilities are a characteristic of nature. 

                                                 

 
1 Pierre de Fermat, mathematician, 1601-1665; Blaise Pascal, mathematician, 1623-1662. 
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The Bayesian statistical interpretation of probability includes the frequentistic and the 
classical interpretation in the sense that the subjectively assigned probabilities may be based 
on experience from previous experiments (frequentistic) as well as considerations of e.g. 
symmetry (classical). 

The degree of belief is also referred to as a prior belief or prior probability, i.e. the belief, 
which may be assigned prior to obtaining any further knowledge. It is interesting to note that 
Immanuel Kant2 developed the purely philosophical basis for the treatment of subjectivity at 
the same time as Thomas Bayes3 developed the mathematical framework later known as the 
Bayesian statistics. 

Modern structural reliability and risk analysis is based on the Bayesian interpretation of 
probability. However, the degree of freedom in the assignment of probabilities is in reality not 
as large as indicated in the above. In a formal Bayesian framework the subjective element 
should be formulated before the relevant data are observed. Arguments of objective 
symmetrical reasoning and physical constraints, of course, should be taken into account.  

Practical Implications of the Different Interpretations of Probability 

In some cases probabilities may adequately be assessed by means of frequentistic information. 
This is e.g. the case when the probability of failure of mass produced components are 
considered, such as pumps, light bulbs and valves. However, in order to utilise reported 
failures for the assessment of probability of failure for such components it is a prerequisite 
that the components are in principle identical, that they have been subject to the same 
operational and/or loading conditions and that the failures can be assumed to be independent. 

In other cases when the considered components are e.g. bridges, high-rise buildings, ship 
structures or unique configurations of pipelines and pressure vessels, these conditions are not 
fulfilled. In these cases the number of identical structures may be very small (or even just one) 
and the conditions in terms of operational and loading conditions are normally significantly 
different from structure to structure. In such cases the Bayesian interpretation of probability is 
far more appropriate. 

The basic idea behind the Bayesian statistics is that lack of knowledge should be treated by 
probabilistic reasoning, similarly to other types of uncertainty. In reality, decisions have to be 
made despite the lack of knowledge and probabilistic tools are a great help in that process. 

 

                                                 

 
2 Immanuel Kant, philosopher, 1724-1804 

3 Thomas Bayes, mathematician, 1702-1761 
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B.3  Sample Space and Events 
Considering e.g. the compressive strength of concrete this material characteristic may be 
estimated by performing laboratory experiments on standardized test specimens (cylinders or 
cubes). The test results will, however, probably be different from one another and the concrete 
compressive strength shall be assumed to be an uncertain quantity or a random quantity. The 
set of all possible outcomes of the concrete compressive strength experiments is called the 
sample space (denoted Ω ) for the random quantity – the concrete compressive strength. In 
this example the sample space is the open interval ] [0;  Ω = ∞ , i.e. the set of all positive real 

numbers. In this case the sample space is furthermore continuous but in other cases (e.g. when 
considering the outcome of throwing a dice) the sample space can also be discrete and 
countable.  

An event is defined as a subset of a sample space and thus a set of sample points. If the subset 
is empty (i.e. contains no sample points) it is said to be impossible. An event is said to be 
certain if it contains all sample points in the sample space (i.e. the event is identical to the 
sample space). 

Consider the events 1E  and 2E  shown in Figure B.1. The subset of sample points belonging 
to the event 1E  or the event 2E  is denoted the union of the events 1E  and 2E  written as 

1 2E E∪ . 

 

E1 E2E1 E2

E1 E2 E1 E2

 Ω  Ω

 

Figure B.1: Venn diagrams illustrating the union of events (left) and the intersection of events (right). 

The subset of sample points belonging to 1E  and 2E  is denoted the intersection of 1E  and 2E  
and is written as 1 2E E∩ . The intersection of these two events is illustrated in the right portion 
of Figure B.1.  

The two events are said to be mutually exclusive if they are disjoint (i.e. if they have no 
common sample points). In this case the intersection of 1E  and 2E  is empty (i.e. 1 2E E∩ =∅ ), 
where ∅  denotes the empty set. 

Consider the event E  in the sample space Ω . The event containing all sample points in Ω , 
which are not included in E  is called the complementary event to E  and denoted E . It then 
follows directly that E E∪ =Ω  and that E E∩ =∅ . 

It can be shown that the intersection and union operations obey the following commutative, 
associative and distributive laws: 
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1 2 2 1

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 1 3

1 2 3 1 2 1 3

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

E E E E

E E E E E E

E E E E E E

E E E E E E E

E E E E E E E

∩ = ∩

∩ ∩ = ∩ ∩

∪ ∪ = ∪ ∪

∩ ∪ = ∩ ∪ ∩

∪ ∩ = ∪ ∩ ∪

 (B.4)

From which the following laws (denoted De Morgan’s laws) may be derived: 

1 21 2

1 21 2

E E E E

E E E E

∩ = ∪

∪ = ∩
 (B.5)

B.4  The three Axioms of Probability Theory 
Mathematically the probability theory is built up using only the following three axioms: 

 

Axiom 1: 

0 ( ) 1P E≤ ≤        for any given E ⊂ Ω  (B.6)

where P  is the probability measure. 

 

Axiom 2: 

( ) 1P Ω =  (B.7)

where Ω  is the sample space. 

 

Axiom 3: 

Given that 1 2, ,.. nE E E  are mutually exclusive events then: 

11

( ) ( )
n n

i i
ii

P E P E
==

=∑∪  (B.8)

These three axioms of probability theory form the sole basis of the theory of probability. 
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B.5  Conditional Probability and Bayes’ Rule 
Conditional probabilities are of special interest in risk and reliability analysis as they form the 
basis of the updating of probability estimates based on new information, knowledge and 
evidence. 

The conditional probability of the event 1E  given that the event 2E  has occurred is written as: 

1 2
1 2

2

( )( )
( )

P E EP E E
P E
∩

=  
(B.9)

It is seen that the conditional probability is not defined if the conditioning event is the empty 
set, i.e. when 2( ) 0P E = . 

The event 1E  is said to be probabilistically independent of the event 2E  if : 

1 2 1( ) ( )P E E P E=  (B.10)

implying that the occurrence of the event 2E  does not affect the probability of 1E . 

From Equation (B.9) the probability of the event 1 2E E∩ may be given as: 

1 2 1 2 2( ) ( ) ( )P E E P E E P E∩ =  (B.11)

and it follows immediately that if the events 1E  and 2E  are independent, then: 

1 2 1 2( ) ( ) ( )P E E P E P E∩ =  (B.12)

Based on the above findings, the important Bayes’ rule can be derived. 

Consider the sample space Ω  divided into n  mutually exclusive events 1 2, ,.. nE E E  (see also 
Figure B.2, where the case of 8n =  is considered). 

Ω

E1 E2

E5 E6 E8 

E4

E7

E3

A Ω

E1 E2

E5 E6 E8 

E4

E7

E3

A

 

Figure B.2:  Illustration of the rule of Bayes. 

Furthermore let the event A  be an event in the sample space Ω . Then the probability of the 
event A , i.e. ( )P A , can be written as: 
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1 2

1 1 2 2

1

( ) ( ) ( ) ... ( )

( ) ( ) ( ) ( ) ... ( ) ( )

( ) ( )

n

n n

n

i i
i

P A P A E P A E P A E

P A E P E P A E P E P A E P E

P A E P E
=

= ∩ + ∩ + + ∩

= + + +

=∑

 
(B.13)

this is also referred to as the total probability theorem.  

 

From Equation (B.9) there is ( ) ( ) ( ) ( )i i iP A E P E P E A P A=  implying that: 

( ) ( )
( )

( )
i i

i

P A E P E
P E A

P A
=  (B.14)

Now by inserting Equation (B.13) into Equation (B.14), the Bayes’ ruleresults: 

1

( ) ( )
( )

( ) ( )

i i
i n

j j
j

P A E P E
P E A

P A E P E
=

=

∑
 

(B.15)

In Equation (B.15) ( )iP E A  is denoted the posterior probability of iE , the conditional term 

iP(A E )  is often referred to as the likelihood (i.e. the probability of observing a certain state 
given the true state). The term ( )iP E  is the prior probability of the event iE  (i.e. prior to the 
knowledge about the event A ). 

As mentioned previously, the rule due to Bayes’ is extremely important, and in order to 
facilitate the appreciation of this a few illustrative applications of Bayes’ rule will be given in 
the following. 

Example B.1 – Using Bayes’ rule for concrete assessment 

A reinforced concrete beam is considered. From experience it is known that the probability 
that corrosion of the reinforcement has initiated (the event CI) is ( ) 0.01P CI = . However, in 
order to know the condition more precisely an inspection method (non-destructive) has been 
developed.  

The quality of the inspection method may be characterised by the probability that the 
inspection method will indicate ( )I  initiated corrosion given that corrosion has initiated 

( )P I CI  (the probability of detection or equivalently the likelihood of an indication I given 

corrosion initiation CI) and the probability that the inspection method will indicate initiated 
corrosion given that no corrosion has initiated ( )P I CI  (the probability of erroneous findings 

or the likelihood of an indication given no corrosion initiation).  

For the inspection method at hand the following characteristics have been established: 
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( )P I CI = 0.8 

( )P I CI = 0.1 

An inspection of the concrete beam is conducted with the result that the inspection method 
indicates that corrosion has initiated. Based on the findings from the inspection, what is the 
probability that corrosion of the reinforcement has initiated?  

The answer is readily found by application of Bayes’ rule: 

( ) ( ) ( )( )
( )( ) ( ) ( ) ( )

P I CI P CI P I CIP CI I
P IP I CI P CI P I CI P CI
∩

= =
+

 (B.16)

With ( )P I , the probability of obtaining an indication of corrosion at the inspection: 

( ) ( ) ( ) ( ) ( ) 0.8 0.01 0.1 (1 0.01)P I P I CI P CI P I CI P CI= + = ⋅ + ⋅ − = 0.107 

and ( )P I CI∩  the probability of receiving an indication of initiated corrosion and at the same 
time to have initiated corrosion: 

( ) ( ) ( ) 0.8 0.01 0.008P I CI P I CI P CI∩ = = ⋅ =  

Thus, the probability that corrosion of the reinforcement has initiated given an indication of 
initiated corrosion by the inspection method is: 

0.008( ) 0.075
0.107

P CI I = =  

The probability of initiated corrosion, given an indication of initiated corrosion, is 
surprisingly low. This is due to the high probability of an erroneous indication of initiated 
corrosion by the inspection method relative to the small probability of initiated corrosion (i.e. 
the inspection method is not sufficiently accurate for the considered application). 

□ 

Example B.2 – Using Bayes’ rule for bridge upgrading 

An old reinforced concrete bridge is reassessed in connection with an upgrading of the 
allowable traffic (see also Schneider, 1994). The concrete compressive strength class is 
unknown but concrete cylinder samples may be taken from the bridge and tested in the 
laboratory. 

The following classification of the concrete is assumed: 

B1: 0 30cσ≤ <  

B2: 30 40cσ≤ <  

B3: 40 cσ≤  
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Even though the concrete class is unknown, experience with similar bridges suggests that the 
probability of the concrete of the bridge belonging to class 1B , 2B  and 3B  is 0.65, 0.24 and 
0.11, respectively. This information comprises the prior information – prior to any experiment 
result. 

The test method is not perfect in the sense that even though the test indicates a value of the 
concrete compressive strength belonging to a certain class, there is a certain probability that 
the concrete belongs to another class. The likelihoods for the considered test method are given 
in Table B.1. 

It is assumed that one test is performed and it is found that the concrete compressive strength 
is equal to 36.2 MPa, i.e. in the interval of class B2. 

Using Bayes’ rule, the probability that the concrete belongs to one of the different classes may 
now be updated. The posterior probability that the concrete belongs to class 2B  is given by: 

2 2
0.61 0.24( ) 0.40

0.61 0.24 0.28 0.65 0.32 0.11
P B I B ⋅

= = =
⋅ + ⋅ + ⋅

 

The posterior probabilities for the other classes may be calculated in a similar manner, the 
results are given in Table B.1. 

 

Concrete 
Class 

Prior 
Probability 

Likelihood ( )iP I B  Posterior 
probabilities 

1I B=  2I B=  3I B=  

1B  0.65 0.71 0.28 0.01 0.50 

2B  0.24 0.18 0.61 0.21 0.40 

3B  0.11 0.02 0.32 0.66 0.10 

Table B.1: Summary of prior probabilities, likelihoods of experiment outcomes and posterior 
probabilities given one test result in the interval of class B2. 

 

 

Self Assessment Questions/ Exercises 

B.1 A person is asked what is the probability for achieving a “head” when flipping a coin. 
The person after 1000 experiments (flips with the coin) observes that “head” has 
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occurred 333 times and hence answers that the probability for “head” is 0.333. On 
which interpretation of probability is this estimation based on?  

B.2 How may the conditional probability of an event 1E  ,given that the event 2E  has 
occurred, be written? 

B.3 In probability theory the probability, ( )P A , of an event A  can take any value within 
the following boundaries: 

0 ( ) 1P A≤ ≤  

1 ( ) 1P A− ≤ ≤  

( )P A−∞ < < ∞  

 

B.4 If the intersection of two events, A  and B  corresponds to the empty set ∅ , i.e. 
A B∩ =∅ , the two events are:  

Mutually exclusive. 

Independent. 

Empty events. 

 

B.5 Which one(s) of the following expressions is(are) correct? 

The probability of the union of two events A  and B  is equal to the sum of the probability 
of event A  and the probability of event B , given that the two events are mutually 
exclusive. 

The probability of the union of two events A  and B  is equal to the probability of the sum 
of event A  and event B , given that the two events are mutually exclusive. 

The probability of the intersection of two events A  and B  is equal to the product of the 
probability of event A  and the probability of event B , given that the two events are 
mutually exclusive. 

The probability of the intersection of two events A  and B  is equal to the product of the 
probability of event A  and the probability of event B , given that the two events are 
independent. 

 

B.6 The probability of the intersection of two mutually exclusive events is equal to: 

The product of the probabilities of the individual events. 

The sum of the probabilities of the individual events. 

The difference between the probabilities of the individual events. 

One (1). 
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Zero (0). 

 

B.7 Which one of the following statements is correct? 

An event A  is defined as a subset of a sample space Ω . 

A sample space Ω  is defined as a subset of an event A . 

 

B.8 The probability of the union of two not mutually exclusive events A  and B  is given 
as: ( ) ( ) ( ) ( )P A B P A P B P A B∪ = + − ∩ . It is provided that the probability of event A  
is equal to 0.1, the probability of event B  is 0.1 and the probability of event B  given 
event A , i.e. ( )P B A  is 0.8. Which result is correct?  

( ) 0.6P A B∪ = −  

( ) 0.12P A B∪ =  

( ) 0.04P A B∪ =  

 

B.9 For an event A  in the sample space Ω , event A  represents the complementary event 
of event A . Which one(s) of the following hold? 

A A∪ =Ω  

A A∩ = Ω  

A A∪ =∅  

 

B.10 The commutative, associative and distributive laws describe how to: 

Operate with intersections of sets. 

Operate with unions of sets. 

None of the above. 

 

B.11 Research in ETH is often funded by the Swiss National Foundation of research (SNF). 
The normal procedure is that a Professor submits a proposal for a new project. Experts 
working for SNF read the proposal and they may come to one of the following 
decisions: 

1D : the proposal is accepted and the project will be funded. 

2D : the proposal should be revised by the Professor and resubmitted to SNF.  

3D : the proposal is not accepted and hence no funding is provided. 

Professor Muster works at ETH. During the past few years he has submitted many proposals 
to SNF. Based on experience, over many years, Professor Muster in general assesses that 
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when he submits a proposal the probabilities associated with the possible final decisions of 
SNF are as follows: 

1( ) 0.45P D = , 2( ) 0.35P D = , 3( ) 0.2P D = . 

By coincidence, just at the time when Professor Muster considers to submit a new proposal to 
SNF, he meets Dr. Beispiel. Dr. Beispiel used to work at SNF as one of the experts who 
review proposals and make the final decisions. Professor Muster kindly asks Dr. Beispiel to 
have a look at the new proposal before submitting it to SNF with the purpose of assessing the 
probabilities that the proposal would be accepted as it is. Of course Dr. Beispiel cannot say 
with certainty what will be the final SNF decision. However, his assessment can be 
considered as an indication, I , of the final decision of SNF. Based on experience from 
previous assessments and final decisions the conditional probabilities, ( )j iP I D D= , of the 
indications I  of Dr. Beispiel given the final decisions iD  of SNF are as summarized in the 
following table. 

 

a. Complete the above table. 

b. Having read the new proposal Dr. Beispiel explains to Professor Muster that if he 
would still have been working with SNF he would have asked for revisions and 
resubmission. Based on this new information - what is the probability that the final 
decision of SNF is the same as the assessment of Dr. Beispiel?  

 

SNF final decision iD  
Dr. Beispiel’s indicative assessment, jI  

1I D=  2I D=  3I D=  

1D  0.86 0.1  

2D  0.2  0.06 

3D   0.1 0.9 
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MODULE C – DESCRIPTIVE STATISTICS 

 

3rd Lecture 

Aim of the present lecture 
The aim of the present lecture is to introduce the descriptive statistics in terms of numerical 
summaries and graphical representations. It is outlined how data may be represented in a 
standardized manner in terms of different numerical measures as well as in the form of 
different graphs.  

On the basis of the lecture it is expected that the students should acquire knowledge and skills 
in regard to: 

• What is the purpose of descriptive statistics? 

• In what principally different ways may data be assessed and communicated? 

• What are the assumptions underlying descriptive statistics? 

• Which are the different “central numerical measures” and what do they describe? 

• What is a measure of dispersion and which such measures are available? 

• What does peakedness and skewness refer to? 

• What is the significance of correlation and how may it be calculated? 

• Which are typical graphical representations of data sets? 

• What is the difference between a sample histogram and a frequency distribution? 

• What information is contained in a Quantile-Quantile plot? 

• What are the main components of a Tukey-Box plot? 

• In what way may numerical summaries be related to graphical representations? 
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C.1  Introduction 
In order to assess the characteristics and the level of uncertainty of a given quantity of interest, 
one of the first steps is to investigate the data available, such as observations and test results. 
For this purpose, the use of descriptive statistics is useful. Descriptive statistics do not assume 
anything in terms of the degree or nature of the randomness underlying the data analysed, but 
are merely a convenient tool to reduce the data to a manageable form suitable for further 
analysis, as well as for communication of the data in a standardized format to other 
professionals. 

In the following the so-called numerical summaries will first be introduced. These can be 
considered to be numerical characteristics of the observed data containing important 
information about the data and the nature of uncertainty associated with these. These are also 
referred to as sample characteristics in the following. Thereafter graphical representations 
are introduced as means of visual characterisation and as a useful tool for data analysis. 
Descriptive statistics play an important role in engineering risk analysis as this forms a 
standardized basis for assessing and documenting data obtained for the purpose of 
understanding and representing uncertainties in risk assessment. 

C.2  Numerical Summaries 

Central Measures 

One of the most useful numerical summaries is the sample mean. If the data set is collected in 
the vector 1 2( , ,.., )T

nx x x=x the sample mean x  is simply given as:  

1

1 n

i
i

x x
n =

= ∑  (C.1) 

The sample mean may be interpreted as a central value of the data set. If, on the basis of the 
data set, one should give only one value characterising the data, one would normally use the 
sample mean. Another central measure is the mode of the data set i.e. the most frequently 
occurring value in the data set. When data samples are real values, the mode in general cannot 
be assessed numerically, but may be assessed from graphical representations of the data as 
will be illustrated in Section C.3.  

As will be seen repeatedly in the present lecture notes it is often convenient to work with an 
ordered data set which is readily established by rearranging the original data set 

1 2( , ,.., )T
nx x x=x  such that the data are arranged in increasing order as 

1 2 1.. ..O O O O O
i n nx x x x x−≤ ≤ ≤ ≤ ≤ . In the subsequent the i th−  value of an ordered data set is 

denoted by O
ix .  

The median of the data set is defined as the middle value in the ordered list of data if n is odd. 
If n is even the median is taken as the average value of the two middle values (see also the 
examples below).  
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Example C.1 - Concrete Compressive Strength Data 

Consider the data set given in Table C.1 corresponding to concrete cube compressive strength 
measurements. In the table the data are listed both unordered, e.g. in the order they were 
observed and ordered according to increasing values. 

The sample mean for the data set is readily evaluated using Equation (C.1) and found to be 
equal to 32.67 MPa. All the observed values are different and therefore the mode cannot be 
determined without dividing the observations into intervals as will be shown in Section C.3. 
However, the median is readily determined as being equal to 33.05 MPa. 

□ 

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

35.8
39.2
34.6
27.6
37.1
33.3
32.8
34.1
27.9
24.4
27.8
33.5
35.9
39.7
28.5
30.3
31.7
32.2
36.8
30.1

24.4
27.6
27.8
27.9
28.5
30.1
30.3
31.7
32.2
32.8
33.3
33.5
34.1
34.6
35.8
35.9
36.8
37.1
39.2
39.7

 
i xi

Oxi

Unordered Ordered

 

Table C.1:  Concrete cube compressive strength experiment results in MPa. 

Example C.2 - Traffic Flow Data 

Consider the data shown in Table C.2. The data correspond to the daily traffic flow in both 
directions through the Gotthard tunnel for the month of January 1997 obtained within a 
project carried out by the Swiss Federal Highways Office (ASTRA). 

For this dataset the sample mean values of the traffic flow in direction 1 and direction 2 may 
be calculated from either the unordered or ordered data sets to be equal to 4697.39 and 
5660.77 respectively. The corresponding median values can be read from the ordered data sets 
as 4419 and 5100 respectively (there are in total 31 observations in the data sets, so the 
median corresponds to observation 16). 

□ 
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01.01
02.01
03.01
04.01
05.01
06.01
07.01
08.01
09.01
10.01
11.01
12.01
13.01
14.01
15.01
16.01
17.01
18.01
19.01
20.01
21.01
22.01
23.01
24.01
25.01
26.01
27.01
28.01
29.01
30.01

3087
4664
4164
3710
4029
4323
4041
3737
4103
5457
4563
3906
4419
4359
4667
5098
6551
4371
3578
4366
4368
4588
5001
7118
4727
4085
4741
4739
5193
5892
797431.01

3087
3578
3710
3737
3906
4029
4041
4085
4103
4164
4323
4359
4366
4368
4371
4419
4563
4588
4664
4667
4727
4739
4741
5001
5098
5193
5457
5892
6551
7118
7974

3677
7357
9323

11748
10256

4453
4815
4757
4672
5401
5688
6308
4946
4635
5100
4791
5235
4560
5729
5005
4480
4880
4928
5398
4648
6183
5220
5013
5281
5318
5679

3677
4453
4480
4560
4635
4648
4672
4757
4791
4815
4880
4928
4946
5005
5013
5100
5220
5235
5281
5318
5398
5401
5679
5688
5729
6183
6308
7357
9323

10256
11748

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Datei

Direction 1 Direction 2

xi
Oxi

Unordered Ordered
xi

Oxi

Unordered Ordered

01.01
02.01
03.01
04.01
05.01
06.01
07.01
08.01
09.01
10.01
11.01
12.01
13.01
14.01
15.01
16.01
17.01
18.01
19.01
20.01
21.01
22.01
23.01
24.01
25.01
26.01
27.01
28.01
29.01
30.01
31.01

Date

 

Table C.2: Daily traffic flow through the Gotthard tunnel, January 1997. 

Dispersion Measures 

The variability or the dispersion of the data set around the sample mean is also an important 
characteristic of the data set. This dispersion may be characterised by the sample variance 2s  
given by: 

2 2

1

1 ( - )
n

i
i

s x x
n =

= ∑  (C.2) 

and the sample standard deviation s  is defined as the square root of the sample variance. 
From Equation (C.2) it is seen that the sample standard deviation s  is assessed in terms of the 
variability of the observations around the sample mean value x . 

Thus, the sample variance is the mean of the squared deviations from the sample mean and is 
in this way analogous to the moment of inertia as used in e.g. structural engineering.  

As a means of comparison of the dispersions of different data sets, the dimensionless sample 
coefficient of variation ν  is convenient. The sample coefficient of variation ν  is defined as 
the ratio of the sample standard deviation to the sample mean, i.e. given by: 

s
x

ν =  (C.3) 
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The sample variance for the concrete cube compressive strengths of Table C.1 may be 
evaluated using Equation (C.3) and is found to be 16.36 MPa2. The sample standard deviation 
is thus 4.04 MPa. For the considered concrete cube compressive strength data the sample 
coefficient of variation is equal to 0.12. In the same manner the sample coefficient of 
variation for the traffic flow data in Table C.2 is equal to 0.21 and 0.30 for direction 1 and 
direction 2 respectively. It is seen that the coefficient of variation for direction 2 is higher than 
for direction 1. That indicates that the data observed in direction 2 are more dispersed than in 
direction 1.  

Other Measures 

Whereas the sample mean, mode and median are central measures of a data set, and the 
sample variance is a measure of the dispersion around the sample mean it is also useful to 
have some characteristic indicating the degree of symmetry of the data set. To this end the 
sample coefficient of skewness, which is a simple logical extension of the sample variance is 
suitable. The sample coefficient of skewness η  is defined as: 

3

1
3

( - )
1

n

i
i

x x

n s
η ==

∑
 (C.4) 

This coefficient is positive if the mode of the data set is less than its mean value (skewed to 
the right) and negative if the mode is larger than the mean value (skewed to the left). For the 
concrete cube compressive strengths (Table C.1) the sample coefficient of skewness is – 0.12. 
For the traffic flow data (Table C.2) the observations in direction 1 and 2 have a skewness 
coefficient of 1.54 and 2.25 respectively. The coefficients are positive and that show that both 
distributions are skewed to the right.  

In a similar way the sample coefficient of kurtosis κ  is defined as: 

4

1
4

( - )
1

n

i
i

x x

n s
κ ==

∑
 (C.5) 

which is a measure of how closely the data are distributed around the mode (peakedness). 
Typically one would compare the sample coefficient of kurtosis to that of a normal 
distribution (introduced in Module D), which is equal to 3.0. The kurtosis for the concrete 
cube compressive strength (Table C.1) is evaluated as equal to 2.23, i.e. the considered data 
set is less peaked than the normal distribution. For the traffic flow data (Table C.2) it is equal 
to 5.48 and 7.44 for direction 1 and 2 respectively. 

Measures of Correlation 

Observations are often made of two characteristics simultaneously as shown in Figure C.1 
where pairs of data observed simultaneously are plotted jointly along the x-axis and the y-axis 
(this representation is also called a two-dimensional scatter diagram as outlined in Section 
C.3.). 
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Figure C.1:  Two examples of paired data sets. 

As a characteristic indicating the tendency toward high-high pairings and low-low pairings, 
i.e. a measure of the correlation between the observed data sets, the sample covariance XYs  is 
useful, and is defined as: 

1

1 ( )( )
n

XY i i
i

s x x y y
n =

= − −∑  (C.6) 

The sample covariance has the property that, if there is a tendency in the data set that the 
values of ix and iy  are both higher than x and y  at the same time, and the trend is linear, then 
most of the terms in the sum will be positive and the sample covariance will be positive. The 
other way around will result in a negative sample covariance. Such behaviours are referred to 
as correlation.  

In the scatter diagram to the left in Figure C.1 there appears to be only little correlation 
between the observed data pairs whereas the opposite is evident in the example to the right.  

The sample covariance may be normalised in respect to the sample standard deviations of the 
individual data sets Xs  and Ys  and the result is called the sample correlation coefficient XYr  
defined as: 

1
( - )( - )

1

n

i i
i

XY
X Y

x x y y
r

n s s
==
∑

 (C.7) 

The sample correlation coefficient has the property that it is limited to the interval 1 1XYr− ≤ ≤  
and the extreme values of the interval are only achieved in case the data pairs are perfectly 
correlated, implying that the points on the scatter diagram lie on a straight line. For the 
example shown in Figure C.1 there is almost zero correlation at the left hand side and almost 
full positive correlation at the right hand side. 
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Considering the observations of traffic flow data from Table C.2 a two-dimensional scatter 

plot can be produced as shown in 
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Figure C.2. 
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Figure C.2:  2-dimensional scatter plot of traffic flow data in two directions. 
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Figure C.2 it is seen that there appears to be no simple relation between the observed traffic 
flows in the two directions. The correlation coefficient may be calculated using Equation (C.7) 
to be equal to -0.14 which confirms a very low correlation of the traffic flow in the two 
directions. 

C.3  Graphical Representations 
Graphical representations provide a convenient and strong basis for assessing data and to 
communicate these to other persons. There exist a relatively large number of different 
possible graphical representations of data, of which some are better suited than others 
depending on the purpose of the representations. Some are better for representing the 
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characteristics of data sets containing observations of one characteristic, like e.g. the concrete 
compressive strength and others are better for representing the characteristics of two or more 
data sets (e.g. the simultaneously observed traffic flows). In the following, the most 
frequently applied graphical representations are introduced and discussed with the help of 
examples.  

One-Dimensional Scatter Diagrams 

The simplest graphical representation is the scatter diagram which provides a means to 
represent observations contained in one or more data sets. The scatter diagram may be 
constructed by plotting the observed values of the data set along an axis labelled according to 
the scale of the observations. In a one-dimensional scatter diagram the minimum and 
maximum values of the data set can be readily observed. Furthermore, as long as the number 
of data is not very large, the central value of the observed data may be observed directly from 
the plot. In the case where a data set contains a large number of data, some of these may be 
overlapping and this makes it difficult to distinguish the individual observations. In such cases 
it may be beneficial to apply another graphical representation such as histograms, as described 
subsequently. 

Consider again the traffic flow data from Table C.2. For each of the two directions a one-
dimensional scatter diagram can be produced by plotting the data along one axis. In Figure 
C.3 the resulting scatter diagram is shown for direction 1. In the same manner the data for the 
other direction may be plotted (see also Figure C.4). It can be seen from Figure C.3 that the 
lowest value of the data lies close to 3000 while the highest lies close to 8000. Moreover, a 
high concentration of observations is observed in the range 4000 to 5000, indicating that the 
central value of this data is in that range.  

Number of cars

3000 4000 5000 6000 7000 8000

 

Figure C.3: One-dimensional scatter diagram of the traffic flow in the Gotthard tunnel (direction 1). 

The traffic flow for both directions is plotted in a single one-dimensional scatter plot in Figure 
C.4. It can be seen from Figure C.4 that the lowest value of the traffic flow in direction 2 is 
larger than in direction 1. It is also observed that there is a significant difference between the 
largest values for direction 2 and direction 1; while most data for direction 1 concentrate 
around a value of 4000 cars per day, for direction 2 the corresponding value lies closer to 
5000 cars per day.  
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Number of cars

3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

Direction 1 Direction 2

 

Figure C.4: One-dimensional scatter diagram of the traffic flow in the Gotthard tunnel – comparison 
of two data sets. 

In Figure C.3 and Figure C.4 some of the observations are overlapping and this reduces the 
clarity of the scatter plot. This problem can be circumvented by projecting the observations 
vertically on a y-axis by allocating an integer random number j , for 1j =  to n  (where n  is 
the number of measurements), to each observation in the unordered data set and then by 
plotting j  against the observations. To keep the display nearly one-dimensional, the range of 
the y-axis should be kept small compared to the range of the x-axis. 

An example can be seen in Figure C.5 where the traffic flow observations for direction 1 have 
been plotted as described above. It can be seen that the observations are easily distinguished 
and overlaps have been almost eliminated.  

3000 4000 5000 6000 7000 8000

Number of cars  

Figure C.5: One-dimensional scatter plot of the traffic flow in the Gotthard tunnel with a vertical 
projection of the data (direction 1). 

Consider now another data set corresponding to the concrete cube compressive strength 
measurements from Table C.1. The corresponding one-dimensional scatter diagram is given 
in Figure C.6. It can be seen that the data are more widely distributed and there are not many 
overlaps.  

Concrete cube compr essive strength (MPa)

24 26 28 30 32 34 36 38 40

 

Figure C.6: One-dimensional scatter plot of the concrete cube compressive strength data. 
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Histograms 

A frequently applied graphical representation of data sets is the histogram. Consider again as 
an example the traffic flow data from Table C.2 for direction 2. The data are further processed 
and the observed number of cars is subdivided into intervals, see Table C.3. For each interval 
the mid point is determined and the number of observations within each interval is counted. 
Thereafter the frequencies of the measurements within each interval are evaluated as the 
number of observations within one interval divided by the total number of observations. The 
cumulative frequencies are estimated by summing up the frequencies for each interval in 
increasing order. This is a common way to estimate the cumulative frequencies especially in 
cases where the exact observations are not known but instead the frequency of observations 
within an interval is known. In the following for illustration purposes the cumulative 
frequencies are estimated from available observations. However, when observations are 
readily available the cumulative frequency plot can be replaced by a plot similar to a quantile 
plot (see section Quantile plots in the following) but a slightly different representation. Figure 
C.7 and Figure C.8 show the graphical representation of the processed data of Table C.3. 

Interval
(Number of

cars x 10  /day)

Interval Midpoint
(Number of

cars x 10  /day)2 2

 

Table C.3:  Summary of the observed traffic flow in the Gotthard tunnel (direction 2). 
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Figure C.7:  Histogram and frequency distribution representations of the observed traffic flow in the 
Gotthard tunnel (direction 2). 
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Figure C.8:  Cumulative frequency plot of the observed traffic flow in the Gotthard tunnel (direction 2). 

It has to be noted that a histogram may reduce the information provided by the data examined. 
The interval width plays an important role for the resolution of the representation of the 
observations. However, there are no general guidelines concerning the choice of the interval 
width. In most applications the goal is to identify an interval which with a sufficient 
resolution can represent the observations and this may comprise an iterative process where 
several different subdivisions are applied and the results are evaluated. In Benjamin and 
Cornell (1971) it is suggested to subdivide the interval between the maximum and minimum 
value into k  intervals where k  is given by: 

( )1 3.3logk n= +  (C.8)

where n is the number of data points in the data set. Using the above formula for the 
observations in Table C.2 k  equals 5.92. By rounding up, 6 intervals should have been 
applied for the subdivision of observations while as shown in Table C.3 the number of 
intervals used is equal to 17. Figure C.9 illustrates the frequency distribution of the traffic 
flow data using the 6 intervals given in Table C.4.  
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Interval
(Number of

cars x 10  /day)

Interval Midpoint
(Number of

cars x 10  /day)2 2

35-50
50-65
65-80
80-95
95-110
110-125

42.5
57.5
72.5
87.5

102.5
117.5

13
14
1
1
1
1

41.9355
45.1613
3.2258
3.2258
3.2258
3.2258

0.4194
0.8710
0.9032
0.9355
0.9677
1.0000  

Table C.4 Summary of the observed traffic flow in the Gotthard tunnel (direction 2) using 6 intervals. 

Comparing with the frequency distribution in Figure C.7 it can be seen that using a smaller 
number of intervals the resolution of the graphical representation is significantly reduced. 
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Figure C.9:  Frequency distribution representation of the observed traffic flow in the Gotthard tunnel 
(direction 2) using a small number of intervals. 

For the concrete compressive strength observations the application of Equation (C.8) seems to 
work well. Equation (C.8) in this case gives a value of 5.29k =  and by rounding up 6 
intervals should be used for this data set. The data tabularised according to the result of 
Equation (C.8) are given in Table C.5. 

Interval Midpoint Number of
observations

Frequency
[%]

Cumulative
frequency

23-26
26-29
29-32
32-35
35-38
38-41

24.5
27.5
30.5
33.5
36.5
39.5

1
4
3
6
4
2

5
20
15
30
20
10

0.05
0.25
0.40
0.70
0.90
1.00

 

Table C.5:  Summary of the observed concrete cube compressive strength measurements. 

Figure C.10 and Figure C.11 show the graphical representation of the processed data of  

Table C.5. It is seen from Figure C.10 that the rule implied from Equation (C.8) works fine 
and the resulting frequency distribution provides a good resolution of the observations. 
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Figure C.10:  Histogram and frequency distribution representations of the observed concrete cube 
compressive strength. 
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Figure C.11:  Cumulative frequency plot of the observed concrete cube compressive strength. 

Quantile Plots 

Quantile plots are graphical representations containing information that is similar to the 
cumulative frequency plots introduced above. A quantile is related to a given percentage, and 
e.g. the 0.65 quantile of a given data set of observations corresponds to the observation for 
which 65% of all observations in the data set have smaller values. The 0.75 quantile is also 
denoted the upper quartile (see also the Tukey box plots in the next section) while the 0.25 
quantile is denoted the lower quartile. The median thus equals the 0.5 quantile.  

In order to construct a quantile plot the observations in the data set are arranged in ascending 
order. The quantile iQ  corresponding to a given observation O

ix  in the ordered data set is 
given by: 

1i
iQ

n
=

+
 (C.9)

As an example consider the traffic flow data from Table C.2. In Table C.6 the data are 
ordered in ascending order and the corresponding quantile values are shown. The median (i.e. 
the 0.5 quantile) has been highlighted. 
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i

Direction 1 Direction 2

Oxi

Ordered
i

Oxi

Ordered
Q

 

Table C.6:  Quantile values of the traffic flow observations in the Gotthard tunnel. 

As mentioned in section “Histograms” when the observations are known it is preferable to use 
their quantiles to represent the cumulative distribution instead of the frequency of 
observations within interval, as was the case in section “Histograms”. So for example in the 
case of the traffic flow data for direction 2 (Table C.4) the cumulative distribution can be 
plotted the data values and the respective quantiles. Similarly the cumulative distribution of 
the concrete cube compressive strength data can be plotted using the respective quantiles 
(Table C.7). Figure C.12 illustrates the two above mentioned cumulative distribution plots. 
The median of the data set can be directly read from such a representation by finding the 
value that corresponds to the 0.5 quantile. 
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Figure C.12: Cumulative distribution plot of the traffic flow data of direction 2 (left) and the concrete 
  cube compressive strength (right). 

Coming back to the quantile plots concept, in Figure C.13 the quantile plots for the traffic 
flow data for both directions are illustrated. In order to enable the comparison of the data 
these have been plotted on the same scale. It can be seen that the quantiles for the data in 
direction 2 are slightly higher than the corresponding ones for direction 1. For direction 1 the 
median (the 0.5 quantile) is close to 4500 (the real value read from Table C.6 is 4419). The 
corresponding value in direction 2 is slightly higher than 5000 (5100 read from Table C.6). 
The approximate values for the upper and lower quantiles may also be observed from the 
quantile plots. Thus for example the lower quartile (0.25 quantile) in direction 1 is 
approximately equal to 4000 while the upper quartile (0.75 quantile) is close to 5000.  

The slope of the quantile plot indicates the concentration of the data; a high slope corresponds 
to a low concentration and a low slope to a high concentration. The highest local 
concentration occurs when there are many observations with exactly the same value and this 
appears on the quantile plot by a horizontal series of points. For direction 1 the slope is quite 
small up to about the 0.7 quantile. Thereafter the slope increases and thus the concentration of 
the data is smaller. This matches the information provided by the one-dimensional scatter plot 
in Figure C.3. The 0.7 quantile corresponds to a value close to 5000. It can be seen from 
Figure C.3 that for larger observed traffic flow values the concentration of the observations 
decreases. 

 

 

Figure C.12:  Quantile plots of the observed traffic flow in the Gotthard tunnel. 
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Quantile plots may also provide information regarding the symmetry of data. If the 
observations in the data set are symmetrically dispersed around the median then the shape of 
the quantile plot in the upper half is a double mirrored image of shape from the lower half. 
From Figure C.12 it can be seen that for both directions the data are not symmetric and that 
for direction 2 the asymmetry is more pronounced. 

Following the same procedure as described above, the concrete cube compressive strength 
data are plotted, Figure C.13, against the respective quantile values, see also Table C.7. It can 
be seen that the quantile plot has an almost constant slope over the whole range of 
observations. 

i Oxi

Ordered

i
Q

 

Table C.7: Quantile values of the observed concrete cube compressive strength [MPa]. 
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Figure C.13:  Quantile plots of the observed concrete cube compressive strength. 
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From Table C.7 it can be seen that no observation corresponds directly to the median of the 
data set. In general the evaluation of a quantile which does not correspond to a given 
observation must be based on an interpolation. This may be performed by first calculating the 
hypothetical -thυ  observation Oxυ  corresponding to a given quantile Qυ  from:  

1
Q

n υ
υ

=
+

 (C.10)

Solving Equation (C.10) in regard to υ  yields: 

nQ Qυ υυ = +  (C.11)

If υ  is an integer, the -thυ  observation Oxυ  exists and corresponds to Qυ . If υ  is not an 
integer it will have a value consisting of an integer part say k  and a fractional part say p . 
The Qυ -quantile Oxυ  using interpolation is given as: 

1(1 )O O O
k kx p x pxυ += − +  (C.12)

For example in the case of the concrete cube compressive strength data (Table C.7) looking 
for the upper quartile (0.75 quantile) gives a value of υ  equal to: 

20 0.75 0.75 15.75υ = ⋅ + =  

Thus 15k =  and 0.75p =  

Therefore based on Equation (C.12) the 0.75 quantile is 

15 160.25 0.75 0.25 35.8 0.75 35.9 35.875O Ox x+ = ⋅ + ⋅ = . 

Tukey Box Plots 

Tukey box plots provide information about several sample characteristics of the observations 
contained in a data set, see Figure C.14. 
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Figure C.14:  Tukey box plot with indication of the characteristics of the data set. 

The median is typically represented by a circle or a horizontal line within the box. The upper 
and lower sides of the box indicate the values of the upper and the lower quartiles, 
respectively. The distance between these quartiles is called the interquartile range, r ; 50% of 
the data are located within this range. A large interquartile range indicates that the 
observations are widely dispersed around the median and vice versa.  

Another feature of the Tukey box plot is the so called adjacent values. The upper adjacent 
value is defined as the largest observation less than or equal to the upper quartile plus 1.5 r . 
The lower adjacent value is defined as the smallest observation greater than or equal to the 
lower quartile minus 1.5 r . If an observation has a value outside the adjacent values, the 
observation is called an outside value and is shown in the box plot by a single point.  

In Table C.8 the sample characteristics needed to construct the Tukey box plots (Figure C.15) 
for the traffic flow data are given.  

 Statistic Direction 1 Direction 2 

Lower adjacent value 
Lower quartile 
Median 
Upper quartile  
Upper adjacent value 

3087 
4085 
4419 
5001 
5892 

3677 
4757 
5100 
5688 
6308 

Outside values 6551 
7118 
7974 

7357 
9323 

10256 
11748  

Table C.8:  Sample characteristics for the Tukey box plot for the traffic flow data in the Gotthard 
tunnel (Table C.2). 
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Figure C.15:  Tukey box plots of the traffic flow data in the Gotthard tunnel. 

The symmetry of the observations represented in a Tukey box plot may be partially assessed. 
From Figure C.15 can be seen that in direction 1 the observations with values in the lower and 
the upper range are more symmetric than the ones in direction 2. It is seen that the observed 
values of traffic flow in direction 2 are systematically larger than for direction 1. 

In Figure C.16 the Tukey box plot for the concrete cube compressive strength data is given 
based on the evaluation of the respective sample statistics, see Table C.9. For this set of data 
there are no outside values as the upper adjacent value is the maximum value of the data and 
the lower adjacent value corresponds to the lower value of the data. 

 Statistic Value
Lower quartile
Lower adjacent value
Median
Upper adjacent value
Upper quartile

29.30
24.40
33.05
39.70
35.85  

Table C.9:  Statistics for the Tukey box plot for the concrete cube compressive strength data [MPa] 
(Table C.1). 
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Figure C.16:  Tukey box plot of the concrete cube compressive strength data [MPa]. 
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Q-Q Plots and Tukey Mean-Difference Plot 

Quantile-quantile plots (or in short Q-Q plots) provide an efficient means of comparing 
observations from different data sets. For example in the case of the traffic flow data a 
comparison may be made between the number of cars in one direction and the number of cars 
in another direction. To do so, the corresponding quantiles may be compared, i.e. the 0.25 
quantile of the observations for direction 1 with the 0.25 quantile of the observations for 
direction 2 etc. For this purpose the corresponding quantiles are plotted against each other in a 
Q-Q plot.  

The data sets as given in Table C.6 contain the same number of observations and therefore 
their Q-Q plot may be made by just plotting the evaluated quantiles against each other, see 
Figure C.17. 
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Figure C.17:  Q-Q plot of the traffic flow observations in the two directions. 

If the data sets compared do not have the same number of observations then the quantiles for 
the observations of one data set are evaluated first and subsequently the corresponding 
quantiles for the other data set are established by interpolation. From Figure C.17 it is seen 
that the traffic flow is higher over the full range of observations for direction 2 as compared to 
direction 1. If the Q-Q plot would result in a line close to the y x=  then the data would have 
nearly identical distributions.  

Another graphical representation that facilitates the comparison of the observations contained 
in two different data sets is the Tukey mean-difference plot. Here i iy x−  is plotted 
against ( ) / 2i iy x+ , where y  and x  are the observations of the data sets being compared. The 
evaluation of the means and differences for the traffic flow data is provided in Table C. 10.  
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Direction 1 Direction 2 y i-x i (y i+x i)/2
3087
3578
3710
3737
3906
4029
4041
4085
4103
4164
4323
4359
4366
4368
4371
4419
4563
4588
4664
4667
4727
4739
4741
5001
5098
5193
5457
5892
6551
7118
7974

3677
4453
4480
4560
4635
4648
4672
4757
4791
4815
4880
4928
4946
5005
5013
5100
5220
5235
5281
5318
5398
5401
5679
5688
5729
6183
6308
7357
9323

10256
11748

590
875
770
823
729
619
631
672
688
651
557
569
580
637
642
681
657
647
617
651
671
662
938
687
631
990
851

1465
2772
3138
3774

3382.0
4015.5
4095.0
4148.5
4270.5
4338.5
4356.5
4421.0
4447.0
4489.5
4601.5
4643.5
4656.0
4686.5
4692.0
4759.5
4891.5
4911.5
4972.5
4992.5
5062.5
5070.0
5210.0
5344.5
5413.5
5688.0
5882.5
6624.5
7937.0
8687.0
9861.0

 

Table C. 10: Values for the Tukey mean-difference plot of the traffic flow data in the Gotthard tunnel. 

In Figure C.18 the Tukey mean-difference plot is given for the traffic flow data. 
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Figure C.18: Tukey mean-difference plot for the traffic flow data. 

The Tukey mean-difference plot indicates that there is a systematic difference of 600 cars per 
day for traffic situations corresponding to a mean traffic flow of up to 6000 cars per day. 
Thereafter the differences in the two directions seem to be proportional in the mean traffic 
flow. 
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Self Assessment Questions/ Exercises 

C.1 What is the purpose of descriptive statistics? 

C.2 Within which interval the coefficient of correlation of two data sets may lie? What do 
the extreme values of the interval express? 

C.3 What is the role of the interval width chosen for building up a histogram for the 
representation of a data set? 

C.4 Which characteristics of a data set can be represented with a Tukey box plot? 

C.5 Which means do Q-Q plots provide? 

C.6 Provide a rough estimate of the correlation coefficient of the data sets plotted in the 
following figure.  

 

 A XYr ≈  

 B XYr ≈  

 C XYr ≈  

 D XYr ≈  
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Figure C.19: Plotted data sets. 

 

C.7 A number of statistical terms are shown in the following table. Check if the terms 
have something to do with (a) location parameter, (b) dispersion parameter or (c) 
none of the above. 
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C.8 Measurements were taken of the concrete cover depth of a bridge column. The 
histogram of the measured values has been plotted in Figure C.20.  

If X  represents the random variable for the concrete cover depth which one(s) of the 
following statement(s) is(are) correct? 

The sample mean, x , is equal to 0.16 mm. 

The sample mean, x , is equal to 15 mm. 

The mode of the data set is equal to 15 mm. 
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Figure C.20: Histogram of concrete cover depth measurements. 

 

C.9 Which one(s) of the following are features of a symmetrical probability density 
function? 

The variance is equal to the coefficient of variation. 

The mode is equal to the median. 

The skewness is equal to zero.  

None of the above. 
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MODULE D – UNCERTAINTY MODELLING 

 

4th Lecture 

Aim of the present lecture 
The aim of the present lecture is to provide a fundamental understanding of uncertainty and 
how this affects engineering decision making. Furthermore, random variables are introduced 
and it is explained how they may be characterized depending on the given situation.  

On the basis of the lecture it is expected that the students should acquire knowledge and skills 
in regard to: 

• Why do uncertainties influence engineering problems and decision making? 

• Which are the principally different types of uncertainties? 

• Why is it useful to differentiate between different types of uncertainties? 

• Which types of uncertainties can be reduced? 

• In what way may uncertainties depend on time? 

• In what way might scale influence uncertainties? 

• What is a random variable and how may it be characterized? 

• How are cumulative distribution and probability density functions related? 

• What is a discrete and what is a continuous probability distribution? 

• How are the moments of a random variable defined? 

• How is the expectation operation defined? 
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D.1  Introduction 
A central role for engineers is to provide basis for decision making in regard to the cost 
efficient safeguarding of personnel, environment and assets in situations where uncertainties 
are at hand. A classical example is the decision problem of choosing the height of a dike. The 
risk of dike flooding can be reduced by increasing the height of the dike; however, due to the 
inherent natural variability in the water level a certain probability of dike flooding in a given 
reference period will always remain. Risk assessment within the theoretical framework of 
decision analysis (introduced in Lecture 13) can help us in deciding on the optimal dike height 
by weighing the benefits of reduced dike flooding risks with the costs of increasing the dike 
height. However, a prerequisite for the risk assessment is that the means for assessing the 
probability of dike flooding are established, and this in turn requires that a probabilistic model 
for the future water level is available.  

D.2  Uncertainties in Engineering Problems 
For the purpose of discussing the phenomenon uncertainty in more detail let us initially 
assume that the universe is deterministic and that our knowledge about the universe is perfect.  
This implies that it is possible by means of e.g. a set of exact equation systems and known 
boundary conditions by means of analysis to achieve perfect knowledge about any state, 
quantity or characteristic which otherwise cannot be directly observed or has yet not taken 
place. In principle following this line of reasoning the future as well as the past would be 
known or assessable with certainty. Considering the dike flooding problem it would thus be 
possible to assess the exact number of floods which would occur in a given reference period 
(the frequency of floods) for a given dike height and an optimal decision can be achieved by 
cost benefit analysis.  

Whether the universe is deterministic or not is a rather deep philosophical question. Despite 
the obviously challenging aspects of this question its answer is, however, not a prerequisite 
for purposes of engineering decision making, the simple reason being that even though the 
universe would be deterministic our knowledge about it is still in part highly incomplete 
and/or uncertain. 

In engineering decision analysis subject to uncertainties such as Quantitative Risk Analysis 
(QRA) and Structural Reliability Analysis (SRA) a commonly accepted view angle is that 
uncertainties should be interpreted and differentiated in regard to their type and origin. In this 
way it has become standard to differentiate between uncertainties due to inherent natural 
variability, model uncertainties and statistical uncertainties. Whereas the first mentioned type 
of uncertainty is often denoted aleatory (or Type 1) uncertainty, the two latter are referred to 
as epistemic (or Type 2) uncertainties. Without further discussion here it is just stated that in 
principle all prevailing types of uncertainties should be taken into account in engineering 
decision analysis within the framework of Bayesian probability theory. 

Considering again the dike example it can be imagined that an engineering model might be 
formulated where future extreme water levels are predicted in terms of a regression of 
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previously observed annual extremes. In this case the uncertainty due to inherent natural 
variability would be the uncertainty associated with the annual extreme water level. The 
model chosen for the annual extreme water level events would by itself introduce model 
uncertainties and the parameters of the model would introduce statistical uncertainties as their 
estimation would be based on a limited number of observed annual extremes. Finally, the 
extrapolation of the annual extreme model to extremes over longer periods of time would 
introduce additional model uncertainties. The uncertainty associated with the future extreme 
water level is thus composed as illustrated in Figure D.1. Whereas the so-called inherent 
natural variability is often understood as the uncertainty caused by the fact that the universe is 
not deterministic it may also be interpreted simply as the uncertainty which cannot be reduced 
by means of collection of additional information. It is seen that this definition implies that the 
amount of uncertainty due to inherent natural variability depends on the models applied in the 
formulation of the engineering problem. Presuming that a refinement of models corresponds 
to looking more detailed at the problem at hand one could say that the uncertainty structure 
influencing a problem is scale dependent. 

 

 

 

 

 

 

 

 

Figure D.1: Illustration of uncertainty composition in a typical engineering problem. 

Having formulated a model for the prediction of future extreme water levels and taking into 
account the various prevailing types of uncertainties the probability of flooding within a given 
reference period can be assessed and just as in the case of a deterministic and perfectly known 
universe the optimum dike height can be decided, based on a cost benefit assessment. 

It is interesting to notice that the type of uncertainty associated with the state of knowledge 
has a time dependency. Following Figure D.2 it is possible to observe an uncertain 
phenomenon when it has occurred. In principle, if the observation is perfect without any 
errors the knowledge about the phenomenon is perfect. The modelling of the same 
phenomenon in the future, however, is uncertain as this involves models subject to natural 
variability, model uncertainty and statistical uncertainty. Often but not always the models 
available tend to lose their precision rather fast so that phenomena lying just a few days or 
weeks ahead can be predicted only with significant uncertainty. An extreme example of this 
concerns the prediction of the weather. 
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Figure D.2: Illustration of the time dependence of knowledge. 

The above discussion shows another interesting effect, namely that the uncertainty associated 
with a model concerning the future transforms from a mixture of aleatory and epistemic 
uncertainty to a purely epistemic uncertainty when the modelled phenomenon is observed. 
This transition of the type of uncertainty has a significant importance because it facilitates that 
the uncertainty is reduced by utilization of observations - updating. 

D.3  Random Variables 
The performance of an engineering system, facility or installation (in the following referred to 
as system) may usually be modelled in mathematical physical terms in conjunction with 
empirical relations. 

For a given set of model parameters the performance of the considered system can be 
determined on the basis of this model. The basic random variables are defined as the 
parameters that carry the entire uncertain input to the considered model.  

The basic random variables must be able to represent all types of uncertainties that are 
included in the analysis. The uncertainties, which must be considered are as previously 
mentioned the physical uncertainty, the statistical uncertainty and the model uncertainty. The 
physical uncertainties are typically uncertainties associated with the loading environment, the 
geometry of the structure, the material properties and the repair qualities. The statistical 
uncertainties arise due to incomplete statistical information e.g. due to a small number of 
materials tests. Finally, the model uncertainties must be considered to take into account the 
uncertainty associated with the idealised mathematical descriptions used to approximate the 
actual physical behaviour of the structure.  

Modern methods of reliability and risk analysis allow for a very general representation of 
these uncertainties ranging from non-stationary stochastic processes and fields to 
time-invariant random variables, see e.g. Melchers (1987). In most cases it is sufficient to 
model the uncertain quantities by random variables with given cumulative distribution 
functions and distribution parameters estimated on basis of statistical and/or subjective 
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information. Therefore the following is concerned with a basic description of the 
characteristics of random variables.  

Cumulative Distribution and Probability Density Functions 

A random variable, which can take on any value, is called a continuous random variable. The 
probability that such a random variable takes on a specific value is zero. The probability that a 
continuous random variable, X , is less than or equal to a value, x , is given by the cumulative 
distribution function: 

( ) ( )XF x P X x= ≤  (D.1)

In general capital letters denote a random variable and small letters denote an outcome or 
realization of a random variable. An example of a continuous cumulative distribution function 
is illustrated in Figure D.3. 

x

x

A)

B)

1

 FX (x)

 f X (x)

 

Figure D.3: Illustration of A) a cumulative distribution function and B) a probability density function 
for a continuous random variable. 

For continuous random variables the probability density function is given by: 

( ) ( )X
X

F xf x
x

∂
=

∂
 (D.2)

The probability of an outcome in the interval [ ];x x dx+  where dx  is small, is given 

by [ ]( ) ( ); XP x x x dx f x dx∈ + = . 

Random variables with a finite or infinite countable sample space are called discrete random 
variables. For discrete random variables the cumulative distribution function is given as: 
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( ) ( )
i

X X i
x x

P x p x
<

= ∑  (D.3)

where ( )X ip x  is the probability density function given as: 

( ) ( )X i ip x P X x= =  (D.4)

A discrete cumulative distribution function and probability density function is illustrated in 
Figure D.4. 

 

 

Figure D.4: Illustration of A) a cumulative distribution function and B) a probability density function 
for a discrete random variable. 

Moments of Random Variables and the Expectation Operator 

Probability distributions may be defined in terms of their parameters or moments. Often 
cumulative distribution functions and probability density functions are written as ( ; )XF x p  
and ( ; )Xf x p respectively to indicate the parameters p  (or moments) defining the functions.  

The i’th moment im  of a continuous random variable is defined by: 

( )i
i Xm x f x dx

∞

−∞

= ∫  (D.5)

and for a discrete random variable by: 

1
( )

n
i

i j X j
j

m x p x
=

= ∑  (D.6)

The mean (or expected value) of continuous and discrete random variables, X , are defined 
accordingly as the first moment, i.e.: 
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[ ] ( )X XE X x f x dxμ
∞

−∞

= = ∫  (D.7)

[ ]
1

( )
n

X j X j
j

E X x p xμ
=

= =∑  (D.8)

where [ ]E ⋅  denotes the expectation operator.  

Similarly the variance , 2
Xσ , is described by the second central moment, i.e. for continuous 

random variables it is: 

[ ] ( ) ( )22 2(  -  ) -X X X XVar X E X x f x dxσ μ μ
∞

−∞

⎡ ⎤= = =⎣ ⎦ ∫  (D.9)

and for discrete random variables it is: 

[ ]2 2

1
( ) ( )

n

X j X X j
j

Var X x p xσ μ
=

= = −∑  (D.10)

where [ ]Var X  denotes the variance of X . 

The ratio between the standard deviation Xσ  and the expected value Xμ  of a random variable 
X  is denoted the coefficient of variation [ ]CoV X  and is given by: 

[ ] X

X

CoV X σ
μ

=  (D.11)

The coefficient of variation provides a useful descriptor of the variability of a random variable 
around its expected value. 

Example D.1 – Uniform distribution  

As an example consider a continuous random variable with a uniform (constant) probability 
density function in the interval [ ];a b  as illustrated in Figure D.5. 

f
X

(x)

x
a b  

Figure D.5: Continuous random variable with a uniform density function. 
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The probability density function for a uniformly distributed random variable X  is easily seen 
to be: 

0,                     
1( )  ,      

0,                     

X

x a

f x a x b
b a

x b

<⎧
⎪⎪= ≤ ≤⎨ −⎪

>⎪⎩

 (D.12)

remembering that the area under the probability density function must integrate to 1. In 
Equation (D.12) a  and b  are the parameters of the probability density function. 

The cumulative distribution function for a uniformly distributed random variable X  is thus: 

0,                                                              

1 ( )( ) ( ) ,       
( )

1,                                                              

x x

X X
a a

x a

x aF x f y dy dy a x b
b a b a

x b

<⎧
⎪

−⎪= = = ≤ ≤⎨ − −⎪
⎪ >⎩

∫ ∫  (D.13)

The first moment i.e. the mean value (see Equation (D.5)) of a continuous random variable X  
with uniform distribution is thus: 

[ ]
2

( )
2( )

( )    
2

bb b

X X
a a a

x xE X x f x dx dx
b a b a

b a

μ = = = =
− −

+
=

∫ ∫
 (D.14)

and the variance 2
Xσ  (see Equation (D.9)) is given through the second central moment: 

3 2 2
2

2 2 2

2

1
( ) 3( ) ( ) ( )

( ) ( )

1     ( )
12

b

b b X X
X

X X X X
a a

a

x x xxE X x f x dx dx
b a b a

b a

μ μμσ μ μ
− +−⎡ ⎤= − = − = =⎣ ⎦ − −

= −

∫ ∫
 (D.15)
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5th Lecture 

Aim of the present lecture 
The aim of the present lecture is to introduce the properties of the main characteristics of 
vectors of random variables and how to assess these. Furthermore, it is described how 
probabilistic characterizations of functions of random variables can be established.  

On the basis of the lecture it is expected that the students should acquire knowledge and skills 
in regard to: 

• How may the expectation operation be performed on a linear combination of random 
variables? 

• How may the expectation operation be performed on a linear combination of functions of 
random variables? 

• Which rule applies for the expectation operation of functions of random variables? 

• What is the relation between the expectation operation and the variance operation? 

• Which are the properties of the expectation and the variance operator? 

• What is a random vector and what is a joint moment? 

• How is the covariance between two random variables defined? 

• How is the correlation coefficient defined and what information does it contain? 

• What is a marginal probability distribution? 

• What is a conditional probability distribution? 

• How may the probability distribution for the sum of two random variables be established? 

• How may the probability distribution for a function of random variables be established? 
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Properties of the Expectation Operator 

It is useful to note that the expectation operation possesses the following properties, where 
,a b  and c  are constants and X  is a random variable: 

[ ]
[ ] [ ]
[ ] [ ]
[ ] [ ] [ ]1 2 1 2( ) ( ) ( ) ( )

E c c

E cX cE X

E a bX a bE X

E g X g X E g X E g X

=

=

+ = +

+ = +

 (D.16)

The implication of the last equation is that expectation, like differentiation or integration, is a 
linear operation. This linearity property is useful since it can be used, for example, to find the 
following formula for the variance of a random variable X  in terms of more easily calculated 
quantities: 

[ ] [ ]2 2 2 2 2

2 2 2 2 2

( ) 2 2

= 2

X X X X X

X X X

Var X E X E X X E X E X

E X E X

μ μ μ μ μ

μ μ μ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − = + − = + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤+ − = −⎣ ⎦ ⎣ ⎦

 (D.17) 

By application of Equation (D.17) the following properties of the variance operator [ ]Var ⋅  

can easily be derived: 

[ ]
[ ] [ ]
[ ] [ ]

2

2

0Var c

Var cX c Var X

Var a bX b Var X

=

=

+ =

 (D.18)

where ,a b  and c  are constants and X  is a random variable. 

From Equation (D.17) it is furthermore seen that in general it is [ ] [ ]( ) ( )E g X g E X≠ . In fact 
for convex functions ( )g x  it can be shown that the following inequality is valid (Jensen’s 
inequality): 

[ ] [ ]( ) ( )E g X g E X≥  (D.19)

where the equality holds if ( )g X  is linear. 

Whether the cumulative distribution and density function are defined by their moments or by 
parameters is a matter of convenience and it is generally possible to establish the one from the 
other. 

Random Vectors and Joint Moments 

If a n-dimensional vector of continuous random variables ( )1 2, ,...,X T
nX X X= , is considered 

the joint cumulative distribution function is given by: 
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( ) ( )1 1 2 2 n nF P X x X x X x= ≤ ∩ ≤ ∩…∩ ≤X x  (D.20)

and the joint probability density function is: 

( ) ( )
1 2

X Xx x
n

n

f F
x x x

∂
∂ ∂ ∂

=
…

 (D.21)

The covariance 
i jX XC  between iX  and jX  is defined by: 

( )( ) ( )( - )( - ) -  - ,
i j i j i j i jX X i X j X i X j X X X i j i jC E X X x x f x x dx dxμ μ μ μ

∞ ∞

−∞ −∞

⎡ ⎤= =⎣ ⎦ ∫ ∫  (D.22)

and is also called the joint central moment between the variables iX  and jX . 

The covariance expresses the dependence between two variables. It is evident that 
[ ]

i iX X iC Var X= . On the basis of the covariance the correlation coefficient is defined by: 

i j

i j

i j

X X
X X

X X

C
ρ

σ σ
=  (D.23) 

It is seen that 1
i iX Xρ = . The correlation coefficients can only take values in the interval [ ]1;1− . 

A negative correlation coefficient between two random variables implies that if the outcome 
of one variable is large compared to its mean value the outcome of the other variable is likely 
to be small compared to its mean value. A positive correlation coefficient between two 
variables implies that if the outcome of one variable is large compared to its mean value the 
outcome of the other variable is also likely to be large compared to its mean value. If two 
variables are independent their correlation coefficient is zero and the joint density function is 
the product of the 1-dimensional density functions. In many cases it is possible to obtain a 
sufficiently accurate approximation to the n-dimensional cumulative distribution function 
from the 1-dimensional distribution functions of the n variables and their parameters, and the 
correlation coefficients. 

Finally using Equations (D.17), (D.18) and (D.22) it can be shown that the expected value 
[ ]E Y  and the variance [ ]Var Y , where Y  is a linear function of the random vector 

1 2( , ,..., )X T
nX X X=  i.e.: 

0
1

n

i i
i

Y a a X
=

= +∑  (D.24) 

are given by: 
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[ ] [ ]

[ ] [ ]

0
1

2

1 , 1
 

2
i j

n

i i
i

n n

i i i j X X
i i j

i j

E Y a a E X

Var Y a Var X a a C

=

= =
≠

= +

⎛ ⎞
⎜ ⎟= + ⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑ ∑
 (D.25) 

Conditional Distributions and Conditional Moments 

The conditional probability density function for the random variable 1X , conditional on the 
outcome of the random variable 2X  is denoted 

1 2 1 2( )X Xf x x  and defined by: 

1 2

1 2

2

, 1 2
1 2

2

( , )
( )

( )
X X

X X
X

f x x
f x x

f x
=  (D.26) 

in accordance with the definition of conditional probability given previously. 

As for the case when probabilities of events were considered two random variables 1X  and 

2X  are said to be independent when there is: 

11 2 1 2 1( ) ( )XX Xf x x f x=  (D.27)

By integration of Equation (D.26) the conditional cumulative distribution 
1 2 1 2( )X XF x x  is 

obtained: 

1

1 2

1 2

2

, 2

1 2
2

( , )
( )

( )

x

X X

X X
X

f z x dz
F x x

f x
−∞=
∫

 (D.28)

and finally by integration of (D.28) weighed with the probability density function of 2X , i.e. 

2 2( )Xf x  the unconditional cumulative distribution 
1 1( )XF x  is achieved by the total probability 

theorem: 

1 21 21 1 2 2 2( ) ( ) ( )X XX XF x F x x f x dx
∞

−∞

= ∫  (D.29)

The conditional moments of jointly distributed continuous random variables follow 
straightforwardly from Equation (D.7) by use of Equation (D.27) and the conditional expected 
value 

1 2X Xμ  and the conditional variance of e.g. the jointly distributed random variables 1X  

given 2X  are evaluated by: 

( )
1 2 1 21 2 2 1 1 2 1 X X X XE X X x x f x x dxμ

∞

−∞

= ⎡ = ⎤ =⎣ ⎦ ∫  (D.30)
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1 2 1 2 1 2 1 2

2 2
1 2 2 1 1 2 1[( ) ] ( ) ( )X X X X X X X XVar E X X x x f x x dxμ μ

∞

−∞
= − = = −∫  

The Probability Distribution for the Sum of two Random Variables 

Based on the result in Equation (D.26) the probability density function for the random 
variable 1 2Y X X= +  may be derived for a given joint probability density function 

1 2, 1 2( , )X Xf x x .  

First the conditional probability density function of Y  given 1 1X x=  is considered i.e.: 

1 2Y x X= +  (D.31) 

where the conditional probability density function of 2X  given 1 1X x=  is: 

1 2

2 1

1

, 1 2
2 1

1

( , )
( )

( )
X X

X X
X

f x x
f x x

f x
=  (D.32) 

thus the probability density function for Y  given 1 1X x=  can be written as: 

1 2 11 1 1( ) ( )Y X X Xf y x f y x x= −  (D.33)

and the joint probability density function for
1, 1( , )Y Xf y x : 

1 1 2 12 1, 1 1 1 1 , 1 1( , ) ( ) ( ) ( , )Y X X X XX Xf y x f y x x f x f y x x= − = −  (D.34)

from which one can get the so-called marginal probability density function of Y  by 
integrating out over the domain of 1x  i.e.: 

2 1, 1 1 1( ) ( , )Y X Xf y f y x x dx
∞

−∞

= −∫  (D.35) 

For the special case where the variables 1X  and 2X  are independent, Equation (D.35) can be 
written in the form of a so-called convolution integral: 

2 11 1 1( ) ( ) ( )Y X Xf y f y x f x dx
∞

−∞

= −∫  (D.36) 

The Probability Distribution for Functions of Random Variables 

In some cases it is interesting to be able to derive the cumulative distribution function ( )YF y  
for a random variable Y  which is given as a function of another random variable X  i.e. 

( )Y g X= , with given cumulative distribution function ( )XF x . Under the condition that the 
function ( )g x  is monotonically increasing and furthermore, represents a one-to-one mapping 
of x  into y , a realization of Y  is only smaller than 0y  if correspondingly the realization of 
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X  is smaller than 0x  which in turn is given by 1
0 0( )x g y−= . In this case the cumulative 

distribution function ( )YF y  can be readily determined by: 

1( ) ( ) ( ( ))YF y P Y y P X g y−= ≤ = ≤  (D.37)

which is also written as: 

1( ) ( ( ))Y XF y F g y−=  (D.38)

In accordance with Equation (D.2) the probability density function ( )Yf y  is simply given by: 

1( ( ))( ) X
Y

F g yf y
y

−∂
=

∂
 (D.39)

which immediately leads to: 

1
1( )( ) ( ( ))Y X

g yf y f g y
y

−
−∂

=
∂

 (D.40)

and: 

( ) ( )Y X
xf y f x
y
∂

=
∂

 (D.41)

It is noticed that the application of Equations (D.40) and (D.41) necessitates that ( )g x  is at 
least one time differentiable in regard to x . 

Now if the function ( )g x  instead of being monotonically increasing is monotonically 
decreasing a realization of Y  smaller that 0y  corresponds to a realization of X  larger than 0x  
in which case it is necessary to change the sign of the derivative x y∂ ∂  in Equation (D.41). 
Generally for monotonically increasing or decreasing one-to-one functions ( )g x  there is: 

( ) ( )Y X
xf y f x
y
∂

=
∂

 (D.42)

As shown in e.g. Thoft-Christensen and Baker (1982) the relationship given in Equation 
(D.34) can be generalized to consider the case of jointly distributed random variables.  

Consider the random vector 1 2( , ,..., )Y T
nY Y Y=  with individual components given as one-to-

one mapping monotonically increasing or decreasing functions , 1,2,...,ig i n=  of the 
components of the random vector 1 2( , ,..., )X T

nX X X=  as: 

( )Xi iY g=  (D.43)

then there is: 



D-15 

( ) ( )Y Xy J xf f=  (D.44)

where J  is the numerical value of the determinant of J  given by: 

1 1

1

1

.....

.....

n

n n

n

x x
y y

x x
y y

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥

= ⎢ ⎥
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

J # % #  (D.45)

Finally the expected value [ ]E Y  of a function ( )Xg  of the random vector 

1 2( , ,..., )X T
nX X X=  is given by: 

[ ] 1( ) ( )Xx x nE Y g f dx dx
∞ ∞

−∞ −∞

= ∫ ∫" "  (D.46)

 



D-16 

6th Lecture 

Aim of the present lecture 
The aim of the present lecture is first to summarize typical probability distribution functions 
applied in engineering uncertainty modelling. Thereafter it is outlined how the Normal and 
the Lognormal probability distributions may be derived on the basis of the central limit 
theorem. Furthermore as an introduction on how to model uncertain phenomena with random 
variability over time, random sequences and their characterization are introduced.  

On the basis of the lecture it is expected that the students should acquire knowledge and skills 
in regard to: 

• What does the central limit theorem say? 

• What is a standardized random variable? 

• How may the variance of a linear combination of correlated Normal distributed random 
variables be calculated? 

• How may the Lognormal distribution be derived?  

• In what way may uncertain phenomena depend on “time”? 

• What is a random sequence? 

• What is a Bernoulli trial and what does it describe? 

• For what can the Binomial distribution be used? 

• What is a Geometric distribution and for what may it be applied? 
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Probability Density and Distribution Functions 

In Table D.1 a selection of probability density and cumulative distribution functions is given 
with the definition of their distribution parameters and moments. 

 

Distribution type Parameters Moments 

Uniform, a x b≤ ≤  

1( )Xf x
b a

=
−

 

( )X
x aF x
b a
−

=
−

 

 

a  

b  

2
a bμ +

=  

12
b aσ −

=  

Normal 

21 1( ) exp
22X

xf x μ
σσ π

⎛ ⎞−⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

21 1( ) exp
22

x

X
tF x dtμ
σσ π −∞

⎛ ⎞−⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫  

 

μ  

0σ >  

 

μ  

σ  

Shifted Lognormal, x ε>  

2
1 1 ln( )( ) exp

2( ) 2X
xf x

x
ε λ
ζε ζ π

⎛ ⎞⎛ ⎞− −
= ⎜− ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

ln( )( ) ΦX
xF x ε λ
ζ

⎛ ⎞− −
= ⎜ ⎟

⎝ ⎠
 

 

λ  

> 0ζ  

ε  

2

exp
2
ζμ ε λ

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
 

2
2exp exp( ) 1

2
ζσ λ ζ

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
 

Shifted Exponential, x ε≥  

( ) exp( ( ))Xf x xλ λ ε= − −  

( )( )( ) 1 expXF x xλ ε= − − −  

 

ε  

0λ >  

1μ ε
λ

= +  

1σ
λ

=  

Gamma, 0x ≥  

1( ) exp( )
( )

p
p

X
bf x bx x

p
−= −

Γ
 

( ),
( )

( )X

bx p
F x

p
Γ

=
Γ

 

 

0p >  

0b >  

p
b

μ =  

p
b

σ =  
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Distribution type Parameters Moments 

Beta, a x b≤ ≤  

( )
( ) ( )

1 1

1

( ) ( )( )
( )

r t

X r t

r t x a b xf x
r t b a

− −

+ −

Γ + − −
=
Γ Γ −

 

( )
( ) ( )

1 1

1

( ) ( )( )
( )

x r t

X r t
a

r t u a b uF x du
r t b a

− −

+ −

Γ + − −
=
Γ Γ −∫  

 

0
0

a
b
r
t
>
>

 

rμ a (b a)
r t

= + −
+

 

1
b a rt
r t r t

σ −
=

+ + +
 

Table D.1: Probability distributions, Schneider (1994). 

The relevance of the different distribution functions given in Table D.1 in connection with the 
probabilistic modelling of uncertainties in engineering risk and reliability analysis is strongly 
case dependent and the reader is suggested to consult the application specific literature for 
specific guidance. In the following, however, a brief introduction to the central limit theorem 
and the derived Normal and Lognormal distributions is given. 

The Central Limit Theorem and Derived Distributions  

The central limit theorem states: 

The probability distribution for the sum of a number of random variables approaches the 
Normal distribution as the number becomes large.  

This result, which indeed is one of the most important results in probability theory, will not be 
derived here but instead the general conditions for the validity of the theorem will be outlined.  

In principle, the theorem is valid as long as the number of independent contributions to the 
sum is “large”. This implies that the sum may not be dominated by one or just a few random 
variables and furthermore, that the dependency between the random variables in the sum is 
not too strong. There is no requirement in regards to the type of distributions of the random 
variables entering the sum, but if the distributions are skewed the number of variables in the 
sum which is required for the validity of the theorem increases.  

For the purpose of illustration, consider the problem of assessing the accumulated error in 
repeated measurements. The length of a structural member is being measured using a ruler of 
length 2 m  with the smallest measuring unit equal to 1 mm . It is assumed that all 
measurements are rounded off to the closest unit on the ruler and thus it is assumed that each 
measurement is subject to a measurement uncertainty which is uniformly distributed in the 
range 0.5mm± . If the length of a considered structural member is smaller or equal to 2 m , 
the length can be measured by one measurement. It is clear that in this case the measurement 
uncertainty is simply uniformly distributed as outlined in the above. However, if the member 
length is between 2 m  and 4 m  two measurements are required, if the member length is 
between 4 m  and 8 m  three measurements are required and so on. In Figure D.6, the 
histograms of the corresponding resulting measurement errors are illustrated under the 
assumption that consecutive errors are independent. 
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Figure D.6: Sample histograms for errors accumulated in 1, 2, 4 and 8 repeated measurements. 

From Figure D.6, it is seen that whereas the sample histogram for one measurement is clearly 
uniform, the histogram approaches a bell shape already for four repeated measurements and 
for most practical purposes may be considered to be Normal distributed already for eight 
repeated measurements. The analytical form of the probability density function for the 
accumulated errors may be derived by repeated use of the result concerning the probability 
density function for the sum of random variables given in Equation (D.34). In Benjamin and 
Cornell (1971), it is heuristically shown that the analytical probability density functions has 
the form of a Normal distribution.  

The Normal Distribution 

The significant practical importance of the central limit theorem lies in the fact that even 
though only weak information is available regarding the number of contributions and their 
joint probability density function rather strong information is achieved in regard to the 
distribution of sum of the contributions. 

The Normal probability distribution is thus applied very frequently in practical problems for 
the probabilistic modelling of uncertain phenomena which may be considered to originate 
from a cumulative effect of several uncertain contributions.  

The Normal distribution has the property that the linear combination S  of n  Normal 
distributed random variables , 1, 2,...,iX i n= : 

0
1

n

i i
i

S a a X
=

= +∑  (D.47) 
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is also Normal distributed. The distribution is said to be closed in respect to summation. 

One special version of the Normal distribution should be mentioned, namely the Standard 
Normal distribution. In general a standardized (some times referred to as a reduced) random 
variable is a random variable which has been transformed such that it has an expected value 
equal to zero and a variance equal to one, i.e. the random variable Y  defined by: 

X

X

XY μ
σ
−

=  (D.48)

is a standardized random variable. If the random variable X  follows the Normal distribution 
the random variable Y  is standard Normal distributed. In Figure D.7 the process of 
standardization is illustrated.  

Standard Normal

Normal

Xμ
Shift

Scaling

0
1

Y

Y

μ
σ

=
=

Standard Normal

Normal

Xμ
Shift

Scaling

0
1

Y

Y

μ
σ

=
=

 

Figure D.7 Illustration of the relationship between a Normal distributed random variable and a 
standard Normal distributed random variable.  

It is common practice to denote the cumulative distribution function for the standard Normal 
distribution by ( )xΦ  and the corresponding density function by ( )xϕ . These functions are 
broadly available in software packages such as MS Excel.  

The Lognormal Distribution 

A random variable Y  is said to be Lognormal distributed if the variable ln( )Z Y=  is Normal 
distributed. It thus follows that if an uncertain phenomenon can be assumed to originate from 
a multiplicative effect of several uncertain contributions then the probability distribution for 
the phenomenon can be assumed to be Lognormal distributed.  

The Lognormal distribution has the property that if: 

1

i

n
a

i
i

P Y
=

=∏  (D.49)

and all iY  are independent Lognormal random variables with parameters iλ , iζ  and 0iε =  as 
given in Table 4.2 then also P  is Lognormal with parameters: 
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1

n

P i i
i

aλ λ
=

=∑  (D.50) 

2 2 2

1

n

P i i
i

aζ ζ
=

=∑  (D.51) 

D.4  Stochastic Processes and Extremes 
Random quantities may be “time variant” in the sense that they take on new realisations at 
new trials or at new times. If the new realizations of the time variant random quantity occur at 
discrete times and take on discrete realizations the random quantity is usually denoted a 
random sequence. Well known examples hereof are series of throws of dices - more 
engineering relevant examples are e.g. flooding events. If the realizations of the time variant 
quantity occur continuously in time and take on continuous realizations the random quantity 
is usually denoted a random process or stochastic process. Examples hereof are the wind 
velocity, wave heights, snowfall and water levels.  

In some cases random sequences and random processes may be represented in a given 
problem context in terms of random variables e.g. for the modelling of the “point in time” 
value of the intensity of the wind velocity, or the maximum (extreme) wind velocity during 
one year. However, in many cases this is not possible and then it is necessary to model the 
uncertain phenomena by a random process. In the following first an important type of random 
sequence will be introduced, namely the sequence of Bernoulli trials from which the Binomial 
distribution has been derived. Thereafter a description of the Poisson counting process is 
given and finally the continuous Normal or Gaussian processes are described. It should be 
noted that numerous other types of random processes have been suggested in the literature of 
which most have been derived from the mentioned. 

Random Sequences – Bernoulli Trials 

A sequence of experiments with only two possible mutually exclusive outcomes is called a 
sequence of Bernoulli trials. Typically the two possible events of a Bernoulli trial are referred 
to as a success or a failure. If it is assumed that the probability of success of a Bernoulli trial 
is constant equal to p  then the probability density of Y  successes in n  trials ( )Yp y  i.e. the 
Binomial distribution (or sometimes denoted ( , )B n p ) can be shown to be equal to: 

( ) (1 ) ,      0 1 2y n y
Y

n
p y p p y , , ...n

y
−⎛ ⎞

= − =⎜ ⎟
⎝ ⎠

 (D.52)

where 
n
y

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is the so-called binomial operator defined as: 
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!
!( )!

n n
y y n y

⎛ ⎞
=⎜ ⎟ −⎝ ⎠

 (D.53)

The cummulative distribution function for Y  is thus given as: 

0
( ) (1 ) ,       0 1 2

y
i n i

Y
i

n
P y p p y , , ,...n

i
−

=

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
∑  (D.54)

In Figure D.8 some examples of the Binomial distribution are shown for 5n = . 
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Figure D.8: Binomial distribution for p = 0.15 and p = 0.50, respectively. 

The expected value and the variance of Y , i.e. [ ]E Y and [ ]Var Y  can be shown to be given as: 

[ ]E Y np=  (D.55) 

[ ] (1 )Var Y np p= −  (D.56) 

It is often of significant interest to assess the statistical characteristics of the random “time” or 
random number of trials n  until the first success occurs. The probability density of this event, 
provided that the trials are independent, is given by the so-called Geometric distribution: 

1( ) (1 )n
Np n p p −= −  (D.57) 

and the corresponding cumulative distribution function by: 

1

1
( ) (1 ) 1 (1 )

n
i n

N
i

P n p p p−

=

= − = − −∑  (D.58) 

The mean value and the variance of the Geometric distribution are given by: 

[ ] 1E N
p

=  (D.59) 
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[ ] 2

1 pVar N
p
−

=  (D.60) 

Especially the result given in Equation (D.59) is of practical value as it gives the average 
“time” until success. If p  is the annual probability of an extreme rainfall exceeding the 
capacity of a reservoir it means that in average such an event will occur with a return period 
of 1/ p  years. 
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7th Lecture 

Aim of the present lecture 
The aim of the present lecture is to provide an understanding on how to model events 
occurring discretely in time and to describe these probabilistically. In addition continuous 
random processes are introduced and their main characteristics are provided. Finally extreme 
events and their modelling are introduced and the concept of return period is explained. On 
the basis of the lecture it is expected that the students should acquire knowledge and skills in 
regard to: 

• What is a simple Poisson process and for what may it be applied? 

• Which are the properties which must be fulfilled before we can assume a Poisson process? 

• What does homogeneity refer to for a Poisson process? 

• According to what distribution can the time between realizations of a Poisson process be 
modelled? 

• Which distribution does the sum of independent exponentially distributed variables follow 
and for what can this distribution be applied?   

• What is a continuous random process? 

• How to characterize a Normal process? 

• What does stationarity mean and how is it defined 

• What is an extreme value and what is required to model it probabilistically? 

• Which are the different types of extreme value distributions? 

• How are extreme value models and return periods related? 
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The Poisson Counting Process 

The most commonly applied family of discrete processes in structural reliability are the 
Poisson processes. Due to the fact that Poisson processes have found applications in many 
different types of engineering problems a large number of different variants of Poisson 
processes has evolved. In general the process ( )N t  denoting the number of points in the 
interval [[0;t is called a simple Poisson process if it satisfies the following conditions: 

• The probability of one event in the interval [[ ;t t t+ Δ is asymptotically proportional to the 

length of the interval tΔ . 

• The probability of more than one event in the interval [[ ;t t t+ Δ is a function of a higher 

order term of tΔ  for 0tΔ → . 

• Events in disjoint intervals are mutually independent. 

The Poisson process may be defined completely by its intensity ( )tν : 

0

1( ) lim
t

t
t

ν
Δ →

=
Δ

P  (one event in [[ ;t t t+ Δ ) (D.61)

If ( )tν  is constant in time the Poisson process is said to be homogeneous, otherwise it is 
inhomogeneous.  

In general the probability of n  events in the interval [0; [t of a Poisson process with intensity 
( )tν  can be shown to be given as: 

( ) 0

0

( )
exp ( )

!

nt

t

n

d
P t d

n

ν τ τ
ν τ τ

⎛ ⎞
⎜ ⎟

⎛ ⎞⎝ ⎠= −⎜ ⎟
⎝ ⎠

∫
∫  

(D.62)

with mean value [ ]( )E N t  and variance [ ]( )Var N t : 

[ ] [ ]
0

( ) ( ) ( )
t

E N t Var N t dν τ τ= = ∫  (D.63)

The probability of no events in the interval [0; [t i.e. 0 ( )P t  is especially interesting considering 
reliability problems. This probability may be determined directly from Equation (D.62) as: 

( )0
0

exp ( )
t

P t dν τ τ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠
∫  (D.64)

implying that the time till and between events is Exponential distributed. 
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From Equation (D.64) the cumulative distribution function of the waiting time till the first 
event 1T , i.e. 

1 1( )TF t  may be straightforwardly derived. Recognising that the probability of 

1T t>  is 0 ( )P t  there is: 

( )
1

1 1
0

1- exp ( )
t

TF t dν τ τ
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠
∫  (D.65)

Consider now the sum of n  independent and exponential distributed waiting times T given as: 

1 2 ... nT T T T= + + +  (D.66)

It can be shown by repeated application of the result on the probability distribution for the 
sum of two random variables (see Equation (D.34) ) that T  is Gamma distributed: 

( -1)( ) exp( )( )
( 1)!

n

T
t tf t

n
ν ν ν−

=
−

 (D.67)

Continuous Random Processes 

A random process ( )X t  is as mentioned a random function of time meaning that for any 
point in time the value of ( )X t  is a random variable. A realisation of a random process (e.g. 

water level variation) is illustrated in Figure D.9. 
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Figure D.9: Realization of the water level variation as function of time. 

In accordance with the definition of the mean value of a random variable the mean value of all 
the possible realisations of the stochastic process at time t is given by: 

( ) ( ; )X Xt x f x t dxμ
∞

−∞

= ∫  (D.68)

The correlation between all the possible realisations at two points in time 1t  and 2t  is 
described through the so-called autocorrelation function 1 2( , )XXR t t . Auto means that the 
function refers to only one realisation. The autocorrelation function is defined by: 
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[ ]1 2 1 2 1 2 1 2 1 2 1 2( , ) ( ) ( ) ( , ; , )XX XXR t t E X t X t x x f x x t t dx dx
∞ ∞

−∞ −∞

= = ∫ ∫  (D.69)

The auto-covariance function is defined as: 

[ ]1 2 1 1 2 2

1 1 2 2 1 2 1 2 1 2

( , ) ( ( ) ( ))( ( ) ( ))

( ( )) ( ( )) ( , ; , )

XX X X

X X XX

C t t E X t t X t t

x t x t f x x t t dx dx

μ μ

μ μ
∞ ∞

−∞ −∞

= − −

= − −∫ ∫
 (D.70)

for 1 2t t t= =  the autocovariance function becomes the covariance function: 

2 2( ) ( , ) ( , ) ( )X XX XX Xt C t t R t t tσ μ= = −  (D.71)

where ( )X tσ  is the standard deviation function.  

The above definitions for the scalar process ( )X t  may be extended to cover also vector valued 
processes 1 2( ) ( ( ), ( ),..., ( ))T

nt X t X t X t=X  having covariance functions 

1 2cov ( ), ( )
i jX X i jC X t X t⎡ ⎤= ⎣ ⎦ . For i j=  these become the auto-covariance functions and when 

i j≠  these are termed the cross-covariance functions. Finally the correlation function may be 
defined as: 

1 2
1 2

1 2

cov ( ), ( )
( ), ( )

( ) ( )
i j

i j
i j

X X

X t X t
X t X t

t t
ρ

σ σ

⎡ ⎤⎣ ⎦⎡ ⎤ =⎣ ⎦  (D.72)

Typically the correlation function is an exponentially decaying function in time. 

Having defined the mean value function and the cross-correlation function for the stochastic 
process ( )X t  the probability that the process remains within a certain safe domain D  in the 
time interval [ ]0;t  may be evaluated by: 

( ) 1- ( ( ) 0 (0) ) ( (0) )fP t P N t X D P X D= = ∈ ∈  (D.73)

where N(t) is the number of out-crossings of the random process out of the domain D  in the 
time interval[ ]0, t .  

Stationarity and Ergodicity 

When the mean value function ( )X tμ and the autocorrelation function ( )XXR t  of a stochastic 
process ( )X t  do not depend on time the process is said to be weakly stationary. Only if all the 
moments of a random process are independent of time the random process is said to be strictly 
stationary.  
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A consequence of stationarity is that the autocovariance functions and autocorrelation 
function only depend on the time difference 1 2t tτ = − . In this case Equation (D.69) may be 
written as: 

[ ]( ) ( ) ( )XXR E X t X tτ τ= +  (D.74)

It should be noted that for weakly stationary Normal stochastic processes the requirements for 
strict stationarity are automatically fulfilled as the Normal distribution function is completely 
defined by the first two moments. 

Stationarity in principle implies that the process cannot start or stop, however, for practical 
purposes this requirement may be relaxed if the process is considered at a sufficient time after 
its start and/or before its end. Also stationarity may be assumed even for slowly varying 
stochastic processes if sufficiently short time intervals are considered. 

If in addition to stationarity the mean value function and the autocorrelation function of a 
stochastic process may be defined by a time average over one realisation of the stochastic 
process the process is said to be weakly ergodic. If all moments of the process may be defined 
in this way the process is said to be strictly ergodic. 

The assumption of ergodicity is especially important for the estimation of the statistical 
characteristics of stochastic processes when only one (or a few sufficiently long) realisation of 
the process is available. In practice ergodicity is in such cases often assumed unless of course 
evidence indicates the contrary. 

Statistical Assessment of Extreme Values 

In risk and reliability assessments extreme values (small and large) of random processes in a 
specified reference period are often of special interest. This is e.g. the case when considering 
the maximum sea water level, maximum wave heights, minimum ground water reservoir level, 
maximum wind pressures, strength of weakest link systems, maximum snow loads, etc. 

For continuous time-varying loads, which can be described by a scalar, i.e. the water level or 
the wind pressure, one can define a number of related probability distributions. Often the 
simplest, namely the “arbitrary point in time”, distribution is considered. 

If ( )x t∗  is a realisation of a single time-varying load at time t∗  then ( )XF x  is the arbitrary 
point in time cumulative distribution function of ( )X t  defined by: 

( ( ) 0)XF P X t∗= ≤  (D.75)

In Figure D.10 first observations of half yearly maximum values of wind speeds are plotted 
together with histograms showing the corresponding sample frequency distributions. In the 
figure also the equivalent presentations are provided for observations corresponding to 
maximums observed over periods of one and five years.  
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From Figure D.10 it is seen that there is a clear tendency that the mean value of the sample 
frequency histograms increase for increasing length of the considered period. At the same 
time the standard deviation is seen to be decreasing.   

For practical purposes the observations of half yearly maxima may be assumed to be 
statistically independent and provide the basis (random “half yearly” point in time model) for 
the further modelling of the statistical characteristics of extremes for longer periods by 
extreme value considerations. 

 

Figure D.10: Time series and corresponding sample frequency histograms of recorded half yearly, 
annual and five year maximum observed wind velocities. 

In the following some results are given concerning the extreme events of trials of random 
variables and random processes, see also Madsen et al. (1986) and Benjamin and Cornell 
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(1971). Taking basis in the tail behaviour of cumulative distribution functions asymptotic 
results are given leading to the so-called extreme value distributions. 

Extreme Value Distributions 

When extreme events are of interest the arbitrary point in time distribution of the load variable 
is not of immediate relevance but rather the distribution of the maximal values of the 
considered quantity over a given reference period.  

If the random process ( )X t  may be assumed to be ergodic the distribution of the largest 
extreme in a reference period T, max

, ( )X TF x can be thought of as being generated by sampling 
values of the maximal realisation maxx from successive reference periods T . If the values of 

maxx  are represented by the random variable Y , the cumulative distribution function ( )YF y  is 
the cumulative distribution function of the extreme maximum realisation corresponding to the 
considered reference period T . 

In the same way the cumulative distribution function of the largest extreme in a period of nT , 
max

, ( )X nTF x , (with n  being an integer) may be determined from the cumulative distribution 

function of the largest extreme in the period T, max
, ( )X TF x , by: 

max max
, ,( ) ( )n

X nT X TF x F x=  (D.76)

which follows from the multiplication law for independent events. The corresponding 
probability density function may be established by differentiation of Equation (D.76) yielding: 

max max 1 max
, , ,( )  ( ) ( )n

X nT X T X Tf x n F x f x−=  (D.77)

In Figure D.11 the case of a Normal distribution with mean value equal to 10 and standard 
deviation equal to 3 is illustrated for increasing n. 
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Figure D.11: Normal extreme value probability density functions. 
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Similarly to the derivation of Equation (D.76) the cumulative distribution function for the 
extreme minimum value in a considered reference period T, min

, ( )X nTF x may be found as: 

min min
, ,( ) 1 (1 ( ))n

X nT X TF x F x= − −  (D.78)

Subject to the assumption that the considered process is ergodic it can be shown that the 
cumulative function for an extreme event max

, ( )X nTF x  converges asymptotically (as the reference 
period nT  increases) to one of three types of extreme value distributions, i.e. type I, type II or 
type III. To which type the distribution converges depends only on the tail behaviour (upper 
or lower) of the considered random variable generating the extremes, i.e. max

, ( )X TF x . In the 

following the three types or extreme value distributions will be introduced and it will be 
discussed under what conditions they may be assumed. In Table D.2 the definition of the 
extreme value probability distributions and their parameters and moments is summarised. 

Type I Extreme Maximum Value Distribution – Gumbel max 

For upwards unbounded distribution functions ( )XF x  where the upper tail falls off in an 
exponential manner such as it is the case for the exponential function, the Normal distribution 
and the Gamma distribution the cumulative distribution of extremes in the reference period T  
i.e. max

, ( )X TF x has the following form: 

max
, ( ) exp( exp( ( )))X TF x x uα= − − −  (D.79)

with corresponding probability density function: 

max
, ( ) exp( ( ) exp( ( )))X Tf x x u x uα α α= − − − − −  (D.80)

which is also denoted the Gumbel distribution for extreme maxima. The mean value and the 
standard deviation of the Gumbel distribution may be related to the parameters u  and α  as: 

max

max

0.577216

6

T

T

X

X

u uγμ
α α

πσ
α

= + = +

=
 (D.81)

where γ  is Euler’s constant.  

The Gumbel distribution has the useful property that the standard deviation is independent of 
the considered reference period, i.e. max max

nT TX X
σ σ= and that the mean value max

nTX
μ  depends on n  

in the following simple way: 

max max max

6 ln( )
nT T TX X X

nμ μ σ
π

= +  (D.82)
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Finally by manipulation of Equation (D.79) it can be shown, by utilising a Taylor expansion 
to the first order of ln( )p  in 1p = , that the characteristic value cx  corresponding to an annual 
exceedance probability of p  and corresponding return period 1/RT p=  for a Gumbel max 
distribution for large return periods can be written as: 

1 ln( )c Rx u T
α

≈ +  (D.83)

which shows that the characteristic value, a typical engineering decision parameter, increases 
with the logarithm of the considered return period.  

Type I Extreme Minimum Value Distribution – Gumbel min 

In case that the cumulative distribution function ( )XF x  is downwards unbounded and the 
lower tail falls off in an exponential manner, symmetry considerations lead to a cumulative 
distribution function for the extreme minimum min

, ( )X TF x  within the reference period T  of the 

following form: 

min
, ( ) 1 exp( exp( ( )))X TF x x uα= − − −  (D.84)

with corresponding probability density function: 

min
, ( ) exp( ( ) exp( ( )))X Tf x x u x uα α α= − − −  (D.85)

which is also denoted the Gumbel distribution for extreme minima. The mean value and the 
variance of the Gumbel distribution can be related to the parameters u  and α  as: 

min

min

0.577216

6

T

T

X

X

u uγμ
α α

πσ
α

= − = −

=
 (D.86)

Type II Extreme Maximum Value Distribution – Frechet max 

For cumulative distribution functions downwards limited at zero and upwards unlimited with 
a tail falling off in the form: 

1( ) 1
k

XF x
x

β ⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 (D.87)

the cumulative distribution function of extreme maxima in the reference period T  i.e. 
max

, ( )X TF x  has the following form: 
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max
, ( ) exp( )

k

X T
uF x
x

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (D.88)

with corresponding probability density function: 

1
max

, ( ) exp( )
k k

X T
k u uf x
u x x

+
⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (D.89)

which is also denoted the Frechet distribution for extreme maxima. The mean value and the 
variance of the Frechet distribution can be related to the parameters u  and k  as: 

max

max
2 2 2

1(1 )

2 1(1 ) (1 )

T

T

X

X

u
k

u
k k

μ

σ

= Γ −

⎡ ⎤= Γ − −Γ −⎢ ⎥⎣ ⎦

 (D.90) 

where it is noticed that the mean value only exists for 1k >  and the standard deviation only 
exist for 2k > . In general it can be shown that the i’th moment of the Frechet distribution 
exists only when k i> . 

Type III Extreme Minimum Value Distribution – Weibull min 

Finally in the case where the cumulative distribution function ( )XF x  is downwards limited at 
ε  and the lower tail falls off towards ε  in the form: 

( ) ( )kF x c x ε= −  (D.91)

leads to a cumulative distribution function for the extreme minimum min
, ( )X TF x  within the 

reference period T  of the following form: 

min
, ( ) 1 exp

k

X T
xF x
u

ε
ε

⎛ ⎞−⎛ ⎞= − −⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
 (D.92)

with corresponding probability density function: 

1
min

, ( ) exp
k k

X T
k x xf x

u u u
ε ε

ε ε ε

− ⎛ ⎞− −⎛ ⎞ ⎛ ⎞= −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− − −⎝ ⎠ ⎝ ⎠⎝ ⎠
 (D.93)

which is also denoted the Weibull distribution for extreme minima. The mean value and the 
variance of the Weibull distribution can be related to the parameters u , k  and ε  as: 

min

min
2 2 2

1( ) (1 )

2 1( ) (1 ) (1 )

T

T

X

X

u
k

u
k k

μ ε ε

σ ε

= + − Γ +

⎡ ⎤= − Γ + −Γ +⎢ ⎥⎣ ⎦

 (D.94) 
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Distribution type Parameters Moments 

Extreme Type I  

Gumbel max 

x−∞ ≤ ≤ ∞  

( ) exp( ( ) exp( ( )))Xf x x u x uα α α= − − − − −

 

( ) exp( exp( ( )))XF x x uα= − − −  

 

 

0
u
a >

 

0.577216uμ
α

= +  

6
πσ

α
=  

Extreme Type I 

Gumbel min 

x−∞ ≤ ≤ ∞  

( ) exp( ( ) exp( ( )))Xf x x u x uα α α= − − −  

( ) 1 exp( exp( ( )))XF x x uα= − − −  

 

0
u
a >

 

0.577216uμ
α

= −  

6
πσ

α
=  

Extreme Type II 

Frechet max 
,   , 0x u kε ≤ ≤ ∞ >  

1

( ) exp
k k

X
k u uf x

u x x
ε ε

ε ε ε

+ ⎛ ⎞− −⎛ ⎞ ⎛ ⎞= −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− − −⎝ ⎠ ⎝ ⎠⎝ ⎠
 

( ) exp
k

X
uF x
x

ε
ε

⎛ ⎞−⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
 

 
0
0

u
k
ε

>
>  

1( ) 1 ,  1u k
k

μ ε ε ⎛ ⎞= + − Γ − >⎜ ⎟
⎝ ⎠

 

2

( )

2 11 1 ,  2

u

k
k k

σ ε= −

⎛ ⎞ ⎛ ⎞Γ − −Γ − >⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

Extreme Type III 

Weibull min 

,   , 0x u kε ≤ ≤ ∞ >  
1

( ) exp
k k

X
k x xf x

u u u
ε ε

ε ε ε

− ⎛ ⎞− −⎛ ⎞ ⎛ ⎞= −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− − −⎝ ⎠ ⎝ ⎠⎝ ⎠
 

( ) 1 exp
k

X
xF x
u

ε
ε

⎛ ⎞−⎛ ⎞= − −⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
 

 

 

0
0

u
k
ε

>
>  

1( ) 1u
k

μ ε ε ⎛ ⎞= + − Γ +⎜ ⎟
⎝ ⎠

 

22 1( ) 1 1u
k k

σ ε ⎛ ⎞ ⎛ ⎞= − Γ + −Γ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

Table D.2: Probability distributions, Schneider (1994). 
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Return Period for Extreme Events 

The return period RT  for an extreme event corresponding to x may be defined by: 

max
,

1
(1 ( ))R

X T

T nT
F

T
x

= =
−

 (D.95)

where T  is the reference period for the cumulative distribution function of the extreme events 
max

, ( )X TF x . If as an example the annual probability of an extreme load event is 0.02 the return 
period for this load event is 50 years. 

Self Assessment Questions/Exercises 
D.1 What types of uncertainties may be distinguished and how do these depend on the 

time and scale of modelling? 

D.2 What is understood by the terms aleatory and epistemic uncertainties? 

D.3 What is meant by the term “continuous random variable”? 

D.4 Using the properties of the expectation operator how are the following notations may 
be rewritten? (Note that  and a b  are constants and X  is a random variable)  

 a. [ ]E a bX+   b. [ ]Var a bX+  

D.5 Write down the names of the axes of the probability density and the cumulative 
distribution functions of the random variable X  illustrated in the following. Identify 
the locations of the mean, the mode and the median in the illustration of the 
probability density function Show also the value of the median in the illustration of 
the cumulative distribution function.  

 

Figure D.12.: Illustration of a probability density function. 
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Figure D.13.: Illustration of a cumulative distribution function. 

D.6 What is stated by the central limit theorem? 

D.7 What is a standardized random variable and how is it defined?.  

D.8 What is a Bernoulli trial and what does it describe? 

D.9 What is a Poisson process and for what may it be applied? 

D.10 The probability density function of a continuous random variable X , defined in the 
interval [ ]0 10, , is illustrated in the following diagram. Calculate the probability that 

X  may exceed the value of 5. 
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D.11 It is given that the operational life (until breakdown) T  of a diesel engine follows an 

exponential distribution, ( ) 1 t
TF t e λ−= − , with parameter λ  and mean value, 

1/Tμ λ= , equal to 10 years. Calculate the probability that the engine breaks down 
within 2 years after placed in operation. 

D.12 In a city there are on average 5 snowfalls a year. Assume that the occurrence of 
snowfalls follows a Poisson process. The number of snowfalls in t  years, X , is 

described by the discrete cumulative distribution function ( )( )
!

k
ttP X k e

k
νν −= =  and 

with annual mean rate ν . How large is the probability of no snowfall in the next year? 
How large is the probability of exactly 5 snowfalls in the next year?  
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MODULE E – ESTIMATION AND MODEL 
BUILDING 

 

8th Lecture 

Aim of the present lecture  

The aim of the present lecture is to provide an overview of how to establish probabilistic 
models and to introduce the basic tools for assessing the validity of model assumptions. It is 
further explained how the statistical properties of sample characteristics depend on the sample 
size, i.e. the amount of data available and in this way the quantification of statistical 
uncertainty is addressed.  

On the basis of the lecture it is expected that the students should acquire knowledge and skills 
in regard to: 

• Which are the steps and constituents in establishing a probabilistic model? 

• Which are the distributions function applied in sample statistics and which are the 
principles on the basis of which they are derived? 

• What does the degree of freedom for a t-distributed random variable refer to? 

• What distribution does a t-distributed random variable converge towards for increasing 
number of degree of freedom?  

• What does it mean that the Chi-Square distribution is regenerative? 

• How is the Chi-distribution related to the law of Pythagoras or the evaluation of Euclidean 
norms?  

• How does the expected value of the sample mean depend on the number of samples? 

• How does the variance of the sample mean depend on the number of samples?  

• How may an unbiased estimator for the sample variance be established?  

• What is a confidence interval and how can it be established? 
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E.1  Introduction 
An important task in risk and reliability analysis is to establish probabilistic models for the 
further statistical treatment of uncertain variables. 

In the literature a large number of probabilistic models for load and resistance variables may 
be found. E.g. in the Probabilistic Model Code by the Joint Committee on Structural Safety 
(JCSS, 2001) where probabilistic models may be found for the description of the strength and 
stiffness characteristics of steel and concrete materials, soil characteristics and for the 
description of load and load effects covering many engineering application areas. However it 
is not always the case that an appropriate probabilistic model for the considered problem is 
available. Moreover in other engineering fields, such as in environmental engineering and 
hydrology, standardization of the probabilistic modelling is far less progressed. In such 
situations it is necessary that methodologies and tools are readily available for the statistical 
assessment of frequentistic information (e.g. observations and test results) and the formulation 
of probabilistic models of uncertain variables. 

In practice two situations may thus be distinguished namely, the situation where a new 
probabilistic model is formulated from the very beginning and the situation where an already 
existing probabilistic model is updated on the basis of new information, e.g. observations or 
experimental results. The formulation of probabilistic models may be based on data 
(frequentistic information) alone, but most often data are not available to the extent where this 
is possible. In such cases it is usually possible to base the model building on physical 
arguments, experience and judgement (subjective information). If also some data are available 
the subjective information may be combined with the frequentistic information and the 
resulting probabilistic model is in effect of a Bayesian nature.  

It should be emphasised that on the one hand the probabilistic model should aim for 
simplicity and, on the other hand the model should be accurate enough to allow for including 
important information collected during the lifetime of the considered technical system, and 
thereby facilitate the updating of the probabilistic model. In this way uncertainty models, 
which initially are based entirely on subjective information will, as new information is 
collected, eventually be based on objective information. 

In essence the model building process consists of five steps, namely:  

• Assessment and statistical quantification of the available data. 

• Selection of distribution function. 

• Estimation of distribution parameters. 

• Model verification. 

• Model updating. 

Typically the initial choice of the model i.e. underlying assumptions regarding distributions 
and parameters may be based mainly on subjective information whereas the assessment of the 
parameters of the distribution function and not least the verification of the models is 
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performed on the basis of the available data. The principle for establishing a probabilistic 
model is illustrated in Figure E.1. 

Subjective
- Physics
- Experience
- Judgement

Frequentistic
- Data
- Experience

Distribution family

Distribution parameters

Probabilistic model

 
Figure E.1: Illustration of the formulation of probabilistic models for uncertain variables. 

As the probabilistic models are based on both frequentistic information and subjective 
information these are Bayesian in nature. 

In the following only the probabilistic modelling of random variables will be considered, but 
the described approach applies with some extensions also to the probabilistic modelling of 
random processes and random fields.  

First some useful and necessary tools for the statistical analysis are introduced, including 
some special families of probability distributions together with the concept of hypothesis 
testing. After this the classical statistical theory of assessment of estimators is introduced 
including assessment of confidence and significance testing.  

Thereafter the problem of choosing an appropriate distribution function family is addressed, 
and the task of estimating the parameters of the selected distribution function is considered. 
Having established models for distributions and parameters, a statistical framework for the 
verification of such models is given including the classical goodness of fit tests.  

E.2  Probability Distributions in Statistics 
Throughout the classical statistical theory some distribution functions are repeatedly used for 
assessment and testing purposes. These include the important Chi-Square distribution, the 
Chi-distribution, the t-distribution and the F-distribution, which hereafter are briefly 
introduced in accordance with Benjamin and Cornell (1971). The distributions are all related 
to the Normal distribution and may be derived from this as shown in e.g. Benjamin and 
Cornell (1971). The numerical evaluation of the distributions may be performed using 
standard commercial spread sheets such as e.g. Microsoft Excel or tabulations as given in 
Appendix T. 
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The Chi-Square ( 2χ )- Distribution 

When , 1, 2,...,iX i n=  are standard Normal distributed independent random variables the sum 
of the squares of the random variables nY  i.e. : 

2

1

n

n i
i

Y X
=

=∑  (E.1)

is said to be Chi-Square distributed (some times written as 2χ -distributed) with probability 
density function: 

( / 2-1)

/ 2( ) exp(- / 2),               0
2 ( / 2)n

n
n

Y n n nn

yf y y y
n

= ≥
Γ

 (E.2)

with mean value 
nY nμ =  (also referred to as the degrees of freedom) and variance 2 2

nY nσ = . 

In Equation (E.2) ( )Γ ⋅  is the complete Gamma function defined by: 

- 1

0

( ) t xx e t dt
∞

−Γ = ∫  (E.3)

As it shall be seen later the Chi-Square distribution is often applied for assessing the statistical 
characteristics of squared errors but can also be applied in various engineering assessments 
involving squares of Normal distributed variables such as e.g. the drag component of wave 
and wind loads and kinetic energy components. 

The Chi-Square distribution is regenerative in the sense that the sum of two Chi-Square 
distributed variables i.e. 

1 2n nY Y+ is also Chi-Square distributed with 1 2n n+  degrees of 

freedom.  

From the additive character of the Chi-Square distribution (Equation (E.1)) it is seen from 
application of the central limit theorem that for sufficiently large n  the Chi-Square 
distribution converges towards a Normal distribution with mean value 

nY nμ =  and variance 
2 2
nY nσ = . 

The Chi ( χ )- Distribution 

When a random variable Z  is given as the square root of a Chi-Square distributed random 
variable nY , the variable Z  is said to follow a Chi-distribution (sometimes written as χ -
distributed) with probability density function: 

( 1)
2

/ 2 1( ) exp( / 2),                       0
2 ( / 2)

n

Z n

zf z z z
n

−

−= − ≥
Γ

 (E.4)

The mean value zμ  and the variance 2
zσ  are given by: 
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( 1) / 2
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μ
Γ +

=
Γ

 (E.5)

( )2
2

2

( 1) / 2
2

( / 2)z

n
n

n
σ

Γ +
= −

Γ
 (E.6)

The Chi-distribution is e.g. used for the assessment of the distances measured using the 
principles of Pythagoras or Euclidean norms, and for the assessment of the statistical 
characteristics of standard deviations.  

The t-Distribution 

A random variable S  defined by a standard Normal distributed random variable X  divided 
by the ratio of the square root of the sum of the squares of n  independent standard Normal 
random variables (i.e. a Chi-distributed random variable) to n , i.e.: 

2

1

n
n

i
i

X X nXS
ZY n

X n
=

= = =

∑
 

(E.7)

is said to be a t-distributed random variable S  with n degrees of freedom and with 
probability density function given as: 

( 1) / 22(( 1) / 2)( ) 1                    -  
  ( / 2)

n

S
n sf s s

nn nπ

− +
⎛ ⎞Γ +

= + ∞ ≤ ≤ ∞⎜ ⎟
Γ ⎝ ⎠

 (E.8)

with zero mean and variance 2
Sσ  given by: 

2

2S
n

n
σ =

−
 (E.9)

As a consequence of the central limit theorem, t-distributed random variables converge to 
standard Normal distributed random variables for large number of degrees of freedom. 

The F-Distribution 

A random variable Q  defined as the ratio between two Chi-Square distributed random 
variables 

1nY  and 
2nY , i.e.: 

 

1

2

n

n

Y
Q

Y
=  (E.10)
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is said to be F-distributed with 1 2( , )n n  degrees of freedom and with probability density 
function given as: 

1 1 2( 2) / 2 ( ) / 2
1 2

1 2

(( ) / 2) (1 )( ) ,                    0
( / 2) ( / 2)

n n n

Q
n n q qf q q

n n

− − +Γ + +
= ≥

Γ Γ
 (E.11)

and mean value and variance given by: 

2
2

2

,                                     2
2Q

n n
n

μ = >
−

 (E.12)

2
2 2 1 2

22
1 2 2

2 ( 2) ,                   4
( 2) ( 4)Q
n n n n

n n n
σ + −

= >
− −

 (E.13)

The F-distribution as well as the t-distribution are mostly applied in the context of statistical 
procedures as shall be seen later in Section E.4. 

E.3  Estimators for Sample Descriptors – Sample Statistics 
When frequentistic information becomes available e.g. in the form of experimental results, a 
first step is often to try to assess the data simply as they are, without too many assumptions 
regarding the probabilistic characteristic of the mechanism which generated them. Such an 
assessment typically concerns the numerical summaries as described in Module C, e.g. the 
sample moments, but could in principle be any sample characteristic of the observed data 
which is found of interest in a given situation. In statistical terms such characteristics are 
called sample statistics, and in the following the statistical characteristics of such sample 
statistics will be considered in some detail. To this end, the uncertainty associated with 
parameter estimators will be assessed and confidence intervals on the estimators will be 
introduced. It should be mentioned that some special sample statistics associated with extreme 
values are considered directly in the Section on extreme values, i.e. Section D.3. Finally 
significance testing is introduced as a means for evaluating the significance of the variability 
of statistical data. 

Statistical Characteristics of the Sample Average  

Consider as an example the case where the permeability of a particular soil is of interest in an 
engineering decision problem. Due to various effects such as inherent natural variability in the 
soil composition and the consolidation, the permeability of the considered soil is associated 
with significant uncertainty. As an engineering model it is assumed that this uncertainty can 
be taken into account in the formulation of the decision problem by modelling the 
permeability by a random variable X  with distribution function ( ; )XF x p . Having selected the 
family of distribution functions, i.e. the distribution function ( )XF x , it is still needed to 
estimate the parameters p  and as will be seen in the following sections this can be done by 
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e.g. the method of moments or the maximum likelihood method, provided that experiment 
results 1 2ˆ ˆ ˆ ˆ( , ,..., )T

nx x x=x  are made available.  

In order to better appreciate the uncertainty associated with statistical characteristics such as 
distribution parametersp , the statistical properties of these are now considered. It is assumed 
that experiment results of yet unknown values are collected in the vector X . If the 
experiments are conducted independently, the realizations can be modelled as independent 
random variables ,   1, 2,...,iX i n=  with cumulative distribution functions 

( ; ) ( ; ), 1, 2,...,
iX i XF x F x i n= =p p . Based on the probabilistic model of the realizations 
,   1, 2,...,iX i n=  it is possible to assess the statistical characteristics of the unknown sample 

mean X  and the unknown sample variance 2S  given by: 

1

1 n

i
i

X X
n =

= ∑  (E.14)

2 2

1

1 ( )
n

i
i

S X X
n =

= −∑  (E.15)

The sample mean X  and the sample variance 2S  are random variables given in terms of 
functions of the experiment outcomes ,   1, 2,..iX i n= . Such functions are in general called 
sample statistics and include as mentioned previously any characteristic of the considered 
distribution of interest. 

In order to assess the uncertainty by which the sample mean X  is associated it is interesting 
to consider its expected value E X⎡ ⎤⎣ ⎦  and variance Var X⎡ ⎤⎣ ⎦ . The expected value is given as: 

[ ]
1 1

1 1 1n n

i i X X
i i

E X E X E X n
n n n

μ μ
= =

⎡ ⎤⎡ ⎤ = = = =⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑  (E.16)

which shows that the expected value of the sample mean indeed is equal to the expected value 
of the underlying random variable, in this case the soil permeability. It was expected that the 
sample mean is a good estimator for the expected value of a random variable. However, due 
to the fact that the sample mean is a realization of a random variable, it is clear that the 
sample mean will normally not turn out to be exactly equal to the expected value of the 
underlying random variable.  

The variability of the sample mean around its expected value can be assessed through the 
variance of the sample mean Var X⎡ ⎤⎣ ⎦  given by: 

2 2( ) ( )XVar X E X E X E Xμ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦  (E.17)

Equation (E.17) may be rewritten as: 
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[ ]2 2
1 1 1

2 2
2

1

1 1 1

1 1            ( )  

n n n

i i i
i i i

n

i X X
i

Var X Var X Var X Var X
n n n

E X  
n n

μ σ

= = =

=

⎡ ⎤ ⎡ ⎤⎡ ⎤ = = =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤= − =⎣ ⎦

∑ ∑ ∑

∑
 (E.18)

from which it is seen that the variance of the sample mean Var X⎡ ⎤⎣ ⎦  decreases linearly as a 

function of the number of samples. Considering the probability that the sample mean X  will 
lie within a certain range around the expected value of X  i.e. X Xkμ σ± it is seen from 
Equation (E.18) that the band width factor k  may be reduced by a factor of 2 by increasing 
the number of experiments by a factor of 4, to reduce k  by a factor of 4 the number of 
experiments must be increased by a factor of 16. It is seen that it becomes increasingly 
expensive in terms of experiments to reduce the uncertainty associated with the sample mean. 
In Figure E.2 the probability density function of a sample mean is illustrated as a function of 
the number of experiments n  used to assess it. 

n = 1
n = 2
n = 4
n = 16

Pr
ob
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en
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(
)

Xf
x

x
XE X⎡ ⎤ =⎣ ⎦  

Figure E.2:  Illustration of the probability density function of a sample average for different sample 
sizes n. 

Statistical Characteristics of the Sample Variance  

Whereas the sample average is of interest as an estimator of the mean value Xμ  of a random 
variable, the sample variance 2S  is of interest as an estimator of the variance 2

Xσ . The 
expected value of the sample variance is determined by taking the expectation of the sample 
variance as given by Equation (E.15), i.e.: 
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 (E.19)

In the step going from the third line to the fourth line in Equation (E.19) the assumption of 
independence has been used, i.e. using that 0i jE X X⎡ ⎤ =⎣ ⎦  for i j≠ . From Equation (E.19) it is 

noticed that the expected value of the sample variance is different from the variance of the 
underlying random variable. Even though this difference is small for large sample sizes n  this 
is disturbing and essentially means that the estimator 2S  is biased, i.e. its mean value is 
different from 2

Xσ . An estimator of the variance 2
Xσ  which is unbiased 2

unbiasedS  may, however, 
easily be constructed from 2S  as: 

2 2 2

1

1 ( )
1 1

n

unbiased i
i

nS S X X
n n =

= = −
− − ∑  (E.20)

It is noted (see later in Section E.6) that the biased estimator 2S  for the variance is applied in 
both the methods of moments and the maximum likelihood method.  

The goodness of an estimator cannot, however, be judged alone on the basis of whether or not 
it is biased. Another characteristic of estimators commonly used is the efficiency, i.e. the 
mean square error, associated with an estimator. If the estimator 2S  of the parameter 2

Xσ  is 
considered, the mean square error is given by: 

2 2 2( )XE S σ⎡ ⎤−⎣ ⎦  (E.21)

The efficiency of the estimator 2S  can be shown to be better than the efficiency of the 
estimator 2

unbiasedS  and then the choice stands between a less efficient but unbiased estimator 
or a more efficient but biased estimator.  

A number of other criteria such as invariance, consistency, sufficiency and robustness may be 
considered when comparing estimators. These characteristics will not be considered here but 
it is simply noted that the maximum likelihood method estimators in general have equally 
good or better characteristics than any other estimator. For more details the reader is referred 
to Benjamin and Cornell (1971) where also further references to specialized literature are 
provided. 
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Confidence Intervals on Estimators 

As seen in the previous, estimators are associated with statistical uncertainty and thus it is 
essential that this uncertainty is quantified and taken into account in the considered problem 
context. A classical approach for the quantification and the communication of this uncertainty 
is by means so-called confidence intervals. The 1-α  confidence interval on an estimate 
defines an interval within which the estimated parameter will occur with the predefined 
probability, with α  being the so called significance level.  

If the case is considered where the standard deviation Xσ  of an uncertain variable X  is 
known with certainty and the mean value is unknown, which could be the case e.g. for the 
yield stress of steel materials, then the so-called double sided and symmetrical 1 α−  
confidence interval on the mean value is given by:  

/ 2 / 2
- 11

X

X

XP k k

n

α α
μ α

σ

⎡ ⎤
⎢ ⎥
− < < = −⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (E.22) 

where n  is the number of samples planned for the estimation of the mean value. 

Considering the case of a Normal distributed yield stress of a mild construction steel, and 
assuming that the standard deviation of the yield stress is known equal to 20 MPa and the 
mean value is unknown, the 0.95 confidence interval of the mean value is given by: 

-1.96 1.96 1- 0.05120
XXP

n

μ
⎡ ⎤
⎢ ⎥
− < < =⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (E.23) 

where -1.96 and 1.96 are the simple lower and upper 2.5 percentile values of the standard 
Normal cumulative distribution function (see also table T.1) i.e. determined by: 

1
/ 2 1

2
kα

α− ⎛ ⎞= Φ −⎜ ⎟
⎝ ⎠

 (E.24)

where 1( )−Φ ⋅  is the inverse standard Normal cumulative distribution function. 

Assuming e.g. that 16 experiments are planned Equation (E.23) yields: 

9.8 9.8 0.95X XP Xμ μ⎡ ⎤− < < + =⎣ ⎦  (E.25)

which simply states that with 0.95 probability the sample average of the steel yield stress will 
lie within an interval of 9.8±  MPa of the true mean value Xμ . 

From Equation (E.22) it is seen that the confidence interval limits depend on α , n  and Xσ . 
Typically α  is chosen as 0.1, 0.05 and 0.01 in engineering applications. Narrow confidence 
intervals may be achieved by increasing the number of experiments, which on the other hand 
may be expensive to achieve and in some cases for practical reasons not even possible. 
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9th Lecture 

Aim of the present lecture 

The aim of the present lecture is to introduce the concept of testing for statistical significance. 
This concept is useful when it is attempted to draw conclusions in regard to the probabilistic 
characteristics (such as expected value and variance) on the basis of observed realizations of 
uncertain phenomena. It is explained how hypotheses related to the statistical properties of 
probabilistic models may be tested on the basis of data. Finally, also the problem of selecting 
appropriate probability distribution functions for the purpose of modelling uncertainties with 
basis in observations of uncertain phenomena is treated and it is shown how the concept of 
probability paper can provide a pragmatic basis for this.  

On the basis of the lecture it is expected that the students should acquire knowledge and skills 
in regard to: 

• What is a hypothesis and how may it be tested? 

• What is a null-hypothesis? 

• What is an alternate hypothesis? 

• What is a Type I error and what is a type II error?  

• What is the meaning of statistical significance? 

• How to perform tests of the mean and variance of a random variable? 

• How to derive conclusions on the statistical properties of two data sets? 

• What is a probability paper? 

• How to construct a probability paper? 

• In what way does a probability paper relate to a Quantile plot? 

• How to select a probability distribution to represent a random variable based on data? 

• In what regions of the probability paper is it especially important that the plotted quantiles 
fit a straight line? 
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E.4  Testing for Statistical Significance 
In practical engineering problems the engineer is often confronted with the challenge of 
deriving simple operational conclusions based on an often small set of data exhibiting a high 
degree of variability. An example of such a situation is the geotechnical engineer attempting 
by means of a limited number of “on site” vane tests to verify that an empirical soil strength 
model based on soil specimen laboratory tests is unbiased. Another example is the materials 
expert pursuing to verify, by analysis of the chloride content of drilled concrete cylinders 
samples, that the mean value of the surface concentration of chlorides on a concrete structure 
can be assumed equal to the value assumed in the design basis for the structure. Yet another 
kind of problem is the selection and/or verification of probabilistic models as shall be seen 
later in Section E.7. 

It is essential that the basis for conclusions in problems such as those outlined in the above are 
made consistently from case to case (and from engineer to engineer) and moreover that the 
variability of the observed data and the amount of data is taken appropriately into account. 
One approach which facilitates the support of such conclusions is the formulation and testing 
of hypothesis – hypothesis testing, which will be introduced in the following.  

Consider the example concerning the surface concentration of chlorides on a concrete 
structure. In the design basis for the structure it was assumed that the surface concentration of 
chlorides (measured in percentage of total concrete weight) would be 0.3%. Suppose now that 
the materials expert has studied the chloride contents of concrete cylinders taken from 10 
different locations of the considered structure. Even though the materials expert has collected 
a data set of 10 surface concentrations the observed mean value, also called the sample 
average X  (in general terms one of several possible sample statistics, i.e. functions of the 
tested or otherwise observed data) will in some cases be below and in some cases be above 
the true mean Xμ  of the surface chloride concentration. The question is if on the basis of the 
observed statistic it can be concluded that the sample average deviates statistically 
significantly from the assumed mean value. To accommodate for the solution of this problem 
hypothesis testing includes so-called operating rules describing how to achieve a conclusion, 
which provides a means for assessing the percentage α  of times where the achieved 
conclusions are wrong in one way or the other. 

The Hypothesis Testing Procedure 

Continuing with the example introduced in the forgoing, a first step is the formulation of the 
so-called null-hypothesis 0H  i.e. expressing that the true mean value Xμ  of the surface 
chloride concentration is equal to the assumed value of 0.3%. The next step is to formulate an 
operating rule on the basis of which the null-hypothesis can be either accepted or rejected 
given the test results. An operating rule could be to accept the null-hypothesis 0H  if the 
sample average X  of the surface chloride concentration is within the interval 0.3%±Δ  and 
otherwise to reject it. Rejecting the null-hypothesis implies accepting the so-called alternate 
hypothesis 1H  that the true mean value Xμ  is different from the assumed value. Typically the 
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value Δ  is selected such that the probability α  of the sample average X  being outside the 
interval given by Δ  is small, say 0.1.  

Two types of errors may occur, namely, rejecting the null-hypothesis 0H  when it is true or 
accepting it when it is false. These two different types of errors are referred to as Type I and 
Type II errors respectively. It is important to note that performing Type I as well as Type II 
errors may be associated with severe consequences. The selection of an appropriate value for 
α  should reflect this. A possible approach for the selection of α  is Bayesian decision 
analysis. The general principles of Bayesian decision analysis are introduced in Module G. 

In Summary the Procedure is: 

• Formulate a null-hypothesis 0H  expressing that the desired condition is fulfilled and 
formulate the alternate hypothesis 1H . Both hypotheses should be formulated in terms of a 
sample statistic. 

• Formulate an operating rule such that the formulated null-hypothesis 0H  may easily be 
either accepted or rejected on the basis of the observation of the sample statistic. 
Operating rules are typically formulated by means of a constantΔ .  

• Select a significance level α  for conducting the test (i.e. the probability by which Type I 
errors occur). This should be done with due considerations of the consequences of 
performing this type of error. 

• By statistical analysis of the sample statistic, identify the value of Δ  resulting in a 
probability α  of performing a Type I error.  

• Perform the planned testing, evaluate the corresponding sample statistic and check which 
hypothesis is supported by the experiment.  

• Provided that the null-hypothesis 0H  is not supported by the experiment it is classified as 
significant at the α -significance level and rejected. Otherwise it is accepted. 

In the following a selection of typical cases will be presented considering significance testing.  

Testing of the Mean with Known Variance 

The example of the surface concentration of chlorides on a concrete structure is considered 
again. Based on an extensive experience obtained from the assessment of many structures the 
variance of the chloride surface concentration is assumed to be known equal to 2 20.04Xσ = . 

The null hypothesis 0H  can be formulated as the true mean xμ  being equal to 0.3. The 
alternate hypothesis 1H  is then simply given by 0.3Xμ ≠ . The considered statistic is the 
sample average X  which may be assumed to be Normal distributed. The operating rule 
specifies that the null hypothesis 0H  should be accepted at the α -significance level if: 

0.3 0.3X−Δ ≤ ≤ + Δ  (E.26)
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where Δ  is determined such that the probability of X  being outside the interval is equal to α  
i.e.: 

( )0.3 0.3 1P X α−Δ ≤ ≤ + Δ = −  (E.27)

Choosing 10%α = , Δ  can be determined from Equation (E.27) as (see also Annex C): 

1

0.9 1 0.90.04 0.04 0.04 0.04
10 10 10 10

0.9 1 0.042 1 0.9 ( ) 1.6450.04 0.04 2 10
10 10

−

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ −Δ Δ Δ⎜ ⎟Φ −Φ = ⇒Φ − −Φ = ⇒⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟Δ Δ +

⇒ Φ − = ⇒ = Φ ⇒ Δ = ⋅⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (E.28) 

yielding Δ = 0.0208. If the observed sample average over 10 samples lies within the interval 
[ ]0.28;0.32 , the null hypothesis 0H  cannot be rejected at the 10%α =  significance level. 

Assuming that investigations of the material expert resulted in the following data set 
(0.33,0.32,0.25,0.31,0.28,0.27,0.29,0.3,0.27,0.28)Tx =  the sample average is equal to 
0.29x = . This is seen to be within the boundaries of the interval given by Δ  and the null 

hypothesis 0H  cannot be rejected. 

Testing of the Mean with Unknown Variance 

It is not always the case that the variance of a random variable is known and then the 
appropriate sample statistic is no longer the sample average X . In this case the following 
statistic should be used: 

- X

unbiased

XT S
n

μ
=  

(E.29)

which may be realized to be t-distributed with -1n  degrees of freedom (see e.g. Section E.2).  

Similarly to Equation (E.27) the determination of the critical value Δ  can be performed from  

( ) 1P T α−Δ ≤ ≤ Δ = −  (see also Annex C) (E.30)

yielding Δ = 1.83. If again the sample of the 10 values of the surface concentration of 
chlorides is considered, the unbiased sample variance is determined by: 

2

1

1 ( ) 0.025
( 1)

n

unbiased i
i

s x x
n =

= − =
− ∑  (E.31)
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whereby the t statistic becomes 

( )0.29 0.3 10
1.27

0.025
t

−
= = −   

which is seen to be within the interval given by Δ= 1.83. It may thus be concluded that the 
null hypothesis cannot be rejected. 

Testing of the Variance 

In some cases also the variance is of direct interest. Consider as an example the situation 
where it is attempted to reduce the variance 2

oldσ  of the fatigue life of welded joints by means 
of a new weld surface treatment. Full scale fatigue experiments on welded joints are typically 
very expensive and the effect of the surface treatment is attempted to be verified from a 
relatively small number of experiments n .  

For this case the null hypothesis 0H  is that the variance of the fatigue life of the welded joints 
with the new surface treatment is smaller than 2

oldσ  i.e. 2 2
new oldσ σ≤ . The alternate hypothesis 

1H  is then 2 2
new oldσ σ> . The test statistic is in this case the sample variance 2S  and the 

operating rule is to accept 0H  if 2S ≤ Δ  where Δ  can be determined from: 

2 1P S α⎡ ⎤≤ Δ = −⎣ ⎦  (E.32)

For a given sample size and a given family of distribution of the population, the statistic can 
easily be evaluated and the critical values Δ  determined for 2 2

new oldσ σ= , i.e. the largest value 
of 2

newσ  fulfilling the null hypothesis 0H . For instance, if the fatigue life times are Normal 
distributed or can be transformed into Normal distributed random variables, the statistic 

2 2 2/ oldD nS σ=  is seen to become Chi-Square distributed with n  degrees of freedom. After 
fatigue lives have been obtained from experiments the statistic may be evaluated and 
compared with Δ  and thereafter the null hypothesis 0H  can be either accepted or rejected. 

Test of Two or More Data Sets  

Often it is interesting to be able to compare two or more data sets to see e.g. if it can be 
assumed that their mean values or their variations can be assumed to be identical or 
alternatively different.  

In the following the two data sets ( )1 2ˆ ˆ ˆ ˆ, ,.., T
kx x x=x  and ( )1 2ˆ ˆ ˆ ˆ, ,.., T

ly y y=y  are considered. If it 

can be assumed that the random variables X  and Y  are Normal distributed with known 
variances equal to Xσ  and Yσ  then a test for equal mean values of X  and Y  can easily be 
performed by means of the statistic X Y−  which then is also Normal distributed with mean 
value -X Yμ : 

- X YX Yμ μ μ= −  (E.33)
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and variance 2
X Yσ − : 

2 2
2

-
X Y

X Y k l
σ σσ = +  (E.34)

where k and l  are the number of measurements of X and Y respectively. 

For this test the null hypothesis 0H  could be given as X Yμ μ≤  and the alternate hypothesis 

1H  consequently as X Yμ μ> . The operating rule in this case could be to accept 0H  provided 
that X Y− ≤ Δ . In this case the critical value Δ  is easily determined from: 

( ) 1P X Y α− ≤ Δ = −  (E.35)

which for α =10% implies that Δ  can be calculated from: 

2 2

1.28 X Y

k l
σ σ

Δ = +   (see Annex C) (E.36)

If both X  and Y  are Normal distributed a test for equal variances can be performed by 
consideration of the statistic T  given by: 

2
,

2
,

X unbiased

Y unbiased

S
T

S
=  (E.37)

which is seen to be the ratio between two Chi-Square distributed variables with k and l 
degrees of freedom respectively. The null hypothesis 0H  could be given as X Yσ σ=  and the 
alternate hypothesis consequently X Yσ σ> . The operating rule in this case could be to accept 

0H  provided that T ≤ Δ  where Δ  is determined from: 

( ) 1P T α≤ Δ = −  (E.38)

which can be solved by calculation of the F-distribution with k, l degrees of freedom, using 
e.g. Microsoft Excel.  

Finally also a test for zero correlation i.e. , 0X Yρ = is given here for the case that X  and Y  are 

jointly Normal distributed. In this case it can be shown that the statistic given by the sample 
correlation coefficient i.e.: 

1
,

( )( )
1

n

i i
i

X Y
X Y

X X Y Y
R

n S S
=

− −
=
∑

 (E.39)
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is related to the t-distribution. The null hypothesis 0H  may be given as , 0X Yρ =  and the 
alternate hypothesis 1H  as , 0X Yρ ≠ . The test statistic T  which is t-distributed with 2n −  

degrees of freedom is given by: 

,

2
,

2

1
X Y

X Y

R n
T

R

−
=

−
 (E.40)

The operating rule is to accept the null hypothesis 0H  provided that t−Δ ≤ ≤ Δ  where Δ  is 
determined from: 

( ) 1P T α−Δ ≤ ≤ Δ = −  (E.41)

e.g. using Microsoft Excel. 

Finally it should be noted that when more data sets are at hand that these may be compared 
pair wise.  

Some Remarks on Testing 

In the foregoing a number of different tests have been introduced for the assessment of 
observed data. As it is surely very clear by now such tests can be formulated in many different 
ways and conducted at different levels of significance α .  

It should be noted that the different ways for formulating the null hypothesis 0H  and the 
different choices of the significance level α  have impact on the probability of the Type I and 
Type II errors, respectively. The optimal choice is as already mentioned a decision problem 
which can be solved by considering a proper weighing of costs and benefits. This is also 
reflected in the way different organizations formulate their null hypothesis 0H . An 
organization buying goods from a producing organization tends to postulate that the quality of 
the goods is below a given criterion, unless it can be shown by testing to be statistically 
significantly above. This encourages the producing organization to attempt to reduce the 
variance of the quality of the produced goods. 

E.5  Selection of Probability Distributions 
In general the distribution function for a given random variable or stochastic process is not 
known and must thus be chosen on the basis of frequentistic information, physical arguments 
or a combination of both. 

A formal classical approach (described in details in Section E.7) for the identification of an 
appropriate distribution function on the basis of statistical evidence is to:  

• Postulate a hypothesis for the distribution family. 

• Estimate the parameters for the selected distribution on the basis of statistical data.  
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• Perform a statistical test to attempt to reject the hypothesis. 

If it is not possible to reject the hypothesis the selected distribution function may be 
considered to be appropriate for the modelling of the considered random variable. If the 
hypothesis is rejected a new hypothesis must be postulated and the process repeated. 

This procedure follows closely the classical frequentistic approach to statistical analysis. 
However, in many practical engineering applications this procedure has limited value. This 
not least due to the fact that the amount of available data most often is too limited to form the 
solid basis for a statistical test, but also because the available tests applied in situations with 
little frequentistic information may lead to the false conclusions. 

In practice it is, however, often the case that physical arguments can be formulated for the 
choice of distribution functions and statistical data are therefore merely used for the purpose 
of checking whether the anticipated distribution function is plausible. 

A practically applicable approach for the selection of the distribution function for the 
modelling of a random variable is thus: 

• first to consider the physical reasons why the quantity at hand may belong to one or the 
other distribution family; 

• thereafter to check whether the statistical evidence is in gross contradiction with the 
assumed distribution; by using e.g. probability paper as explained in the subsequent or if 
relevant the more formal approaches given in Section E.7. 

Model Selection by Use of Probability Paper 

Having selected a probability distribution family for the probabilistic modelling of a random 
variable, probability paper is an extremely useful tool for the purpose of checking the 
plausibility of the selected distribution family. 

A probability paper for a given distribution family is constructed such that the cumulative 
probability distribution function (or the complement) for that distribution family will have the 
shape of a straight line when plotted on the paper. A probability paper is thus constructed by a 
non-linear transformation of the y-axis. 

For a Normal distributed random variable the cumulative distribution function is given as: 

( ) X
X

X

xF x μ
σ

⎛ ⎞−
= Φ⎜ ⎟

⎝ ⎠
 (E.42)

where Xμ  and Xσ  are the mean value and the standard deviation of the Normal distributed 
random variable and where ( )Φ ⋅  is the standard Normal probability distribution function. By 
inversion of Equation (E.42) there is: 
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1( ( ))X X Xx F x σ μ−= Φ +  (E.43)

Now by plotting x against -1( ( ))XF xΦ , see also Figure E.3, it is seen that a straight line is 
obtained with slope depending on the standard deviation of the random variable X and 
crossing point with the y-axis depending on the mean value of the random variable. Such a 
plot is sometimes called a quantile plot, see also Section C.3 . 

 

 
Figure E.3:  Illustration of the non-linear scaling of the y-axis for a Normal distributed random 

variable. 

Also in Figure E.3 the scale of the non-linear y-axis is given corresponding to the linear 
mapping of the observed cumulative probability densities. In probability papers typically only 
this non-linear scale is given.   

Probability papers may also be constructed graphically. In Figure E.4 the graphical 
construction of a Normal probability paper is illustrated.  
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Figure E.4: Illustration of the graphical construction of a Normal distribution probability paper. 

Various types of probability paper are readily available in the literature. 

Given an ordered set of observed values 1 2( , ,.., )T
Nx x x=x of a random variable the 

cumulative distribution function may be evaluated as: 

( )
1X i

iF x
N

=
+

 (E.44)

In Table E.1 an example is given for a set of observed concrete cube compressive strengths 
together with the cumulative distribution function values as calculated using Equation (E.44) 
In Figure E.5 the cumulative distribution values are plotted in a Normal distribution 
probability paper. 

A first estimate of the distribution parameters may readily be determined from the slope and 
the position of the best straight line through the plotted cumulative distribution values. In 
Section E.6 the problem of parameter estimation is considered in more detail.  

From Figure E.5 it is seen that the observed cumulative distribution function fits relatively 
well with a straight line. This might also be expected considering that the observed values of 
the concrete compressive strength are not really representative for the lower tail of the 
distribution, where due to the non-negativity of the compressive strength it might be assumed 
that a Lognormal distribution would be more suitable.  

i x i FX(x i ) -1(FX(x i ))
1 24.4 0.04761907619048 - 1.668390969
2 27.6 0.095238095 - 1.309172097
3 27.8 0.142857143 - 1.067570659
4 27.9 0.19047619 - 0.876142694
5 28.5 0.238095238 - 0.712442793
6 30.1 0.285714286 - 0.565948707
7 30.3 0.333333333 - 0.430727384
8 31.7 0.380952381 - 0.302980618
9 32.2 0.428571429 - 0.180012387
10 32.8 0.476190476 - 0.059716924
11 33.3 0.523809524 0.059716924
12 33.5 0.571428571 0.180012387
13 34.1 0.619047619 0.302980618
14 34.6 0.666666667 0.430727384
15 35.8 0.714285714 0.565948707
16 35.9 0.761904762 0.712442793
17 36.8 0.80952381 0.876142694
18 37.1 0.857142857 1.067570659
19 39.2 0.904761905 1.309172097
20 39.7 0.952380952 1.668390969

O O O

 
Table E.1: Ordered set of observed concrete cube compressive strengths and the calculated 

cumulative distribution values. 
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 -1
X(F (x))Φ

x

F (x)X

 
Figure E.5: Concrete cube compressive strength data plotted in Normal distribution paper. 

When using probability paper for the consideration of extreme phenomena such as e.g. the 
maximum water level in a one year period, the probability paper may also be used for the 
purpose of estimating the values of the water level with a certain return period i.e. for the 
purpose of extrapolation (see e.g. Schneider, 1994). However, as always when extrapolating, 
extreme care must be exercised. 
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10th Lecture 

Aim of the present lecture 

The aim of the present lecture is, in the context of probabilistic model building, to provide the 
required theory and methodology for the estimation of parameters of probability distributions 
based on data. To this end the Method of Moments and the Maximum Likelihood Method are 
introduced and their limitations and application are discussed and illustrated.  

On the basis of the lecture it is expected that the students should acquire knowledge and skills 
in regard to: 

• What is the principle behind the Method of Moments? 

• How may the method of moments be applied to estimate the parameters of a probability 
distribution? 

• What kind of estimates does the Method of Moments provide? 

• Does the Method of Moments provide for an assessment of the statistical uncertainty 
associated with the parameters? 

• What is the principle behind the maximum likelihood method? 

• How may the method of maximum likelihood be applied to estimate the parameters of a 
probability distribution? 

• What is sample likelihood and how is it quantified? 

• How can the statistical uncertainty associated with estimated distribution parameters be 
quantified? 

• What is the information matrix and how does this relate to the covariance matrix of the 
estimated parameters? 

 

 

 

 

 

 

 

 



 E-23

E.6  Estimation of Distribution Parameters 
There are in principle two different methods to estimate the distribution parameters on the 
basis of data, namely the methods of point estimates and the methods of interval estimates. In 
the following, however, only two of the methods of point estimates will be explained, namely 
the method of moments and the method of maximum likelihood as these have proven 
especially useful in practical risk and reliability engineering analysis.  

The Method of Moments 

Assuming that the considered random variable X  may be modelled by the probability density 
function ( ; )Xf x θ , where 1 2( , ,.., )T

kθ θ θ=θ are the distribution parameters, the first k  
moments 1 2( , ,.., )T

kλ λ λ=λ  of the random variable X  may be written as: 

1 2

( ) ( )

     ( , ,.., )

j
j X

j k

x f x dxλ

λ θ θ θ

∞

−∞

=

=

∫θ θ
 (E.45)

If the random sample, from which the distribution parameters 1 2( , ,.., )T
kθ θ θ=θ  are to be 

estimated, is collected in the vector 1 2,ˆ ˆ ˆ ˆ( , ,.., )T
nx x x=x  the corresponding k  sample moments 

may be calculated as: 

1

1 ˆ
n

j
j i

i
m x

n =

= ∑  (E.46)

By equating the k  sample moments to the k  equations for the moments of the random 
variable X  a set of k  equations with the k  unknown distribution parameters is obtained, the 
solution of which gives the point estimates of the distribution parameters. 

The Method of Maximum Likelihood 

This method may be somewhat more difficult to use than the method of moments but has a 
number of very attractive properties, which makes this method especially applicable in 
engineering risk and reliability analysis. 

The principle of the method is that the parameters of the distribution function are fitted such 
that the probability (likelihood) of the observed random sample is maximised. 

Let the random variable of interest X  have a probability density function ( ; )Xf x θ  where 

1 2( , ,.., )T
kθ θ θ=θ  are the distribution parameters to be estimated.  

If the random sample, from which the distribution parameters 1 2( , ,.., )T
kθ θ θ=θ are to be 

estimated are collected in the vector 1 2,ˆ ˆ ˆ ˆ( , ,.., )T
nx x x=x the likelihood ˆ( )L θ x of the observed 

random sample is defined as: 
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1

ˆ ˆ( ) ( )
n

X i
i

L f x
=

= ∏θ x θ  (E.47)

The maximum likelihood point estimates of the parameters 1 2( , ,.., )T
kθ θ θ=θ  may now be 

obtained by solving the following optimisation problem: 

ˆmin( ( ))L
θ

− θ x  (E.48)

Instead of the likelihood function it is advantageous to consider the log-likelihood ˆ( )l θ x  i.e.: 

1

ˆ ˆ( ) log( ( ))
n

X i
i

l f x
=

=∑θ x θ  (E.49)

One of the most attractive properties of the maximum likelihood method is that when the 
number of samples i.e. n is sufficiently large the distribution of the parameter estimates 
converges towards a Normal distribution with mean values Θμ equal to the point estimates, 
i.e.: 

* * *
1 2( , ,.., )T

nθ θ θ=Θμ  (E.50)

The covariance matrix CΘΘ for the point estimates may readily be obtained by: 

1−=ΘΘC H  (E.51)

where H  is the Fischer information matrix with components determined by the second order 
partial derivatives of the log-likelihood function taken in the maximum, i.e.: 

*

2 ˆ( )
ij

i j

l
H

θ θ =

∂
=

∂ ∂
−

θ θ

θ x
 (E.52)

Example E.1 – Parameter estimation 

Consider again the experimental results of the concrete cube compressive strengths given in 
Table E.1. Assuming that the concrete cube compressive strength is Normal distributed it is 
required now to estimate the parameters on the basis of the experiment results. 

It can be shown that the equations for the moments of a Normal distribution in terms of the 
distribution parameters are given as: 

1
2 2

2

λ μ
λ μ σ

=

= +
 (E.53)

Analysing the sample data, the first two sample moments are found as: 
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1

2

32.67
1083.36

m
m

=
=

 (E.54)

The point estimates of the parameters ,μ σ  may now be determined by solving the equations: 

2 2

32.67
1083.36

μ

μ σ

=

+ =
 (E.55)

giving: 

32.67
4.05

μ
σ
=
=

 (E.56)

Using the method of maximum likelihood, the maximum likelihood function is readily written 
as:  

( )2
2

2
1 11

ˆ -1 1ˆ( ) exp
22

n
n

i

i

x
L

θ
θπθ =

⎛ ⎞⎛ ⎞
= −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑θ x  (E.57)

and correspondingly the log-likelihood function as  

( )2
2

2
1 11

ˆ1 1ˆ( ) ln
22

n
i

i

x
l n

θ
θπθ =

⎛ ⎞ −
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑θ x  (E.58)

The mean values of the estimates may be determined by solving the following equations: 

( )2
23

11 1 1

1 ˆ 0
n

i
i

l n x θ
θ θ θ =

∂
= − + − =

∂ ∑  

( )22
12 1

1 ˆ - 0
n

i
i

l x θ
θ θ =

∂
= =

∂ ∑  

(E.59)

yielding: 

( )2
2

1
1

ˆ -
n

i
i

x

n

θ
θ ==

∑
 

2
1

1 ˆ
n

i
i

x
n

θ
=

= ∑  

(E.60)

which by using the sample data gives: 

1 4.04θ σ= =  
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2 32.665θ μ= =  

Not surprisingly the same result as the method of moments. 

As mentioned previously the covariance matrix ΘΘC  for the parameters estimates may be 
determined through the information matrix H  containing the second-order partial derivatives 
of the log-likelihood function, see Equation (E.58). The information matrix may be found to 
be: 

( ) ( )

( )

2
2 2

1 1
2 4 3

1 1 1

2
1

3 2
1 1

3 - 2 -

2 -

n n

i i
i i

n

i
i

x x
n

x
n

θ θ

θ θ θ

θ

θ θ

= =

=

⎛ ⎞
⎜ ⎟
⎜ ⎟−
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑

∑
H  (E.61)

whereby the covariance matrix is evaluated using the sample data as: 

1 0.836 0
0 0.1647

− ⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
ΘΘC H  (E.62)

In a probabilistic modelling where the concrete cube compressive strength enters as a random 
variable it is then possible to take into account the statistical uncertainty associated with the 
estimates of the distribution parameters for the distribution function, simply by including the 
distribution parameters in the reliability analysis as Normal distributed variables with the 
evaluated mean values and covariance’s. 

□ 
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11th Lecture 

Aim of the present lecture 

The aim of the present lecture is to address the problem of model verification and comparison. 
Having established a probabilistic model in terms of a probability distribution and estimated 
probability distribution parameters, the issue here is how to evaluate the appropriateness of 
the established model by means of data. Furthermore, in order to provide guidance on the 
comparison on the goodness of in principally equally acceptable models a basis for the 
comparison of two or more models is provided.  

On the basis of the lecture it is expected that the students should acquire knowledge and skills 
in regard to: 

• How may probabilistic models be evaluated and validated on the basis of statistical tests? 

• What is the idea behind the 2χ  goodness of fit test and how is it performed? 

• How is it that the 2χ  goodness of fit test is applied for the testing of the validity of 
continuous random variable models?  

• What is the idea behind the Kolmogorov-Smirnoff goodness of fit test and how is it 
performed? 

• How is the Quantile-plot related to the Kolmogorov-Smirnoff goodness of fit test? 

• How conclusive are statistical tests for the purpose of model verification and what must be 
kept in mind? 

• How may probabilistic models be compared in regard to appropriateness? 
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E.7  Model Evaluation by Statistical Testing 
In the foregoing first sections a highly qualitative method – the probability paper - was 
introduced for the identification of a family or type of probability distributions representing 
data obtained from observations or experimental results. This method in conjunction with a 
physical understanding of the mechanism generating the observed data, as already outlined, 
represents a very pragmatic approach for establishing at least a first model assumption. The 
next step in model building typically concerns the assessment of the parameters of the 
assumed distribution function and to this end first the Method of Moments and thereafter the 
Maximum Likelihood Method were introduced. From the foregoing sections it is obvious that 
the quality of the established model is a product of the appropriateness of the selected 
probability distribution and the estimated parameters – i.e. the so-called goodness of fit. It 
would thus be of significant interest to be able to assess the goodness of fit in a quantitative 
way allowing for a systematic and consistent way of justifying or rejecting model 
assumptions. For this purpose the classical statistical distribution tests, i.e. the goodness of fit 
tests were developed. A number of different types of tests have been developed in the past, in 
part with very specialized and consequently limited applicability over different application 
areas. In the following two such tests, namely the 2χ - and the Kolmogorov-Smirnov goodness 
of fit tests will be explained as these have gained some importance in a broader range of 
engineering application areas.  

In principle the 2χ -goodness of fit test is applicable only for discrete probability distributions, 
however, it may easily be adapted to continuous probability distributions as shall be seen in 
the following. The Kolmogorov-Smirnov goodness of fit test on the other hand is only 
applicable for continuous probability distributions.  

The 2χ -Goodness of Fit Test 

As mentioned above the 2χ -goodness of fit test is applicable for discrete cumulative 
distribution functions ( )iP x  e.g. defined by: 

-1

1
( ) ( )      

i

i j
j

P x p x
=

= ∑  (E.63)

Postulating a cumulative distribution function of the type as given in Equation (E.63) 
intuitively the differences between predicted frequencies ,p iN  (using the assumed model) and 
the observed frequencies ,o iN  should indicate the quality of the postulated cumulative 

distribution function and this is indeed the idea behind the 2χ -test. 

Assume that the random variable jX  is sampled n  times. Then the expected value and the 

variance of jX  i.e. jE X⎡ ⎤⎣ ⎦ and jVar X⎡ ⎤⎣ ⎦  are given by (see also Section D.3): 
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,

,

( )

( )(1 ( )) (1 ( ))

j j p j

j j j p j j

E X np x N

Var X np x p x N p x

⎡ ⎤ = =⎣ ⎦
⎡ ⎤ = − = −⎣ ⎦

 (E.64)

In accordance with the central limit theorem and provided that the postulated model is correct, 
it is reasonable to assume that the standardized random deviations of the sample frequency 
histogram from the postulated frequency histogram jε  i.e.:  

, ,

, (1 ( ))
o j p j

j
p j j

N N
N p x

ε
−

=
−

 (E.65)

are standard Normal distributed. This however assumes that the number of samples of each of 
the jx  values is large enough for the central limit theorem to be valid. If, however, not just 

the absolute values of the deviations but rather the squared deviations 2
jε , summed up over 

all possible values of the discrete random variable i.e. for 1, 2,...,j k= , are considered, it is 
known from section E.2 that this sample statistic is Chi-square distributed: 

2
, ,2 2

1 1 ,

( )
(1 ( ))

k k
o j p j

j
j j p j j

N N
N p x

ε ε
= =

−
= =

−∑ ∑  (E.66) 

Due to the fact that the numbers of realizations of the discrete random variables are dependent 
the statistic given by Equation (E.66) does in fact not have k  degrees of freedom but only 

1k − . Furthermore for the same reason each term in Equation (E.66) shall be reduced with the 
factor (1 ( ))jp x−  whereby finally the modified statistic 2

mε  is obtained: 

2
, ,2

1 ,

( )k
o j p j

m
j p j

N N
N

ε
=

−
=∑  (E.67) 

which is Chi-square distributed with -1k  degrees of freedom. 

Following the principles given in Section E.4 it is thus possible to formulate and test, at the 
α -significance level, the null-hypothesis 0H  that the postulated distribution function is not 
in contradiction with the observed data. The operating rule states that the null hypothesis 
cannot be accepted if 2

mε ≥ Δ  where the critical value Δ  with which the sample statistic shall 
be compared, can be calculated from Table T.3 such as: 

2( )mP ε α≥ Δ =  (E.68)

It should be underlined that the alternate hypothesis 1H  is less informative in the sense that 
this hypothesis in principle envelopes all possible distributions and distribution parameters 
except those of the postulated probability distribution. 

Assume as an example that a Normal distribution with mean value 33μ =  and standard 
deviation 5σ =  is postulated as representative for the data of the observed concrete 
compressive strengths presented in Table E.1 – this postulate is the so-called null 
hypothesis 0H . It is clear that the concrete compressive strength is a continuous variable but 
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this can be descritized by dividing the continuous sample space into intervals. The probability 
of a realization of the continuous random variable in each of the intervals is given as the 
probability that the outcome of the random variable is smaller that the upper boundary of the 
interval minus the probability that the outcome of the random variable is smaller than the 
lower boundary of the interval. It is then possible along the same procedure as explained in 
the above for discrete random variables to plot the histograms with the observed and predicted 
frequencies, ,o iN and ,p iN , respectively, for the different data ranges 1,2,..,i k=  in one figure, 

see Figure E.6.  

From Figure E.6 it is seen that the chosen discretization implies that the number of different 
data ranges k  is equal to 4. However, it is noted that the observed and the predicted 
frequencies in the lower interval is relatively small and it is doubtful if the conditions 
prevailing the Normal distribution assumption are fulfilled. To overcome this problem it is 
recommended in the literature, see e.g. Benjamin and Cornell (1971) to lump the data in 
adjacent intervals such that the number of observations is about 5 or larger. Lumping the 
frequencies in the two lower intervals yields the histograms shown in Figure E.7. 
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Figure E.6: Predicted and sample histograms for the compressive strength of concrete (data from 

Table E.1). 
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Figure E.7: Predicted and sample histograms for the compressive strength of concrete with lumped 

data for the lower interval (see Figure E.6).  
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Following the approach outlined in the foregoing the statistic given in Equation (E.67) is now 
evaluated as summarized in Table E.2. 

 
Interval - jx  Number of 

observed values 
,o jN  

Predicted 
probability ( )jp x  

Predicted number 
of observations 

, 20 ( )p j jN p x=  

Sample statistic 
Equation (E.67) 

0 -30 5 0.274253 5.485061 0.042896 

30-35 9 0.381169 7.623373 0.248591 

35-∞  6 0.344578 6.891566 0.115342 

   Sum 0.406829 

Table E.2: Calculation sheet for the 2χ -goodness of fit test of the concrete compressive strength 
example (raw data in Table E.1). 

Finally in order to support a decision on either rejecting or accepting the null-hypothesis 0H  
the sample statistic as calculated in Table E.2 must be compared with a critical value Δ  given 
by Equation (E.68). In the present case if the test is performed at a 5%-significance level, the 
value 5.9915Δ =  can be calculated from a Chi-Square distribution with 2 degrees of freedom 
using e.g. Microsoft Excel. By comparison of the sample statistic in Table E.2, i.e. 0.406829 
with the critical value 5.9915Δ =  it is seen that the null hypothesis cannot be rejected at the 
5% significance level.  

In the foregoing example not only the type of distribution but also the parameters of the 
distribution were postulated. In practice it is often the case that the parameters of the 
distribution are estimated first and thereafter the test for distribution type is performed. This is 
in principle possible following exactly the same approach as outlined in the above with the 
modification that the number of degrees of freedom is reduced with the number of parameters 
estimated from the available data. If e.g. in the example concerning the concrete cube 
compressive strength it is assumed that first the experiment data are used to assess the 
standard deviation of the distribution as shown in Section E.6 the number of degrees of 
freedom is reduced to 1.  

Postulating as before a Normal distribution with mean equal to 33μ =  but now with the 
standard deviation found in Section E.6, i.e. 4.05σ = the calculations are modified as shown 
in Table E.3. 
Interval - jx  Number of 

observed values 
o,jN  

Predicted 
probability jp(x )  

Predicted number of 
observations 

p,j jN 20p(x )=  

Sample statistic 
Equation (E.67) 

0 -30 5 0.229425 4.588507 0.036902 

30-35 9 0.459861 9.197211 0.004229 

35-∞  6 0.310714 6.214283 0.007389 

   Sum 0.044852 

Table E.3:  Calculation sheet for the 2χ -goodness of fit test of the concrete compressive strength 
example with reduced number of degree of freedom (raw data in Table E.1). 

With only 1 degree of freedom the critical level Δ  is reduced to 3.84Δ =  but the null-
hypothesis can still not be rejected at the 5%-significance level. 
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From the above it is seen that the available data simply do not permit that both of the 
distribution parameters are first estimated and thereafter the distribution and parameters 
postulates tested. The number of degrees of freedom is not sufficient. In engineering 
applications this problem is not unusual as the available data are generally sparse. In other 
areas such as in producing industries the available amount of data is generally very substantial 
and the merits of statistical testing are more obvious. 

The Kolmogorov-Smirnov Goodness of Fit Test 

Whereas the 2χ -goodness of fit test took basis in a statistic quantifying the squared errors 
between the observed sample histogram and the predicted postulated histogram the goodness 
of fit test due to Kolmogorov-Smirnov is utilising a sample statistic formulated in terms of the 
cumulative distributions. However, where the 2χ -goodness of fit test can be applied in cases 
where both distribution and parameters are postulated, as well as in cases where only the 
distribution is postulated and the parameters estimated, using the same data utilized for the 
testing. This is not the case for the Kolmogorov-Smirnov test. Here both the distribution 
family and parameters must be postulated.  

If the observed cumulative distribution function ( )o iF x  is written as: 

( )O
o i

iF x
n

=  (E.69)

where ix  is the i’th smallest observation in the sample of size n and the postulated cumulative 
distribution function is ( )p iF x  then the following statistic may be utilised for significance 

testing of the null hypothesis that the observed data do not deviate statistically significantly 
from the postulated distribution function: 

max 1 1
max ( ) ( ) max ( )

n n
O O O

o i p i p ii i

iF x F x F x
n

ε
= =

⎡ ⎤⎡ ⎤= − = −⎢ ⎥⎣ ⎦ ⎣ ⎦
 (E.70)

The distribution of the statistic maxε  is tabulated for most practical purposes in Table E.4. 
 n 
α  1 5 10 15 20 25 30 40 50 60 70 80 

0.01 0.9950 0.6686 0.4889 0.4042 0.3524 0.3166 0.2899 0.2521 0.2260 0.2067 0.1917 0.1795 

0.05 0.9750 0.5633 0.4093 0.3376 0.2941 0.2640 0.2417 0.2101 0.1884 0.1723 0.1598 0.1496 

0.1 0.9500 0.5095 0.3687 0.3040 0.2647 0.2377 0.2176 0.1891 0.1696 0.1551 0.1438 0.1347 

0.2 0.9000 0.4470 0.3226 0.2659 0.2315 0.2079 0.1903 0.1654 0.1484 0.1357 0.1258 0.1179 

Table E.4: Tabulated values of the Kolmogorov-Smirnov statistic for different significance levels α 
and sample sizes n. 

The 0H  null hypothesis may be formulated expressing that the observed data follow the 
postulated cumulative distribution function and the alternate hypothesis 1H  that the observed 
data follow some other distribution.  
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The operating rule specifies that the null hypothesis 0H  cannot be accepted at the α -
significance level if: maxε ≥ Δ  where the critical value Δ  can be calculated such that: 

max( )P ε α≥ Δ =  (E.71)

where Δ  is determined from Table E.4 (or Table T.4). 

Consider again the example concerning the concrete compressive strength. As before, it is 
postulated that the data are representative for a Normal distribution with mean value 33μ =  
and a standard deviation equal to 5σ = . By inspection of Figure E.5 it is seen that the largest 
deviation between the observed cumulative distribution function and the predicted postulated 
probability distribution occurs for the 18th data point corresponding to a concrete cube 
compressive strength of 37.1 MPa. For this value the postulated cumulative distribution 
function yields: 

( )18
37.1 33( ) 0.82 0.794

5
o

pF x −⎛ ⎞= Φ = Φ =⎜ ⎟
⎝ ⎠

 (E.72)

and the observed cumulative distribution function yields: 

18
18( ) 0.9
20

o
o

iF x
n

= = =  (E.73)

whereby the sample statistic becomes max 0.9 0.794 0.106ε = − = . From Table E.4 the critical 
value Δ  for 20n =  and a 5% significance level is 0.29. Since the sample statistic 0.106 is 
smaller than the critical value 0.29, the null hypothesis cannot be rejected. 

Model Comparison 

In the foregoing statistical tests were introduced as means for evaluating the goodness of fit of 
a given postulated distribution function to observed data. These tests can, as mentioned, 
however, only be applied to assess the plausibility of a given distribution being representative 
for the observed data. Other postulated distribution functions could also be representative for 
the observed data and the question thus remains how to select between two postulated 
distributions which both cannot be rejected by testing as possible candidates. To this end two 
possibilities might be considered, namely by comparison of the sample likelihood defined by 
Equation (E.47) or by comparison of the likelihood of the sample statistics Equations (E.67) 
or (E.70). Direct comparison of the sample statistic for the 2χ -goodness of fit test is not a 
consistent means for comparison, as the number of degrees of freedom may be different for 
the cases considered. 

As an example consider the two cases where the 2χ -goodness of fit test was applied first for 
testing the goodness of fit for a postulated Normal distribution with postulated 
parameters 33μ = , 5σ =  and thereafter a postulated Normal distribution for which the 
parameters were estimated from the data set, i.e. 33μ = , 4.05σ = . For the first case the 
sample statistic is equal to 0.4099 and the number of degrees of freedom is 2. For the second 
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case the sample statistic is equal to 0.4068 and the number of degrees of freedom is equal to 1. 
The corresponding likelihoods are equal to 0.8151 and 0.5236 respectively and it is thus seen 
that the first postulate is more likely that the second postulate given the observed data.

Self Assessment Questions/Exercises 
E.1 Which are the steps and constituents in establishing a probabilistic model? 

E.2 Express in words the following mathematical expression, where X  is the sample 
average of a random variable X  and Xμ  is the true mean of the random variable: 

 9.8 9.8 0.95X XP Xμ μ⎡ ⎤− < < + =⎣ ⎦  

E.3 Which are the main steps of hypothesis testing? 

E.4 An engineer tests the null hypothesis that the mean value of the concrete cover depth 
of a concrete structure corresponds to design assumptions. In a preliminary assessment 
a limited number of measurements of the concrete cover depth are made, and after 
performing the hypothesis test the engineer accepts the null hypothesis. After a few 
years, a comprehensive survey of the concrete cover depth is carried out, i.e. many 
measurements are made. The survey shows that the mean value of the concrete cover 
depth does not fulfill the design assumptions. Which of the following statement(s) 
is(are) correct? 

 

In the preliminary survey the engineer has performed a Type I error. 

In the preliminary survey the engineer has performed a Type II error. 

In the preliminary survey the engineer has performed a Type I and a Type II error. 

E.5 Describe in a few words the significance of the probability paper in model selection 
and how can it be constructed. 

E.6 In the following figure data of the annual observed maximum values of precipitation 
per hour (rainfall) are plotted on a probability paper for the Gumbel distribution. The 
“best-fit” line is also shown. Could an engineer accept the Gumbel distribution as 
being suitable for the modelling of the annual maximum precipitation per hour? 
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Figure E.8: Probability paper for the Gumbel distribution. 

E.7 The Maximum Likelihood Method (MLM) enables engineers to calculate the 
distribution parameters of a random variable on the basis of data. Which of the 
following statement(s) is(are) correct? 

The MLM provides point estimates of the distribution parameters. 

The MLM provides information about the uncertainty associated with the estimated 
parameters. 

The MLM provides no information about the uncertainty associated with the estimated 
parameters. 
 

E.8 From past experience it is known that the shear strength of soil can be described by 
a Lognormal distribution. 15 samples of soil are taken from a site and an engineer 
wants to use the data in order to estimate the parameters of the Lognormal 
distribution. The engineer: 

may use a probability paper to estimate the parameters of the Lognormal distribution. 

may use the maximum likelihood method to estimate the parameters of the Lognormal 
distribution. 

may use the method of moments to estimate the parameters of the Lognormal distribution. 

None of the above. 
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E.9 In order to perform a 2χ  test, how do the data need to be divided?  

E.10 Which are the main differences between the 2χ  and the Kolmogorov-Smirnov 
goodness of fit tests? 

E.11 Based on experience it is known that the concrete compressive strength may be 
modelled by a Normal random variable X  with mean value 30X MPaμ =  and 
standard deviation 5X MPaσ = . The compressive strengths of 20 concrete cylinders 
are measured. An engineer wants to test the null hypothesis 0H  that X  follows a 
Normal distribution with the above given parameters. He/she carries out a 2χ  
goodness of fit test by dividing the samples into 3 intervals. He/she calculates a Chi-
square sample statistic equal to 2 0.41mε = . Can the engineer accept the null hypothesis 
at the 5% significance level? 

E.12 An engineer wants to examine and compare the suitability of two distribution function 
model alternatives for a random material property. Measurements are taken of the 
material property. The engineer uses the two model alternatives to calculate the Chi-
square sample statistics and the corresponding sample likelihoods. The results are 
given in the following table: 

 
Model Degrees of freedom Chi-square sample statistic Sample likelihood 

1 2 0.410 0.815 

2 1 0.407 0.524 

 
Which of the following statement(s) is(are) correct? 

The engineer may accept model 1 at the 5% significance level. 

The engineer may accept model 2 at the 5% significance level. 

Model 1 is more suitable than model 2. 

None of the above. 
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MODULE F – METHODS OF STRUCTURAL 
RELIABILITY 

 

12th Lecture 

Aim of the present lecture 
The aim of the present lecture is to introduce the most basic theory and tools facilitating the 
representation of events in terms of random variables and to calculate the probability that such 
events take place. The methods introduced include the classical error accumulation law and 
set this in perspective to more modern and more general tools to assess probabilities.  

On the basis of the lecture it is expected that the students should acquire knowledge on the 
following issues: 

• How may events be represented in terms of basic random variables? 

• What is a limit state function and what is a safety margin? 

• What is the meaning of a reliability index and how does it relate to a failure probability? 

• How to calculate the reliability index for a linear safety margin when all basic random 
variables are Normal distributed? 

• How to calculate the reliability index in the case of nonlinear safety margins? 

• What is the idea behind the Monte Carlo Method? 

• Which are the steps in the Monte Carlo Method and how are they executed? 
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F.1  Introduction 
The first developments of First Order Reliability Methods, also known as FORM methods 
took place almost 30 years ago. Since then the methods have been refined and extended 
significantly and by now they form one of the most important methods for reliability 
evaluations in structural reliability theory. Several commercial computer codes have been 
developed for FORM analysis and the methods are widely used in practical engineering 
problems and for code calibration purposes.  

In the present chapter first the basic idea behind FORM methods is highlighted and thereafter 
the individual steps of the methods are explained in detail.  

Finally the basic concepts of Monte Carlo Methods in structural reliability will be outlined. 

F.2  Failure Events and Basic Random Variables 
In reliability analysis of technical systems and components the main problem is to evaluate 
the probability of failure corresponding to a specified reference period. However, also other 
non-failure states of the considered component or system may be of interest, such as excessive 
damage, unavailability, etc.  

In general any state, which may be associated with consequences in terms of costs, loss of 
lives and impact to the environment are of interest. In the following it will not be 
differentiated between these different types of states but for simplicity refer to all these as 
being failure events, however, bearing in mind that also non-failure states may be considered 
in the same manner. 

It is convenient to describe failure events in terms of functional relations, which if they are 
fulfilled define that the considered event will occur. A failure event may be described by a 
functional relation, the limit state function ( )g x , in the following way:  

{ }( ) 0F g= ≤x  (F.1)

where the components of the vector x  are realisations of the so-called basic random variables 
X  representing all the relevant uncertainties influencing the probability of failure. In 
Equation (F.1) the failure event F  is simply defined as the set of realisations of the function 

( )g x , which is zero or negative.  

As already mentioned, other events than failure may also be of interest. In e.g. reliability 
updating problems events of the following form are highly relevant: 

{ }( ) 0I h= =x  (F.2)

Having defined the failure event the probability of failure FP  may be determined by the 
following integral: 



 F-3

( ) 0

( )F
g

P f d
≤

= ∫ X
x

x x  (F.3)

where ( )fX x  is the joint probability density function of the random variables X . This integral 
is, however, non-trivial to solve and numerical approximations are expedient. Various 
methods for the solution of the integral in Equation (F.3) have been proposed including 
numerical integration techniques, Monte Carlo simulation and asymptotic Laplace expansions. 
Numerical integration techniques very rapidly become inefficient for increasing dimension of 
the vector X  and are in general irrelevant. In the following the focus is directed on the widely 
applied and quite efficient FORM methods, which furthermore can be shown to be consistent 
with the solutions obtained by asymptotic Laplace integral expansions. 

F.3 Linear Limit State Functions and Normal Distributed 
Variables 

For illustrative purposes first the case where the limit state function ( )g x  is a linear function 
of the basic random variables X  is considered. Then the limit state function may be written as: 

0
1

( )
n

i i
i

g x a a x
=

= + ∑  (F.4)

If the basic random variables are Normal distributed the linear safety margin M  defined 
through 

0
1

n

i i
i

M a a X
=

= + ∑  (F.5)

is also Normal distributed with mean value and variance: 

0
1

i

n

M i X
i

a aμ μ
=

= + ∑  

2 2 2

1 1 1,
i

n n n

M i X ij i j i j
i i j j i

a a aσ σ ρ σ σ
= = = ≠

= +∑ ∑ ∑  

(F.6)

where ijρ  are the correlation coefficients between the variables iX  and jX . 

Defining the failure event by Equation (F.1) the probability of failure can be written as: 

( ( ) 0) ( 0)FP P g P M= ≤ = ≤X  (F.7)

which in this simple case reduces to the evaluation of the standard Normal distribution 
function: 
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( )FP β= Φ −  (F.8)

where β , the so-called reliability index due to Cornell (1969) and Basler (1961) is given as: 

M

M

μβ
σ

=  (F.9)

The reliability index β as defined in Equation (F.9) has a geometrical interpretation as 
illustrated in Figure F.1 where a two dimensional case is considered. 
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Figure F.1 Illustration of the two-dimensional case of a linear limit state function and Normal 
distributed variables X . 

In Figure F.1 the limit state function ( )g x  has been transformed into the limit state function 
( )g u  by standardisation of the random variables as: 

i

i

i X
i

X

X
U

μ
σ
−

=  (F.10)

such that the random variables iU  have zero means and unit standard deviations.  

The reliability index β  has the simple geometrical interpretation as the smallest distance from 
the line (or generally the hyper-plane) forming the boundary between the safe domain and the 
failure domain, i.e. the domain defined by the failure event. It should be noted that this 
definition of the reliability index due to Hasofer and Lind (1974) does not depend on the limit 
state function but rather the boundary between the safe domain and the failure domain. The 
point on the failure surface with the smallest distance to the origin is commonly denoted the 
design point or most likely the failure point. 

It is seen that the evaluation of the probability of failure in this simple case reduces to some 
simple evaluations in terms of mean values and standard deviations of the basic random 
variables, i.e. the first and second order information. 
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F.4 The Error Propagation Law  
The results given in Equation (F.6) have been applied to study the statistical characteristics of 
errors ε  accumulating in accordance with some differentiable function ( )h x , i.e.: 

( )hε = x  (F.11)

where 1 2( , ,.., )T
nx x x=x  is a vector of realizations of the basic random variables X  

representing measurement uncertainties with mean values 
1 2

( , ,.., )
n

T
X X Xμ μ μ=Xμ  and 

covariances ,
i ji j ij X XCov X X ρ σ σ⎡ ⎤ =⎣ ⎦  where 

iXσ  are the standard deviations and ijρ  the 
correlation coefficients. The idea is to approximate the function ( )h x  by its Taylor expansion 
including only the linear terms, i.e.: 

0

0 ,0
1

( )( ) ( )
n

i i
i i

hh x x
x

ε
= =

∂
≅ + −

∂∑
x x

xx  (F.12)

where 0 1,0 2,0 ,0( , ,.., )T
nx x x=x  is the point in which the linearization is performed, normally 

chosen as the mean value point. 

 
0

( ) , 1, 2,...,
i

h i n
x

=

∂
=

∂
x x

x  are the first order partial derivatives of ( )h x  taken in 0=x x .  

From Equation (F.12) and Equation (F.6) it is seen that the expected value of the error [ ]E ε  
can be assessed by: 

[ ] ( )E hε = Xμ  (F.13)

and its variance [ ]Var ε  can be determined by: 

[ ]
0 0 0

2

2

1 1 1,

( ) ( ) ( )
i i j

n n n

X ij X X
i i j j ii i j

h h hVar
x x x

ε σ ρ σ σ
= = = ≠= = =

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎜ ⎟⎜ ⎟ ⎜ ⎟= +
⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑ ∑
x x x x x x

x x x  (F.14)

It is important to notice that the variance of the error as given by Equation (F.14) depends on 
the linearization point, i.e. 0 1,0 2,0 ,0( , ,.., )T

nx x x=x . 

Example F.1 – Reliability index – linear safety margin 

Consider a steel rod under pure tension loading. The rod will fail if the applied stresses on the 
rod cross-sectional area ( 210 a mm= ) exceed the steel yield strength. The yield strength R  of 
the rod and the annual maximum stress in the rod S  are assumed to be uncertain, modelled by 
uncorrelated Normal distributed variables. The mean values and the standard deviations of the 
yield strength and the loading force are given as 350Rμ =  MPa, 35Rσ =  MPa and 1500Sμ = N, 

300Sσ = N respectively. 
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The limit state function describing the event of failure may be written as: 

( )g ar s= −x  

whereby the safety margin M  may be written as: 

M aR S= −  

The mean value and standard deviation of the safety margin M  are thus: 

10 350 1500 2000Mμ = ⋅ − = N 

2 2 210 35 300 461Mσ = ⋅ + = N 

whereby the reliability index may be calculated as: 

2000 4.33
461

β = =  

Finally the annual failure probability is determined as: 

6( 4.33) 7.5 10FP −= Φ − = ⋅  

□ 

Example F.2 – Error propagation law 

As an example of the use of the error propagation law consider a right angle triangle ABC, 
where B is the right angle. The lengths of the opposite side b  and adjacent side a  are 
measured. Due to measurement uncertainty the length of the sides a  and b  are modelled as 
independent Normal distributed random variables with expected values aμ  = 12.2, bμ = 5.1 
and standard deviations aσ  = 0.4 and bσ  = 0.3, respectively. It is assumed that a critical 
condition will occur if the hypotenuse c  is larger than 13.5 and the probability that this 
condition should happen is to be assessed.  

Based on the probabilistic model of a  and b  the statistical characteristics of the hypotenuse 
c  given by: 

2 2c a b= +  

may be assessed through the error propagation model given by Equations (F.13)-(F.14), 
yielding (see also Annex C): 

[ ] [ ]
0

2
2 2

2 2 2 2 2
2 2 2 2

1

( ) and  
i

n
a b

a b X a b
i i a b a b

hE c Var c
x

μ μμ μ σ σ σ
μ μ μ μ= =

⎛ ⎞∂⎜ ⎟= + = = +
⎜ ⎟∂ + +⎝ ⎠

∑
x x

x  

which by inserting for a  and b  their expected values yield: 
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[ ] [ ]
2 2

2 2 2 2
2 2 2 2

12.2 5.112.2 5.1 13.22 and 0.4 0.3 0.15
12.2 5.1 12.2 5.1

E c Var c= + = = + =
+ +

 

As seen from the above the variance of the hypotenuse c  depends on the chosen linearization 
point. If instead of the mean value point a value corresponding to the mean value plus two 
standard deviations was chosen, the variance of c  would have been: 

[ ]
2 2

2 2
2 2 2 2

13 5.70.4 0.3 0.149
13 5.7 13 5.7

Var c = + =
+ +

 

which can be shown to imply a 0.3% reduction of the probability that the hypotenuse is larger 
than 13.5. Even though such a change seems small it could be of importance in a practical 
important situation where the consequences of errors can be significant.  

□ 

F.5  Non-linear Limit State Functions 
When the limit state function is non-linear in the basic random variables X  the situation is not 
as simple as outlined in the previous. An obvious approach is, however, considering the error 
propagation law explained in the foregoing, to represent the failure domain in terms of a 
linearization of the boundary between the safe domain and the failure domain, i.e. the failure 
surface, but the question remains how to do this appropriately.  

Hasofer and Lind (1974) suggested performing this linearization in the design point of the 
failure surface represented in normalised space. The situation is illustrated in the 2-
dimensional space in Figure F.2. 

In Figure F.2 a principal sketch is given, illustrating that the failure surface is linearized in the 
design point *u  by the line ( ) 0g′ =u . The α -vector is the out ward directed Normal vector to 
the failure surface in the design point *u  i.e. the point on the linearized failure surface with 
the shortest distance - β - to the origin. 
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Figure F.2 Illustration of the linearization proposed by Hasofer and Lind (1974) in standard Normal 
space. 

As the limit state function is in general non-linear one does not know the design point in 
advance and this has to be found iteratively e.g. by solving the following optimisation 
problem: 

{ }

2

( ) 0 1
min

n

i
g i

uβ
∈ = =

= ∑
u u

 (F.15)

This problem may be solved in a number of different ways. Provided that the limit state 
function is differentiable the following simple iteration scheme may be followed: 

1/ 22

1

( )
,    1, 2,...,

( )

i
i

n

i i

g
u i n

g
u

β
α

β
=

∂
−

∂
= =

⎡ ⎤⎛ ⎞∂⎢ ⎥⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦
∑

α

α

 
(F.16)

1 2( , ,..., ) 0ng βα βα βα =  (F.17)

First a design point is guessed * β=u α  and inserted into Equation (F.16) whereby a new 
Normal vector α  to the failure surface is achieved. Then this α -vector is inserted into 
Equation (F.17) from which a new  β -value is calculated.  

The iteration scheme will converge in a few, say normally 6-10 iterations and provides the 
design point *u as well as the reliability index β  and the outward normal to the failure surface 
in the design point α . As already mentioned the reliability index β  may be related directly to 
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the probability of failure. The components of the α -vector may be interpreted as sensitivity 
factors giving the relative importance of the individual random variables for the reliability 
index β .  

Second Order Reliability Methods (SORM) follow the same principles as FORM, however, as 
a logical extension of FORM the failure surface is expanded to the second order in the design 
point. The result of a SORM analysis may be given as the FORM β multiplied with a 
correction factor evaluated on the basis of the second order partial derivatives of the failure 
surface in the design point. The SORM analysis becomes exact for failure surfaces given as a 
second order polynomial of the basic random variables. However, in general the result of a 
SORM analysis can be shown to be asymptotically exact for any shape of the failure surface 
as β approaches infinity. The interested reader is referred to the literature for the details of 
SORM analyses, e.g. Madsen et al. (1986). 

Example F.3 – FORM – non linear limit state function 

Consider again the steel rod from example F.1. However, now it is assumed that the cross 
sectional areas of the steel rod A  is also uncertain.  

The steel yield strength R  is Normal distributed with mean values and standard deviation 
350Rμ = MPa 35Rσ = MPa and the loading S  is Normal distributed with mean value and 

standard deviation 1500Sμ = N, 300Sσ = N. Finally the cross sectional area A  is assumed 
Normal distributed with mean value and standard deviation 10Aμ = 2mm  1Aσ = 2mm .  

The limit state function may be written as: 

( )  g r a s= −x  

Now the first step is to transform the Normal distributed random variables R , A  and S  into 
standardized Normal distributed random variables, i.e.: 

R
R

R

RU μ
σ
−

=  

A
A

A

AU μ
σ
−

=  

S
S

S

SU μ
σ
−

=  

The limit state function may now be written in the space of the standardized Normal 
distributed random variables as: 

R

( ) ( )( ) ( )

          (35 350)(1 10) (300 1500)
          350u 350 300 35 2000

R R R A A A S S S

R A S

A S R A

g u u u u

u u u
u u u u

σ μ σ μ σ μ= + + − +

= + + − +
= + − + +
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The reliability index and the design point may be determined in accordance with Equation 
(F.16) and (F.17) as (see also Annex C): 

2000
350 350 300 35R A S R A

β
α α α βα α

−
=

+ − +
 

1 (350 35 )R Ak
α βα= − +  

1 (350 35 )A Rk
α βα= − +  

300
S k

α =  

with: 

( ) ( ) ( )2 2 2350 35 350 35 300A Rk βα βα= + + + +  

which by calculation gives the iteration history shown in Table F.1. 

 
Iteration Start 1 2 3 4 5 

β  3.0000 3.6719 3.7399 3.7444 3.7448 3.7448 

Rα  -0.5800 -0.5701 -0.5612 -0.5611 -0.5610 -0.5610 

Aα  -0.5800 -0.5701 -0.5612 -0.5611 -0.5610 -0.5610 

Sα  0.5800 0.5916 0.6084 0.6086 0.6087 0.6087 

Table F.1 Iteration history for the non-linear limit state example.  

From Table F.1 it is seen that the basic random variable S modelling the load on the steel rod 
is slightly dominating with an α-value equal to 0.6087. Furthermore it is seen that both the 
variables R  and A  are acting as resistance variables as their α-values are negative. The 
annual failure probability for the steel rod is determined as 5( 3.7448) 9.02 10FP −= Φ − = ⋅ . 

□ 

F.6  Simulation Methods 
The probability integral considered in Equation (F.3), i.e.:  

( ) 0

( )f
g

P f d
≤

= ∫ X
x

x x  (F.18)

for the estimation of which is has been seen that FORM methods, may successfully be applied 
may also be estimated by so-called simulation techniques. In the literature a large variety of 
simulation techniques may be found and a treatment of these will not be given in the present 
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text. Here it is just noted that simulation techniques have proven their value especially for 
problems where the representation of the limit state function is associated with difficulties. 
Such cases are e.g. when the limit state function is not differentiable or when several design 
points contribute to the failure probability. 

However, as all simulation techniques have their origin in the so-called Monte Carlo Method. 
The principles of this very crude simulation technique will be shortly outlined in the 
following.  

The basis for simulation techniques is well illustrated by rewriting the probability integral in 
Equation (F.18) by means of an indicator function as shown in Equation (F.19): 

[ ]
( ) 0

( ) ( ) 0 ( )F
g

P f d I g f d
≤

= = ≤∫ ∫X X
x

x x x x x  (F.19)

where the integration domain is changed from the part of the sample space of the vector  
( )1 2, , , T

nX X X=X … for which ( ) 0g ≤x  to the entire sample space of X  and where 

[ ]I ( ) 0g ≤x  is an indicator function equal to 1 if ( ) 0g ≤x  and otherwise equal to zero. 

Equation (F.19) is in this way seen to yield the expected value of the indicator function 
[ ]( ) 0I g ≤x . Therefore, if now N realisations of the vector X , i.e. ˆ , 1, 2 ,j j N= …x  are 

sampled it follows from sample statistics that: 

[ ]
1

1 ( ) 0
N

F
j

P I g
N =

= ≤∑ x  (F.20)

is an unbiased estimator of the failure probability FP . 

The principle of the crude Monte Carlo simulation technique rests directly on the application 
of Equation (F.20). A large number of realisations of the basic random variables X, i.e. 
ˆ , 1, 2 ,j j N= …x are generated (or simulated) and for each of the outcomes ˆ jx it is checked 
whether or not the limit state function taken in ˆ jx  is positive. All the simulations for which 
this is not the case are counted ( Fn ) and after N simulations the failure probability FP  may be 
estimated through: 

F
F

nP
N

=  (F.21)

which then may be considered a sample expected value of the probability of failure. In fact for 
N → ∞  the estimate of the failure probability becomes exact. However, simulations are often 
costly in computation time and the uncertainty of the estimate is thus of interest. It is easily 
realised that the coefficient of variation of the estimate is proportional to 1/ Fn  meaning that 

if Monte Carlo simulation is pursued to estimate a probability in the order of 10-6 it must be 
expected that approximately 108 simulations are necessary to achieve an estimate with a 
coefficient of variance in the order of 10%. A large number of simulations are thus required 
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using crude Monte Carlo simulation and all refinements of this crude technique have the 
purpose of reducing the variance of the estimate. Such methods are for this reason often 
referred to as variance reduction methods. 

The simulation of the N outcomes of the joint density function in Equation (F.21) is in 
principle simple and may be seen as consisting of two steps. Here the steps will be illustrated 
assuming that the n components of the random vector X are independent. 

In the first step a “pseudo random” number with a uniform distribution between 0 and 1 is 
generated for each of the components in ˆ jx  i.e. ˆ jix , 1, 2,3,...,i n= . The generation of such 

numbers may be facilitated by build-in functions of basically all programming languages and 
spreadsheet software. 

In the second step the outcomes of the “pseudo random” numbers zji are transformed to 
outcomes of ˆ jix  by: 

1( )
iji X jix F z−=  (F.22)

where ( )
iXF ⋅  is the cumulative distribution function for the random variable iX . 

The principle is also illustrated in Figure F.3. 

1

0

Simulated sample

R
an

do
m

 N
um

be
r

xji  xji 

 zji 

( )
jiX jiF x

 

Figure F.3 Principle for simulation of a random variable. 

This process is continued until all components of the vector ˆ jx  have been generated. 
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Self Assessment Questions/Exercises 

F.1 How may failure events be represented in terms of basic random variables, in the 
context of the structural reliability theory? 

F.2 What is the geometrical interpretation of the reliability index and how does it relate to 
the failure probability?  

F.3 Using the Monte Carlo Simulation method, a sample expected value of the 
probability of failure is estimated. How may the accuracy in the estimation of the 
probability of failure be increased? 

F.4 Consider a timber beam subjected to an annual maximum bending moment L . The 
bending strength of the beam R  is modelled by a Normal distributed random variable 
with mean 30R kNmμ =  and standard deviation 5R kNmσ =  and the annual maximum 
bending moment is modelled by a Normal distributed random variable with mean 

9L kNmμ =  and standard deviation 2L kNmσ = . It is assumed that R  and L  are 
independent. The timber beam fails when the applied moment exceeds the bending 
strength. Calculate the reliability index β  and the probability of failure of the timber 
beam. 

F.5 Consider a steel rod that carries a deterministic load, S =35 KN. The resistance, R , 
of the rod is given by the following product: yR A f= ⋅ , where A  is the area of the rod, 
equal to 100 mm2 and yf  is the yield stress modelled as a Normal distributed random 

variable with mean 3 2425 10 /
yf KN mmμ −= ⋅  and standard 

deviation 3 225 10 /
yf KN mmσ −= ⋅ . Formulate a proper safety margin, M , for the steel 

rod and estimate the rod’s reliability. Draw the probability density function of the 
safety margin and indicate the safe and failure regions. 

F.6 The position of a ship is measured by two fixed points A and B located at the coast, 
see Figure F.4.  

BA

C

βα

c

b a

 

Figure F.4: Position determination of a ship. 
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Angles α  and β  have been measured from the basis line AB at the same time. Determine the 
error in b if the following information is provided: 

  

6 0.005
0.813 0.011
1.225 0.011

c km km
rad rad
rad rad

α
β

= ±
= ±
= ±  

where, for instance, 6 0.005c km km= ± means that the mean value of c  is 6km and the 
standard deviation of c  is 0.005km. 
 

 



 G-1

MODULE G – BAYESIAN DECISION ANALYSIS 

 

13th Lecture 

Aim of the present lecture 
The aim of the present lecture is to illustrate how the basic knowledge acquired through the 
present course provides a strong basis for engineering decision making. By establishing 
probabilistic engineering models that are consistent with the available knowledge it is shown 
how risk or simply expected consequences can be utilized to identify and rank different 
engineering decision alternatives. To this end on the basis of a simple example, the three 
principally different types of decision analysis are introduced, namely the prior- posterior- 
and the pre-posterior decision analysis. Whereas the prior and the posterior decision analyses 
only differ in the available information at hand at the time of decision making and may serve 
as direct basis for the planning of engineering activities involving changes of the state of 
nature, the pure-posterior analysis form a strong basis for the planning of collection of 
information through e.g. experiments in the laboratory or in the field.  

On the basis of the lecture, it is expected that the students should acquire knowledge and 
skills in regard to: 

• What must be identified before a decision analysis can be performed? 

• What is a utility function and what role does it play in decision making? 

• How does risk and utility in principle relate? 

• How is a decision event tree constructed? 

• How may expected utility be calculated based on branching probabilities and 
consequences? 

• How may the uncertainty associated with information be accounted for in decision 
analysis? 

• What is the difference between prior and posterior decision analysis? 

• What is the idea behind the pre-posterior decision analysis? 

• How can the value of information be assessed? 

• What role does decision making have in engineering risk assessment? 
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G.1  Introduction 
The ultimate task for the engineer is to establish a consistent decision basis for the planning, 
design, manufacturing construction, operation and management of engineering facilities such 
that the overall life cycle benefit of the facilities are maximized and such that the given 
requirements to the safety of personnel and environment specified by legislation or society are 
fulfilled. 

As the available information (regarding, e.g., soil properties, loading, material properties, 
future operational conditions and deterioration processes in general) is incomplete or 
uncertain, the decision problem is a decision problem subject to uncertain information. 

The present chapter introduces some fundamental issues of decision making subject to 
uncertain information. The presentation in turn considers general aspects of decision theory 
and illustrates these using a simple example. Finally the risk analysis decision problem is 
defined in general terms within the context of decision theory. 

G.2  The Decision / Event Tree 
In practical decision problems such as feasibility studies, reassessment of existing structures 
or decommissioning of facilities that have become obsolete, the number of alternative actions 
can be extremely large and a framework for the systematic analysis of the corresponding 
consequences is therefore expedient. 

A decision/event tree as illustrated in Figure G.1 may conveniently represent the decision 
problems. 

 

Figure G.1: Decision/event tree.  

For the purpose of illustration the decision/event tree in Figure G.1 considers the following 
very simple decision problem. In the specifications for the construction of a production 
facility using large amounts of fresh water in the production it is specified that a water source 
capable of producing at least 100 units of water per day must be available. As it is known that 
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the underground at the location of the planned production facility actually contains a water 
reservoir, one option is to develop a well locally at the site of the production facility. However, 
as the capacity of the local water reservoir is not known with certainty another option is to get 
the water from another location where a suitable well already exists. 

The different options are associated with different costs and different potential consequences. 
The costs of establishing a well locally is assumed to be equal to 10 monetary units (MU). If 
the already existing well is used it is necessary to construct a pipeline. As the existing well is 
located far away from the planned production facility the associated costs are assumed to be 
equal to 100 monetary units.  

Based on experience from similar geological conditions it is judged that the probability that a 
local well will be able to produce the required amount of water is 0.4. Correspondingly the 
probability that the well will not be able to fulfill the given requirements is 0.6. 

The consequence of establishing a well locally which turns out not to be able to produce the 
required amount of water is that a pipeline to the existing - but distant - well must be 
constructed. It is assumed that in this case all the water for the production facility is supplied 
from this well. 

The task is now to analyse such decision problems in a way making consistent use of all the 
information available to the engineer, including her degree of belief in the possible states, her 
subsequent observed data and her preferences among the various possible action/state pairs. 

To this end use will be made of the fact that decisions shall be based on expected values of the 
corresponding consequences. This issue is addressed further in the following. 

G.3  Decisions Based on Expected Values 
Consider the simple case where the engineer must choose between actions 1a  and 2a . The 
consequence of action 2a  is C  with certainty whereas the consequence of action 1a  is 
uncertain. The state of nature may be 1θ , in which case the consequence is A  and the state of 
nature may be 2θ  in which case the consequence is B . The decision/event tree is illustrated in 
Figure G.2. 

Before the true state of nature is known the optimal decision depends upon the likelihood of 
the various states of the nature θ  and the seriousness of the consequences A , B  and C . 
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Figure G.2: Decision/event tree illustrating a basic decision problem. 

A further analysis of the decision problem requires the numerical assessment of the 
preferences of the decision maker. It is assumed that the decision maker prefers B  to A , C  
to A , and B  to C . This statement of preferences may be expressed by any function u  such 
that: 

( ) ( ) ( )u B u C u A> >  (G.1)

The task is to find a particular function u  namely the utility function such that it is logically 
consistent to decide between 1a  and 2a  by comparing ( )u C  with the expected value of the 
utility of the action 1a , namely: 

( ) (1 ) ( )pu A p u B+ −  (G.2)

where p  is the probability that the state of nature is 1θ .  

Assuming that ( )u A  and ( )u B  have been given appropriate values the question is - what 
value should ( )u C  have in order to make the expected value a valid decision criterion? If the 
probability of 1θ  being the state of nature p  is equal to 0 the decision maker would choose 1a  
over 2a  because she prefers B  to C . On the other hand if the probability of 1θ  being the state 
of nature is equal to 1 she would choose 2a  over 1a . For a value of p  somewhere between 0 
and 1 the decision maker will be indifferent to choosing 1a  over 2a . This value *p  may be 
determined and ( )u C  is assigned as: 

* *( ) ( ) (1 ) ( )u C p u A p u B= + −  (G.3)

From Equation (G.3) it is seen that ( )u C  will lie between ( )u A  and ( )u B  for all choices of 
*p  and therefore the utility function is consistent with the stated preferences. Furthermore it 

is seen that the decision maker should choose the action 1a  to 2a  only if the expected utility 
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given this action 1E u a⎡ ⎤⎣ ⎦  is greater than 2E u a⎡ ⎤⎣ ⎦ . This is realized by noting that for all p  

greater than *p  and with ( )u C  given by Equation (G.3). There is: 

* *

*

( ) ( ) (1 ) ( )

( ) (1 ) ( ) ( ) (1 ) ( )

( ) ( ( ) ( )) ( ) ( ( ) ( )) 

u C pu A p u B

p u A p u B p u A p u B

u B u A u B p u B u A u B p

> + −

+ − > + −

+ − > + −

 (G.4)

This means that if ( )u C  is properly assigned in consistency with the decision makers stated 

preferences i.e. B  preferred to C  preferred to A  and the indifference probability *p  the 
ranking of the expected values of the utility determines the ranking of actions. 

 

G.5  Decision Making Subject to Uncertainty  
Having formulated the decision problem in terms of a decision/event tree, with proper 
assignment of utility and probability structure, the numerical evaluation of decision 
alternatives may be performed. 

Depending on the state of information at the time of the decision analysis, three different 
analysis types are distinguished, namely prior analysis, posterior analysis and pre-posterior 
analysis. Each of these are important in practical applications of decision analysis and are 
therefore discussed briefly in the following. 

G.6  Decision Analysis with Given Information - Prior Analysis  
When the utility function has been defined and the probabilities of the various state of nature 
corresponding to different consequences have been estimated the analysis reduces to the 
calculation of the expected utilities corresponding to the different action alternatives. In the 
following the utility is represented in a simplified manner through the costs, whereby the 
optimal decisions now should be identified as the decisions minimizing expected costs, which 
then is equivalent to maximizing expected utility. 

At this stage the probabilistic description [ ]P θ  of the state of nature θ  is usually called a 
prior description and denoted '[ ]P θ . 

To illustrate the prior decision analysis the decision problem from section G.2 is considered 
again. The decision problem is stated as follows. The decision maker has a choice between 
two actions: 

1a : Establish a new well. 



 G-6

2a : Establish a pipeline from an existing well. 

The possible states of nature are the following two: 

 1θ : Capacity insufficient  

 2θ : Capacity sufficient 

The prior probabilities are: 

 '[ ]P θ1 = 0.60 

 '[ ]P θ2 = 0.40 

Based on the prior information alone it is easily seen that the expected cost [ ]'E C  amounts 

to: 

[ ] [ ] [ ]{ } { }1 2min (100 10) 10; 100 min 70;100 70E C P P MUθ θ′ ′ ′= ⋅ + + ⋅ = = . 

The decision/event tree is illustrated in Figure G.3 together with the expected costs (in boxes). 

1
1

 

Figure G.3: Simple decision problem with assigned prior probabilities and utility. 

It is seen that action alternative 1a  yields the smallest expense (largest expected utility) so this 
action alternative is the optimal decision. 

G.7 Decision Analysis with Additional Information - Posterior 
Analysis 

When additional information becomes available, the probability structure in the decision 
problem may be updated. Having updated the probability structure the decision analysis is 
unchanged in comparison to the situation with given - prior information. 
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Given the result of an experiment kz  the updated probability structure (or just the posterior 
probability) is denoted ''[ ]P θ  and may be evaluated by use of the Bayes’ rule: 

[ ]'
''[ ]

'
k ii

i

k jj
j

P z P
P

P z P

θ θ
θ

θ θ

⎡ ⎤⎣ ⎦=
⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦∑

 (G.5)

which may be explained as: 

Posterior probability of  Sample likelihood prior probabilityNormalising

given of   constantwith given sample outcome

i

i i

θ

θ θ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
= ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (G.6)

The normalizing factor is to ensure that ''[ ]iP θ  forms a proper probability. The mixing of new 

and old information appears through the sample likelihood k iP z θ⎡ ⎤⎣ ⎦  and the prior 

probability '[ ]iP θ . The likelihood is the probability of obtaining the observation kz  given the 
true state of nature iθ . 

Prior

Posterior

Likelihood

Likelihood

Prior
Posterior

Prior

Posterior

Likelihood

 

Figure G.4: Illustration of updating of probability structures.  

In Figure G.4 an illustration is given of corresponding prior and posterior probability density 
functions together with likelihood functions. In the first case the prior information is strong 
and the likelihood is weak (small sample size). In the second case the prior information and 
the likelihood are of comparable strength. In the last case the prior information is relatively 
weak in comparison to the likelihood. 

To illustrate the posterior decision analysis the water supply decision problem is considered 
again. 

It is assumed that information about the capacity of the local reservoir can be estimated by the 
implementation of a less expensive test well and subsequent pump test. It is assumed that the 
cost of establishing a test well is equal to 1 monetary unit. However, the information obtained 
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from the pump test is only indicative as the result of the difference in scale from the test well 
to the planned local well. 

It is assumed that the pump test can provide the following different information – i.e. 
indicators regarding the capacity of the local reservoir. 

The capacity of the reservoir is: 

• larger than the given production requirements by 5% i.e. larger than 105 water 
volume units per day, 

• less than 95% of the required water production, i.e. less than 95 water volume units, 

• between 95 and 105 water units. 

The information from the pump test is subject to uncertainty and the likelihood of the actual 
capacity of the local reservoir given the three different indications described above are given 
in Table G.1. 

 

 True capacity of the reservoir 

Indicators 1θ : Less than 100 2θ : Larger than 100 

1I : Capacity >105 0.1 0.8 

2I : Capacity < 95 0.7 0.1 

3I : 95≤Capacity≤105 0.2 0.1 

Table G.1: Likelihood of the true capacity of the reservoir given the trial pump test results. 

Given that a test well is established and a trial pump test conducted with the result that a 
capacity is indicated smaller than 95 water volume units a posterior decision analysis can be 
performed to identify whether the optimal decision is to establish a well locally or if it is more 
optimal to construct a pipeline to the existing well. 

Therefore, the posterior probabilities given the new information P zθ′′ ⎡ ⎤⎣ ⎦  can be given as: 

2 1 1
1 2

2 1 1 2 2 2

[ | ] [ ] 0.7 0.6 0.42[ | ] 0.913
[ | ] [ ] [ | ] [ ] 0.7 0.6 0.1 0.4 0.46

P I PP I
P I P P I P

θ θθ
θ θ θ θ

′ ⋅′′ = = = =
′ ′+ ⋅ + ⋅

 

2 2 2
2 2

2 1 1 2 2 2

[ | ] [ ] 0.1 0.4 0.04[ | ] 0.087
[ | ] [ ] [ | ] [ ] 0.7 0.6 0.1 0.4 0.46

P I PP I
P I P P I P

θ θθ
θ θ θ θ

′ ⋅′′ = = = =
′ ′+ ⋅ + ⋅

 

which are also shown in Figure G.5 Having determined the updated probabilities the posterior 
expected values 2''E C I⎡ ⎤⎣ ⎦  of the utility corresponding to the optimal action alternative is 

readily obtained as: 

[ ] { }
{ }

2 1 2 2 2| min [ | ] (100 10) [ | ] 10; 100

min 101.3;100 100

E C I P I P I

MU

θ θ′′ ′′ ′′= ⋅ + + ⋅

= =
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and indicated in boxes in Figure G.5.  

Action / Choice Event Concequence

1a

2a

2

10 MU

(100 + 10) MU

100 MU

101

100

1 2( | ) 0.913P I′′ =

2 2( | ) 0.087P I′′ =

1

 

Figure G.5: Illustration of decision/event tree for water supply decision problem. 

Considering the additional information the optimal decision has been switched to 2a . 

G.8 Decision Analysis with ‘Unknown’ Information - Pre-posterior 
Analysis 

Often the decision maker has the possibility to ‘buy’ additional information through an 
experiment before actually making her choice of action. If the cost of this information is small 
in comparison to the potential value of the information, the decision maker should perform the 
experiment. If several different types of experiments are possible the decision maker must 
choose the experiment yielding the overall largest utility. 

If the example from the previous sections is considered again, the decision problem could be 
formulated as a decision to decide whether or not to perform the trial pump tests. 

The situation prior to performing the experiment has already been considered in Section G.6. 
There it was found that the expected cost based entirely on the prior information [ ]'E C  is 70 

monetary units. 

In this situation the experiment is planned but the result is still unknown. In this situation the 
expected cost disregarding the experiment cost can be found as: 

[ ] [ ] [ ]
1,...,1 1

' '' ' min { '' ( ) }
n n

i i i j ij mi i
E C P I E C I P I E C a I

=
= =

⎡ ⎤= ⎡ ⎤ =⎣ ⎦ ⎣ ⎦∑ ∑  (G.7)

where n  is the number of different possible experiment findings and m  is the number of 
different decision alternatives. In Equation (G.7) the only new term in comparison to the 
previous section is [ ]' iP I  which may be calculated by: 
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[ ] [ ] [ ]1 1 2 2' ' 'i i iP I P I P P I Pθ θ θ θ= ⎡ ⎤ + ⎡ ⎤⎣ ⎦ ⎣ ⎦  (G.8)

With reference to Section G.6 and G.7 the prior probabilities of obtaining the different 
indications by the tests are [ ]1'P I , [ ]2'P I  and [ ]3'P I  given by: 

[ ] [ ] [ ]1 1 1 1 1 2 2' ' ' 0.1 0.6 0.8 0.4 0.38P I P I P P I Pθ θ θ θ= ⎡ ⎤ + ⎡ ⎤ = ⋅ + ⋅ =⎣ ⎦ ⎣ ⎦  

[ ] [ ] [ ]2 2 1 1 2 2 2' ' ' 0.7 0.6 0.1 0.4 0.46P I P I P P I Pθ θ θ θ= ⎡ ⎤ + ⎡ ⎤ = ⋅ + ⋅ =⎣ ⎦ ⎣ ⎦  

[ ] [ ] [ ]3 3 1 1 3 2 2' ' ' 0.2 0.6 0.1 0.4 0.16P I P I P P I Pθ θ θ θ= ⎡ ⎤ + ⎡ ⎤ = ⋅ + ⋅ =⎣ ⎦ ⎣ ⎦  

The posterior expected cost in Equation (G.7) are found to be:  

[ ] { }
{ }
{ }

1 1 1 2 1| min [ | ] (100 10) [ | ] 10; 100

min 0.158 110 0.842 10; 100

min 25.8;100 25.8

E C I P I P I

MU

θ θ′′ ′′ ′′= ⋅ + + ⋅

= ⋅ + ⋅

= =

 

[ ] { }
{ }
{ }

2 1 2 2 2| min [ | ] (100 10) [ | ] 10; 100

min 0.913 110 0.087 10;100

min 101.3;100 100

E C I P I P I

MU

θ θ′′ ′′ ′′= ⋅ + + ⋅

= ⋅ + ⋅

= =

 

[ ] { }
{ }
{ }

3 1 3 2 3| min [ | ] (100 10) [ | ] 10; 100

min 0.75 (100 10) 0.25 10;100

min 85;100 85

E C I P I P I

MU

θ θ′′ ′′ ′′= ⋅ + + ⋅

= ⋅ + + ⋅

= =

 

where the posterior probabilities 1'' i IP θ⎡ ⎤⎣ ⎦  and 2'' i IP θ⎡ ⎤⎣ ⎦  are determined as already shown 

in section G.7 for 3'' i IP θ⎡ ⎤⎣ ⎦ . 

The expected cost corresponding to the situation where the experiment with the experiment 
costs PC  is therefore: 

[ ] [ ] [ ] [ ]1 1 2 2 3 3| [ ] | [ ] | [ ]
(25.8 ) 0.38 (100 ) 0.46 (85 ) 0.16
(69.4 )

P P P

P

E C E C I P I E C I P I E C I P I
C C C
C MU

′′ ′ ′′ ′ ′′ ′= + +

= + ⋅ + + ⋅ + + ⋅
= +

 

By comparison of this result with the expected cost corresponding to the prior information it 
is seen that the experiment should be performed if the cost of the experiment a less than 0.6: 

[ ] [ ] 70 (69.4 ) 0.6P PE C E C C C′ − = − + = −  
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G.9  The Risk Treatment Decision Problem 
Having introduced the fundamental concepts of decision theory it will now be considered how 
these carry over to the principally different types of risk analysis. 

The simplest form of the risk analysis, i.e. a simple evaluation of the risks associated with a 
given activity and/or decision alternative may be related directly to the prior decision analysis. 
In the prior analysis the risk is evaluated on the basis of statistical information and 
probabilistic modelling available prior to any decision and/or activity. A simple 
decision/event tree in Figure G.6 illustrates the prior analysis. In a prior analysis the risk for 
each possible activity/option may e.g. be evaluated as: 

[ ]
1

n

i i
i

R E U P C
=

= =∑  (G.9)

where R  is the risk, U  the utility, iP  is the ith branching probability and iC  the consequence 
of the event of branch i. 

U

 

Figure G.6: Decision/event tree for prior and posterior decision analysis. 

A prior analysis in fact corresponds closely to the assessment of the risk associated with a 
known activity. A prior analysis thus forms the basis for the comparison of risks between 
different activities. 

A posterior analysis is in principle of the same form as the prior analysis, however, changes 
in the branching probabilities and/or the consequences in the decision/event tree reflect that 
the considered problem has been changed as an effect of risk reducing measures, risk 
mitigating measures and/or collection of additional information.  

A posterior analysis may thus be used to evaluate the effect of activities, which factually have 
been performed. For example, for assessment of existing facilities the testing and inspection 
of the “as built” facility would be expected to reveal many gross design and construction 
errors, leading to a more accurate reliability analysis. 

A pre-posterior analysis may be illustrated by the decision/event tree shown in Figure G.7. 
Using pre-posterior analysis optimal decisions in regard to activities that may be performed in 
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the future, e.g. the planning of risk reducing activities and/or collection of information may be 
identified. An important prerequisite for pre-posterior analysis is that decision rules need to be 
formulated for specifying the future actions that will be taken on the basis of the results of the 
planned activities.  

Decisions Random
outcome

Utility /
Consequences

U

Planned
investigations

Results of
investigations

Decisions Random
outcome

Risk reducing
and mitigating
actions

Activity
performance

 

Figure G.7: Decision/event tree for pre-posterior decision analysis. 

In a pre-posterior analysis the optimal investigation a∗  is identified through: 

[ ]
1

min ' '' [ ( ( ), )] min ' ''( ( ), ) ( ( ))
n

Z Z Z i ia a i
E E C a z z E P a z z C a z

=

⎡ ⎤= ⎢ ⎥⎣ ⎦
∑  (G.10)

where ( )a z  are the different possible actions that can be taken on the basis of the result of the 
considered investigation z , [ ]E ⋅  is the expected value operator. ´ and ´´ refer to the 

probabilistic description of the events of interest based on prior and posterior information 
respectively. In Equation (G.10) the expected utility has been associated only with expected 
costs why the optimal decision is identified through a minimization. If utility more generally 
is associated with expected benefits the optimization should be performed through 
maximization. 

Pre-posterior analyses form a strong decision support tool and have been intensively used for 
the purpose of risk based inspection planning. However, so far pre-posterior decision analysis 
has been grossly overlooked in risk assessments. 

It is important to note that the probabilities for the different events represented in the prior or 
posterior decision analyses may be assessed by logic tree analysis, classical reliability analysis 
and structural reliability analysis or any combination of these. The risk analysis thus in effect 
includes all these aspects of systems and component modelling in addition to providing the 
framework for the decision making. 
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Self Assessment Questions/ Exercises 

G.1 What must be identified before a decision analysis can be performed? 

G.2 What is a utility function? 

G.3 What is the difference between prior and posterior decision analysis? 

G.4 What is the idea behind the pre-posterior decision analysis? 

G.5 After heavy snowfall, you need to decide whether to clean up a roof from the snow or 
not. In the following some information is provided to enable in the decision making. 

 The clean up of the roof can be made from the local fire department. This option is 
associated with a cost equal to 4000 CHF. In the case of collapse of the roof due to the 
snow load the associated cost is equal to 1.000.000 CHF. 

 The probability of collapse of the roof has been estimated using First Order Reliability 
Methods (FORM). If the snow is dry, SD , the probability of collapse is: 

3( ) 10fP SD −= . If the snow is wet, SW , the probability of collapse is: 
3( ) 6.2 10fP SW −= ⋅ . In case where there is no snow, SN , on the roof the probability of 

collapse is equal to: 4( ) 5 10fP SN −= ⋅ . 

 Built up an appropriate event tree and use it to find out which decision is the most 
beneficial one in terms of cost? 
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Module A 

A.1 According to the so-called Brundtland Commission (1987), a sustainable 
development is defined as a development ''that meets the needs of the present 
without compromising the ability of future generations to meet their own needs''. 
Consideration of a sustainable development leads to sustainable decision making 
which may be understood as based on a joint consideration of society, economy 
and environment. (For more see section A.1) 

A.2 A beneficial engineering facility is understood as: being economically efficient in 
serving a specific purpose, fulfilling given requirements in regard to the safety of 
the personnel, and fulfilling given requirements to limit the adverse effects of the 
facility on the environment. (For more see section A.2) 

A.3 As discussed in section A.3 when considering an activity with only one event with 
potential consequences C , the risk R  is the probability P that this event will 
occur multiplied with the consequences given the event occurs i.e.: 

  R P C=  

A.4 The term “acceptable risks” points out to “what is one prepared to invest and/or 
pay for the purpose of getting a potential benefit”. (For more see section A.2) 

A.5 As discussed in section A.3 the risk of an event is calculated by Equation (A.1) 
such as:  R P C= . Hence the given table can easily be completed and it can be 
seen that event 3 is associated with the higher risk. 

 
Event 1 2 3 
Event probability 10% 1% 20% 
Consequences 100 SFr 500 SFr 100 SFr 
Risk 10 5 20 
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Module B 

B.1 The estimation is based on the so called frequentistic interpretation of 
probability. In the frequentistic interpretation the probability ( )P A  is simply the 
relative frequency of occurrence of the event A  as observed in an experiment 
with n  trials. It is mathematically defined as: 

exp
exp

( )=lim                           for        ANP A n
n

→∞  

 (For more see section B.2) 

 

B.2 Following the rule of Bayes’ (see section B.5) the conditional probability of the 
event 1E  given that the event 2E  has occurred is written as: 

1 2
1 2

2

( )( )
( )

P E EP E E
P E
∩

= . 

B.3 In probability theory the probability, ( )P A , of an event A  can take any value 
within the following boundaries: 

0 ( ) 1P A≤ ≤  

1 ( ) 1P A− ≤ ≤  

( )P A−∞ ≤ ≤ ∞  

 

B.4 If the intersection of two events, A  and B  corresponds to the empty set ∅ , 
i.e. A B∩ =∅ , the two events are:  

Mutually exclusive. 

Independent. 

Empty events. 

 

B.5 Which one(s) of the following expressions is(are) correct? 

The probability of the union of two events A  and B  is equal to the sum of the 
probability of event A  and the probability of event B , given that the two events are 
mutually exclusive. 

The probability of the union of two events A  and B  is equal to the probability of the 
sum of event A  and event B , given that the two events are mutually exclusive. 
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The probability of the intersection of two events A  and B  is equal to the product of 
the probability of event A  and the probability of event B , given that the two events 
are mutually exclusive. 

The probability of the intersection of two events A  and B  is equal to the product of 
the probability of event A  and the probability of event B , given that the two events 
are independent. 

 

B.6 The probability of the intersection of two mutually exclusive events is equal to: 

The product of the probabilities of the individual events. 

The sum of the probabilities of the individual events. 

The difference between the probabilities of the individual events. 

One (1). 

Zero (0). 

 

B.7 Within the theory of sample spaces and events, which one(s) of the following 
statements is(are) correct? 

An event A  is defined as a subset of a sample space Ω . 

A sample space Ω  is defined as a subset of an event A . 

 

B.8 The probability of the union of two not mutually exclusive events A  and B  is 
given as: ( ) ( ) ( ) ( )P A B P A P B P A B∪ = + − ∩ . It is provided that the probability 
of event A  is equal to 0.1, the probability of event B  is 0.1 and the probability 
of event B  given event A , i.e. ( )P B A  is 0.8. Which result is correct?  

( ) 0.6P A B∪ = −  

( ) 0.12P A B∪ =  

( ) 0.04P A B∪ =  

 

B.9 For an event A  in the sample space Ω , event A  represents the complementary 
event of event A . Which one(s) of the following hold? 

A A∪ =Ω  

A A∩ = Ω  



 Annex A.5 

A A∪ =∅  

 

B.10 The commutative, associative and distributive laws describe how to: 

Operate with probabilities. 

Operate with intersections of sets. 

Operate with unions of sets. 

None of the above. 

 
B.11 Following the principles explained in section B.5 it is: 
 

 a. The table is completed as follows: 

 

 b. Using the Bayes’ Theorem the probability that the final decision made 
by SNF is the same with the indicative assessment of Dr. Beispiel is: 

 

( ) 2 2 2
2 2 3

2
1

2 2 2

2 1 1 2 2 2 2 3 3

( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0.74 0.35 0.799
(0.1 0.45) (0.74 0.35) (0.1 0.2)

i i
i

P I D D P D
P D I D

P I D D P D

P I D D P D
P I D D P D P I D D P D P I D D P D

=

=
= = =

=

=
=

= + = + =

⋅
=

⋅ + ⋅ + ⋅

∑

 

 

 

 

 

SNF final decision 
iD  

Dr. Beispiel’s indicative assessment, jI  

1jI D=  2jI D=  3jI D=  

1D  0.86 0.1 0.04 

2D  0.2 0.74 0.06 

3D  0 0.1 0.9 
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Module C 

C.1 The main purpose of the use of descriptive statistics is to assess the 
characteristics and the level of uncertainty of a given quantity of interest without 
assuming anything in terms of the degree or nature of the randomness underlying 
the data analysed, (see also section C.1) 

C.2 By definition the sample coefficient of correlation may lie in the interval [ ]1;1− . 

In both extreme cases, there are linear relationships between two data sets, (see 
also section C.2). 

C.3 The interval width plays a role for the resolution of the representation of the 
observations. If the interval width is too large, the histogram tells little about 
relative occurrences of individual phenomena. If the width is too small, the 
relative occurrences in each interval fluctuate due to the random nature of the 
phenomena, (see also section C.3). 

C.4 As discussed in section C.3 five characteristics of a data set are normally 
presented in a Tukey box plot: the lower adjacent value, the lower quartile, the 
median, the upper quartile and the upper adjacent value. Outside values can also 
be shown on a Tukey box plot. 

C.5 Q-Q plots provide an efficient means of comparison of observations of two 
different data sets, (see also section C.3). 

C.6 Provide an estimate of the correlation coefficient of the data sets plotted in the 
following figure.  

 
 A XYr ≈  

 B XYr ≈  

 C XYr ≈  

 D XYr ≈  

 

C.7 A number of statistical terms are shown in the following table. Check if the terms 
have something to do with (a) location parameter, (b) dispersion parameter or (c) 
none of the above. 

 

 

+0.4 

 

+0.8 

-0.4 
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Coefficient of variation 

   

Standard deviation 

Median
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Quartile

Mean

a b c

 
 

C.8 Measurements were taken of the concrete cover depth of a bridge column. The 
histogram of the measured values has been plotted.  
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If X  represents the random variable for the concrete cover depth which one(s) of the 
following statement(s) is(are) correct? 

The sample mean, x , is equal to 0.16 mm. 

The sample mean, x , is equal to 15 mm. 

The mode of the data set is equal to 15 mm. 
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C.9 Which one(s) of the following are features of a symmetrical probability density 
function? 

The variance is equal to the coefficient of variation. 

The mode is equal to the median. 

The skewness is equal to zero.  

None of the above. 
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Module D 

D.1 Inherent natural variability may be interpreted simply as the uncertainty which 
cannot be reduced by means of collection of additional information. This 
definition implies that the amount of uncertainty due to inherent natural 
variability depends on the models applied in the formulation of the engineering 
problem. Presuming that a refinement of models corresponds to looking more 
detailed at the problem at hand, one could say that the uncertainty structure 
influencing a problem is scale dependent. The type of uncertainty associated with 
the state of knowledge has a time dependency. In principle, if the observation is 
perfect without any errors the knowledge about the phenomenon is perfect. The 
modelling of the same phenomenon in the future, however, is uncertain as this 
involves models subject to natural variability, model uncertainty and statistical 
uncertainty. The above discussion shows another interesting effect that the 
uncertainty associated with a model concerning the future transforms from a 
mixture of aleatory and epistemic uncertainty to a purely epistemic uncertainty 
when the modelled phenomenon is observed, (see also section D.2). 

D.2 Epistemic uncertainty involves statistical uncertainty and model uncertainty. 
Epistemic uncertainty may be reduced by e.g. collecting additional information. 
On the other hand, aleatory uncertainty is related to the random nature of 
phenomena, and thus cannot be reduced by collecting information, (see also 
section D.2). 

D.3 A continuous random variable is a random variable which can take on any value, 
(see also section D.3) 

D.4 With the help of Equations (D.16) and (D.18) it is: 

 a. [ ] [ ]E a bX a bE X+ = +  

 b. [ ] [ ]2Var a bX b Var X+ = ⋅  

D.5 The required characteristics of the random variable are shown in the following 
illustrations. 
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Figure D.12: Illustration of a probability density function. 
 ( )XF x

x
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Figure D.13: Illustration of a cumulative distribution function. 
 

D.6 According to the central limit theorem “the probability distribution for the sum of 
a number of random variables approaches the Normal distribution as the number 
becomes large”. 

D.7 The standard Normal distribution is a special version of the Normal distribution. 
A standardized random variable is a random variable that has been transformed 
such as its expected value is equal to zero and its variance is equal to one, (see 
also Equation D.48). 

D.8 A sequence of experiments with only two possible mutually exclusive outcomes 
is called a sequence of Bernoulli trials. Typically the two possible events of a 
Bernoulli trial are referred to as a success or a failure, (see also section D.4). 

D.9 Poisson process is a family of discrete processes, which may be used for 
modeling the number of occurrences of events, (see more in section D.3). 

D.10 The probability of exceeding the value of 5 is calculated as: 
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1010 3
2

5 5

3( 5) 0.875
1000 1000

xP X x dx> = = =∫  

D.11 The probability that the engine breaks down within 2 years after placed in 
operation is calculated as: 

 
2

10( 2 ) (2) 1 e 0.181TP T years F
⎛ ⎞−⎜ ⎟
⎝ ⎠≤ = = − =  

D.12 The probability of no snowfall in the next year is equal to 0.067. The probability of 
exactly 5 snowfalls in the next year is equal to 0.176. The probabilities are 
calculated as: 

 
0

5 1(5 1)( 0) 0.0067
0!

P X e− ⋅⋅
= = =  and 

5
5 1(5 1)( 5) 0.176

5!
P X e− ⋅⋅

= = =  

 
 
 
 
 
 
 
 
 
 
 
 



 Annex A.12

Module E 

E.1 The procedure of establishing a probabilistic model, as described in section E.1, 
consists of five steps: 

 1) Assessment and statistical quantification of the available data 

 2) Selection of distribution function 

 3) Estimation of distribution parameter 

 4) Model verification and 

 5) Model updating. 

E.2 The probability that the sample average of the steel yield stress will lie within an 
interval of 9.8±  MPa of the true mean value Xμ  is 0.95, (see also section E.3, 
Equation (E.22)). 

E.3 The hypothesis testing procedure, as described also in section E.4, consists of the 
following steps/actions: 

 1) Formulate a null hypothesis, 0H  

 2) Formulate an operating rule, 1H  

 3) Select a significance level, α  

 4) Identify the value resulting in a probability α  of performing a Type I error  

 5) Perform the testing, obtain the sample statistic 

6) Judge the null hypothesis 

E.4 An engineer tests the null hypothesis that the mean value of the concrete cover 
depth of a concrete structure corresponds to design assumptions. In a preliminary 
assessment a limited number of measurements of the concrete cover depth are 
made, and after performing the hypothesis test the engineer accepts the null 
hypothesis. After a few years, a comprehensive survey of the concrete cover depth 
is carried out, i.e. many measurements are made. The survey shows that the mean 
value of the concrete cover depth does not fulfill the design assumptions. Which 
of the following statement(s) is(are) correct? 

 

In the preliminary survey the engineer has performed a Type I error. 

In the preliminary survey the engineer has performed a Type II error. 

In the preliminary survey the engineer has performed a Type I and a Type II error. 
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E.5 Probability papers are useful for checking the plausibility of a selected 
distribution family. A probability paper for a given distribution family is 
constructed such that the cumulative probability distribution function (or the 
complement) for that distribution family will have the shape of a straight line 
when plotted on the paper. A probability paper is thus constructed by a non-linear 
transformation of the y-axis, (see also section E.5). 

E.6 The data seem to fit well on a straight line and hence the assumption of a Gumbel 
distribution can be accepted by the engineer. 

E.7 The Maximum Likelihood Method (MLM) enables engineers to calculate the 
distribution parameters of a random variable on the basis of data. Which of the 
following statement(s) is(are) correct? 

 

The MLM provides point estimates of the distribution parameters. 

The MLM provides information about the uncertainty associated with the estimated 
parameters. 

The MLM provides no information about the uncertainty associated with the estimated 
parameters. 

 

E.8 From past experience it is known that the shear strength of soil can be 
described by a Lognormal distribution. 15 samples of soil are taken from a site 
and an engineer wants to use the data in order to estimate the parameters of the 
Log-normal distribution. The engineer: 

may use a probability paper to estimate the parameters of the Lognormal distribution. 

may use the maximum likelihood method to estimate the parameters of the Log-
normal distribution. 

may use the method of moments to estimate the parameters of the Lognormal 
distribution. 

None of the above. 

E.9 It is suggested that the data are lumped in a way that each interval contains about 
5 or more observations. If the data are realizations from a continuous distribution 
function, then they must be descritized, (see also section E.7). 

E.10 Both tests are used to assess the goodness of fit of the assumed model with data. 
The Chi-square test is used basically for discrete distribution functions, while the 
Kolmogorov-Smirnov test is used for continuous distribution functions. However, 
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by descritizing the support of a continuous distribution function, the Chi-square 
test can be used also for the continuous distribution function. Another difference 
is that whereas the Chi-square test can be applied for the cases where the 
distribution parameters are already estimated from data, the Kolmogorov-Smirnov 
test cannot be applied when the distribution parameters are estimated from data, 
(see also section E.7).  

E.11 Following the introduction of the 2χ  goodness of fit test in section E.7, the 
number of degrees of freedom of the Chi-square sample statistic 2

mε  are 
1 3 1 2k − = − = , where k  the number of intervals into which the samples were 

divided. The null hypothesis oH  that X  follows a Normal distribution with the 
given parameters can be tested using the following operating rule: 2( )mP ε α≥ Δ = , 
where Δ  is the critical value with the sample statistic shall be compared. Using 
Table T.3 and for a significance level of 5% it is observed that 5.9915Δ = , a 
value that is larger than 2 0.41mε = . Hence the null hypothesis cannot be rejected at 
the 5% significance level.  

E.12 An engineer wants to examine and compare the suitability of two distribution 
function model alternatives for a random material property. Measurements are 
taken of the material property. The engineer uses the two model alternatives to 
calculate the Chi-square sample statistics and the corresponding sample 
likelihoods. The results are given in the following table: 

 
Model Degrees of freedom Chi-square sample statistic Sample likelihood

1 2 0.410 0.815 

2 1 0.407 0.524 

 
Which of the following statement(s) is(are) correct? 

The engineer may accept model 1 at the 5% significance level. 

The engineer may accept model 2 at the 5% significance level. 

Model 1 is more suitable than model 2. 

None of the above. 
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Module F 

F.1 It is convenient to describe failure events in terms of functional relations, which if 
they are fulfilled define that the considered event will occur. A failure event may 
be described by a functional relation, the limit state function ( )g x , such as: 

{ }( ) 0F g= ≤x , where the components of the vector x  are realisations of the so-

called basic random variables X  representing all the relevant uncertainties 
influencing the probability of failure, (see also section F.2). 

F.2 The reliability index may be defined as the shortest distance between the curve 
represented by the limit state function and the origin. The reliability index β  is 
related to the probability of failure FP  as: ( )FP β= Φ − , (see also section F.3). 

F.3 The estimate of the failure probability becomes exact as the number of simulation 
approaches infinity, (see also section F.6). 

F.4 The reliability index β  can be calculated by Equation (F.9), section F.3: M

M

μβ
σ

= . 

The mean Mμ  and standard deviation Mσ  of the safety margin M R L= −  can be 
calculated by applying the properties of the expectation operator (see section D.3) 
on the safety margin expression. This gives: 

30 9 21M R L kNmμ μ μ= − = − =  and 

2 2 2 25 2 5.39M R L kNmσ σ σ= + = + =  

Hence the reliability index is equal to: 

21 3.9
5.39

M

M

μβ
σ

= = = . 

The annual probability of failure of the timber beam is: 

5( 0) ( ) ( 3.9) 4.8 10FP P M β −= ≤ = Φ − = Φ − = ⋅  

Where 5( 3.9) 4.8 10−Φ − = ⋅ , can be found from Table T.2. 

F.5 The Safety margin can be written as: 

100 35y yM R S A f S f= − = ⋅ − = ⋅ −  
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Since the yield stress yf  is Normal distributed, M  is also Normal distributed and 

its mean and standard deviation can be calculated as follows: 

3[ ] [100 35] 100 35 100 425 10 35 7.5
yM y fE M E f KNμ μ −= = ⋅ − = ⋅ − = ⋅ ⋅ − =  

And the variance is calculated as: 

2

2 2 2 3 2 2

[ ] [100 35] [100 ] [35]

    =100 0 100 (25 10 ) 6.25
y

M y y

f

VAR M VAR f VAR f VAR

KN

σ

σ −

= = ⋅ − = ⋅ − =

⋅ − = ⋅ ⋅ =
 

And the standard deviation is then: 

2 6.25 2.5M M KNσ σ= = =  

The probability of failure of the rod is then (following Equation (F.8), section 
F.3) : 

0 0 0 7.5( 0) ( ) ( ) ( )
2.5

   = ( 3) 0.00135

M M
f M

M M

P P M P Z μ μ
σ σ
− − −

= ≤ = ≤ = Φ = Φ =

Φ − =
 

Whereas the reliability of the rod is simply: 

Reliability=1 1 0.00135 0.99865fP− = − =  

(Note: The standard Normal distribution value corresponding to -3 is taken from 
Table T.1)  

It is easier to draw the probability density function of the standardized safety 
margin i.e. of MZ . The area under the density function to the right of -3 in the x-
axis represents the safe region. 
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F.6 Using the provided Figure and basic principles of geometry it is: 

sin ( ) sin( )
b c
β π α β

=
− −

 ⇒  sin ( )( , , )
sin ( )

b f c c βα β
α β

= = ⋅
+

 

Using the properties of the expectation operator (see section D.3) it is: 

[ ] sin ( ) sin ( ) sin (1.225)[ ] 6 6.32
sin ( ) sin ( ) sin (1.225 0.813)

E b E c E c kmβ β
α β α β

⎡ ⎤
= ⋅ = ⋅ = ⋅ =⎢ ⎥+ + +⎣ ⎦

 

While the estimation of the error associated with the measurement of side b  is 
represented by the standard deviation [ ]bσ  and is estimated as in the following :  

[ ]
22 2

2 2 2
c

f f fV b
c α βσ σ σ

α β
⎡ ⎤∂ ∂ ∂⎡ ⎤ ⎡ ⎤= ⋅ + ⋅ + ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

sin ( )
sin ( )

f
c

β
α β

∂
=

∂ +
 

( )( ) ( ) ( )
( )( )

1
2

sin cossin ( ) sin ( ) sin
sin ( ) sin

f c c c
β α ββ β α β

α α β α α α β
− ⋅ +⎛ ⎞∂ ∂ ∂

= ⋅ = ⋅ ⋅ + = − ⋅⎜ ⎟∂ + ∂ ∂ +⎝ ⎠
 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

( )
MZ Mf Z

0
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( )( )

( ) ( ) ( ) ( ) ( )( )

( )
( )

( ) ( )
( )( )

( ) ( ) ( ) ( )
( )( )

( )

1

1 2

2 2

sin ( ) sin ( ) sin ( )
sin ( )

cos ( ) sin ( ) 1 sin ( ) cos 1 sin ( )

cos sin cos cos sin sin cos
sin sin sin

sin

sin

f c c

c c

c c

c

β β α β
β α β β β

β α β α β α β β

β β α β β α β β α β
α β α β α β

α β β

−

− −

⎛ ⎞∂ ∂ ∂
= ⋅ = ⋅ ⋅ +⎜ ⎟∂ + ∂ ∂⎝ ⎠

= ⋅ ⋅ + + − ⋅ + ⋅ + ⋅ ⋅ ⋅

⎛ ⎞ ⎛ ⎞⋅ + ⋅ + − ⋅ +⎜ ⎟ ⎜ ⎟= ⋅ − = ⋅
⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠

+ −
= ⋅

( )( )
( )

( )( )2 2

sin

sin
c

α

α β α β

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= ⋅
⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 

And eventually it is: 

[ ]
22 2

2 2 2

2 2 2
2 2 2

2 2

2 2 2 2 2 2 2

sin sin cos( ) sin
sin( ) (sin( )) (sin( ))

1.0537 0.005 3.1894 0.011 5.4671 0.011 0.004875

c

c

f f fV b
c

c c

km

α β

α β

σ σ σ
α β

β β α β ασ σ σ
α β α β α β

⎡ ⎤∂ ∂ ∂⎡ ⎤ ⎡ ⎤= ⋅ + ⋅ + ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⋅ ⋅ + ⋅
= ⋅ + ⋅ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= ⋅ + ⋅ + ⋅ =

 

The error in b is calculated by: 

[ ] 0.004875 0.0698b kmσ = =
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Module G 

G.1 The probabilistic models concerning events of interest and the consequences for 
each event and action. 

G.2 Utility function is a numerical assessment of the preferences of the decision 
maker, (see also section G.3). 

G.3 Prior decision analysis is based on existing information and experience for a first 
estimate of the probability of the considered events. In posterior decision analysis 
new information is used to update the above probabilities and carry out a 
reassessment of the decision problem, (see also sections G.36 and G.7). 

G.4 In pre-posterior decision analysis the decision maker can evaluate whether it is 
useful or not to “buy” new information that will enable to make her final decision, 
(see also section G.8). 

G.6 Using the information provided it is: 

( ) 0.6
( ) 0.4
( | ) 0.75
( | ) 0.75
( | ) 1 ( | ) 1 0.75 0.25
( | ) 1 ( | ) 1 0.75 0.25

SD

SW

SD SD

SW SW

P SW
P SD
P I SD
P I SW
P I SW P I SD
P I SD P I SW

=
=

=

=
= − = − =
= − = − =

 

Using the Bayes’ Theorem it is: 

( | ) ( ) 0.75 0.4( | ) 0.6667 0.6667
( | ) ( ) ( | ) ( ) 0.75 0.4 0.25 0.6

( | ) ( ) 0.25 0.4 2( | ) 0.18182
( | ) ( ) ( | ) ( ) 0.25 0.4 0.75 0.6 11

( | )

SD
SD

SD SD

SW
sw

SW SW

SD

P I SD P SDP SD I
P I SD P SD P I SW P SW

P I SD P SDP SD I
P I SD P SD P I SW P SW

P SW I

⋅ ⋅
= = = =

⋅ + ⋅ ⋅ + ⋅

⋅ ⋅
= = = =

⋅ + ⋅ ⋅ + ⋅

=
( | ) ( ) 0.25 0.6 1 0.3333

( | ) ( ) ( | ) ( ) 0.25 0.6 0.75 0.4 3

( | ) ( ) 0.75 0.6 9( | ) 0.8181
( | ) ( ) ( | ) ( ) 0.75 0.6 0.25 0.4 11

SD

SD SD

SW
SW

SW SW

P I SW P SW
P I SW P SW P I SD P SD

P I SW P SWP SW I
P I SW P SW P I SD P SD

⋅ ⋅
= = =

⋅ + ⋅ ⋅ + ⋅

⋅ ⋅
= = = =

⋅ + ⋅ ⋅ + ⋅

 

And: 
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( ) ( )

( ) ( )

( ) ( | ) ( | ) 0.75 0.6 0.25 0.4 0.55

( ) ( | ) ( | ) 0.25 0.6 0.75 0.4 0.45

SW SW SW

SD SD SD

P I P I SW P SW P I SW P SW

P I P I SW P SW P I SD P SD

= ⋅ + ⋅ = ⋅ + ⋅ =

= ⋅ + ⋅ = ⋅ + ⋅ =

 

The event tree can now be filled in. An example of calculation is provided in the 
following.  

Consider the branch associated with the activity “clean up the roof”. If the roof is cleaned 
up there are two events that may occur according to our problem: 

• the roof may collapse (due to various reasons) 

• the roof will not collapse (survival of the roof) 

These events are associated with some probability as shown in the event tree branches: 

a. 4( ) 5 10fP SN −= ⋅  and b. 4( ) 1 5 10 0.9995sP SN −= − ⋅ = .  

Hence the expected cost of this action is: 

4
 [ ] ( ) 1000004 ( ) 4000 5 10 1004000 0.9995 4000

            4500 
clean up f sE C P SN P SN

CHF

−= ⋅ + ⋅ = ⋅ ⋅ + ⋅

=
 

In a similar way the rest of the event tree may be completed. 
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Carry out test

Clean up

No clean up

Wet snow

Dry snow

Collapse

Collapse

Collapse

No collapse

No collapse

No collapse Collapse

Collapse

Collapse

No collapse

No collapse

No collapse

Collapse

Collapse

Collapse

No collapse

No collapse

No collapse

No clean up

Clean up

I=Wet snow

I=Dry snow

Wet snow

Dry snow

Wet snow

Dry snow

No clean up

Clean up

 

4500

4120

4704.9

6254.5

5500

5500

3733.1

 3( ) 6.2 10fP SW −= ⋅

 3( ) 10fP SD −=

4( ) 5 10fP SN −= ⋅

 ( ) 0.999sP SD =

( ) 0.9938sP SW =

 ( ) 0.9995sP SN =

( )SWP I =0.55

( ) 0.45SDP I =

4( ) 5 10fP SN −= ⋅

 ( ) 0.9995sP SN =

 

3

(
) 6.2 10

fP SW

−

=
⋅

 ( ) 0.9938
sP SW =

( | ) 0.8181SWP SW I =

( | ) 0.18182swP SD I =

( | ) 0.333SDP SW I =

( | ) 0.6667SDP SD I =

 3( ) 10fP SD −=

 ( ) 0.999sP SD =

4( ) 5 10fP SN −= ⋅

 ( ) 0.9995sP SN =

 3( ) 6.2 10fP SW −= ⋅

 ( ) 0.9938
sP SW =

 
3

( ) 10
fP SD

−
=

 ( ) 0.999sP SD =  
 
It can be seen that the action associated with the smaller cost is not to clean up the roof.  
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EXAMPLES OF CALCULATIONS 
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Module E 

Equation (E.24) 

Calculation of the standard Normal distribution ( )Φ ⋅ : 
If Z  is a standard Normal distributed random variable then: ( ) ( )p P Z z z= ≤ = Φ . If for 
example 0.2z =  from Table T.1 it is: (0.2) 0.5793Φ =  
 
Calculation of the inverse standard Normal distribution 1( )−Φ ⋅ : 
If Z  is a standard Normal distributed random variable then: 1( )p z−Φ = . If for example 

0.5793p =  from Table T.1 it is: 1(0.5793) 0.2−Φ =  
 
So in Equation (E.24) if the significance level α  is assumed equal to 10% then it is: 

( )1 1 1
/ 2

0.11 1 0.95
2 2

kα
α− − −⎛ ⎞ ⎛ ⎞= Φ − = Φ − = Φ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 which from Table T.1, as explained above, 

yields (approximately): ( )1 0.95 1.65−Φ =  (1.645 approximately if you carry out 

interpolation). 

Equation (E.28) 

From Equation (E.27) the Normal distributed random variable X  is transformed to a 
standard Normal distributed random variable such as: 

( )0.3 0.3 1

0.3 0.3
1

0.30.3 1
/ / /

0.3 0.3 0.3 0.3 0.3 1 0.1
0.04 / 10 0.04 / 10 0.04 / 10

0.3
0.04 / 10 0.04 / 10 0.04 / 1

X X X

X X X

X X X

X X X

P X

X
P

X
P

n n n

XP

XP

α

μ μ μ
α

σ σ σ

μ μμ α
σ σ σ

−Δ ≤ ≤ + Δ = − ⇒

⎛ ⎞− Δ − − + Δ −
≤ ≤ = − ⇒⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞− + Δ −−Δ −

≤ ≤ = − ⇒⎜ ⎟⎜ ⎟
⎝ ⎠
⎛ ⎞− Δ − − + Δ −

≤ ≤ = − ⇒⎜ ⎟
⎝ ⎠

−Δ − Δ
≤ ≤ 0.9

0
⎛ ⎞

= ⇒⎜ ⎟
⎝ ⎠

 

Following the standardization of X  a new variable Z  results 
/

X X

XX

X XZ
n

μ μ
σ σ
− −

= =  

that is standard Normal distributed with mean equal to 0 and standard deviation equal to 1. 
So form the above equation we can write: 
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1

0.3 0.9
0.04 / 10 0.04 / 10 0.04 / 10

0.9
0.04 / 10 0.04 / 10

1 0.9 2 1 0.9
0.04 / 10 0.04 / 10 0.04 / 10

0.95 (0.95)
0.04 / 10 0.04 / 10
0.041

10

XP

P Z P Z

−

⎛ ⎞−Δ − Δ
≤ ≤ = ⇒⎜ ⎟

⎝ ⎠
Δ −Δ⎛ ⎞ ⎛ ⎞≤ − ≥ = ⇒⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞Δ Δ Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞Φ − −Φ = ⇒ Φ − = ⇒⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
Δ Δ⎛ ⎞Φ = ⇒ = Φ ⇒⎜ ⎟

⎝ ⎠

Δ = .645 0.0208=

 

Where the value of 1(0.95) 1.645−Φ =  is found with the help of Table T.1. 

Equation (E.30) 

Care is required in solving Equation (E.30) in order to estimate Δ . The statistic T  is not 
Normal distributed so no standardization is made. The Equation is solved such as: 

( ) ( ) ( )
( ) ( )( )
( )

( )

1 1

1 1

2 1 1
2

2

P T P T P T

P T P T

P T

P T

α α

α

α

α

−Δ ≤ ≤ Δ = − ⇒ ≤ Δ − ≤ −Δ = −

≤ Δ − − ≤ Δ = −

≤ Δ − = −

−
≤ Δ =

 

Which for 10%α =  and 10n =  i.e. 1 10 1 9n − = − =  degrees of freedom Δ  is estimated 
from table T.2 equal to 1.83 

Equation (E.36) 

Since both X  and Y  are Normal distributed their difference X Y−  is a random variable 

also Normal distributed with mean X Yμ
−

 and standard deviation 
2 2
X Y

X Y k l
σ σσ

−
= + . So to 

solve Equation (E.35) the random variable X Y−  is standardised and the solution follows 
such as: 
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( ) ( )

( )1

2 2 2 2

1 0.9

0 0.9 0.9

X Y X Y

X Y X Y

X Y X Y

X Y
P X Y P

k l k l

μ μ
α

σ σ

σ σ σ σ

− −

− −

−

⎛ ⎞− − Δ −
− ≤ Δ = − ⇒ ≤ =⎜ ⎟

⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟Δ − Δ⎜ ⎟Φ = ⇒ = Φ
⎜ ⎟

+ +⎜ ⎟
⎝ ⎠

 

k and l are the number of the measurements of variables X and Y  respectively. 
 
From table T.1 it is: ( )1 0.9 1.28−Φ =  and  

2 2

1.28 X Y

k l
σ σ

Δ = +  

Examples on Chi-square significance test (page E-31) 

The degrees of freedom in the Chi-square significance test are defined as: 

1k l− −  

where k  is the number of intervals to which the available data are arranged and l  is the 
number of the parameters of the assumed distribution which are calculated from the data 
directly. 
 
In the first Example, starting in page E-29, both the distribution (Normal) and the 
parameters (mean and standard deviation) are postulated i.e. assumed for the concrete 
compressive strength data. That means that 0l =  since no parameter is calculated format 
the data. 
 
The data are arranged into 3 intervals and so 3k = . Following the above expression for 
the degrees of freedom the sample statistic (see Equation E.67) has 1 3 1 0 2k l− − = − − =  
degrees of freedom. 
 
In the second example (just above Table E.3) the distribution (Normal) and the mean 
value are postulated i.e. assumed while the standard deviation (parameter of the assumed 
distribution) is calculated from the data and hence 1l = . So in that case the degrees of 
freedom of the sample statistic are: 1 3 1 1 1k l− − = − − = . 
 
The critical value Δ  can be found from Table T.3 using the degrees of freedom and the 
probability ( )2 21m mP( ) P( )ε α ε α≤ Δ = − ⇔ ≥ Δ = . 
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Module F 

Example F.2 

The variance of c  is estimated as follows: 

[ ]
( ) ( )

0

2 2
2 2 2 2 2

2 2 2

1

2 2
2 2

2 2 2 2
2 2 2 22 2 2 2

( )

2 2
2 2

i

n b b

X b
i i

a b a b
a b a b

a b a ba b a b

hVar c
x b

α α

α

μ μ μ μ
σ σ σ

α

μ μ μ μσ σ σ σ
μ μ μ μμ μ μ μ

= =

⎛ ⎞ ⎛ ⎞∂ + ∂ +⎛ ⎞∂ ⎜ ⎟ ⎜ ⎟⎜ ⎟= = + =⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟+ = +
⎜ ⎟ ⎜ ⎟ + ++ +⎝ ⎠ ⎝ ⎠

∑
x x

x

 

Example F.3 

The equation that gives the reliability index (top of page F-10) comes out by solving 
( ) 0g u = . In page F-9 it is given: 

( ) 350 305 300 35 2000R A S R Ag u u u u u u= + − + +  

Continuing the above equation gives: 

2( ) ( α) 350 35 300 35 2000R A S R Ag u g β βα βα βα β α α= = + − + +  

And from Equation (F.17) it is: 

2( ) 0 350 305 300 35 2000 0
2000

350 305 300 35

R A S R A

R A S R A

g u α β α β α β α α β

β
α α α βα α

= ⇒ + − + + = ⇒
−

=
+ − +

 

From Equation (F.16) it is: 

2

1

( α)

( α)

R
R

n

i i

g
u

g
u

β
α

β
=

∂
−
∂

=
⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

∑
 

2(350 35 300 35 2000) 350 35R A S R A A
R

g
u

βα βα βα β α α βα∂
+ − + + = +

∂
 

2(350 35 300 35 2000) 350 35R A S R A R
A

g
u

βα βα βα β α α βα∂
+ − + + = +

∂
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2(350 35 300 35 2000) 300R A S R A
S

g
u

βα βα βα β α α∂
+ − + + =

∂
 

Hence: 

2

1

( α)
350 35

( α)

R A
R

n

i i

g
u

kg
u

β
βαα

β
=

∂
−
∂ +

= = −
⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

∑
 

Where ( ) ( )2 2 2350 35 350 35 300A Rk βα βα= + + + +  

Similarly Aα  and Sα  may be found. 
 
The aim is to calculate β  such as it will represent the smallest distance to the origin.  
A value of β  is guessed to start up with as well as values for the alphas – See Table F.1. 
Column “Start”. The next step (column for iteration 1) is calculated as follows: 

2000
350 305 300 35

2000 3.6719
350( 0.58) 305( 0.58) 300(0.58) 35 3( 0.58)( 0.58)

R A S R A

β
α α α βα α

−
= =

+ − +

−
=

− + − − + ⋅ − −

 

350 35 3( 0.58) 0.5701R k
α + ⋅ −

= − = −  

350 35 3( 0.58) 0.5701R k
α + ⋅ −

= − = −  

300 0.5916R k
α = − =  

Where ( ) ( )2 2 2350 35 3( 0.58) 350 35 3( 0.58) 300k = + ⋅ − + + ⋅ − +  

 
The iterations are continued until the value of β  converges to one value (In this example 
convergence occurs after the 4th iteration). 
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Table T.1:  Cumulative distribution function of the standard Normal distribution ( )zΦ . 

z z z z z

0 z
Probability density function of the standard normal random variable.
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Table T.2:  Quantile values of the t-distribution q . 

 

F(q)

0 q

F(q)

Probability density function of t-distribution.

 
ν : Degrees of freedom.         
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Table T.3:  Quantile values of the Chi-square distribution q . 

 

 

F(q)

F(q)

q0

Probability density function of Chi-square distribution.

 
ν : Degrees of freedom.           
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Table T.4:  Critical values of the Kolmogorov-Smirnov test. 

 
n

40n  1.63/ n  1.52/ n  1.36/ n  1.22/ n  1.07/ n  
α : Significance level.                  

n : Sample size.                  
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Table T.5:  Gamma function. 

 

 1

0
( ) t xx e t dt

∞
− −Γ = ∫  

 
x x x x x x

 

A  
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