Small Exercise 1

In one experiment, measurements are performed on the dimensions a, b and f in the figure shown below.

All the measurements are carried out independently with an error ε assumed to be standard normally distributed, that is, $\varepsilon_{a}=\varepsilon_{b}=\varepsilon_{f}=\varepsilon$

The error in d is then assumed to propagate according to $\varepsilon_{d}=\sqrt{\varepsilon_{a}^{2}+\varepsilon_{b}^{2}+\varepsilon_{f}^{2}}$
In another experiment, the dimension \boldsymbol{d} is measured directly with an error \boldsymbol{e} assumed to be standard normally distributed.

The ratio $\boldsymbol{R}\left(R=e / \varepsilon_{d}\right)$ of the error in the measurement of d from the 2 experiments is now being studied.

What is the variance of the variable R ??

Small Exercise 1

In one experiment, measurements are performed on the dimensions a, b and f in the figure shown below.

All the measurements are carried out independently with an error ε assumed to be standard normally distributed, that is, $\varepsilon_{a}=\varepsilon_{b}=\varepsilon_{f}=\varepsilon$

The error in d is then assumed to propagate according to $\varepsilon_{d}=\sqrt{\varepsilon_{a}^{2}+\varepsilon_{b}^{2}+\varepsilon_{f}^{2}}$
In another experiment, the dimension \boldsymbol{d} is measured directly with an error \boldsymbol{e} assumed to be standard normally distributed.

The ratio $R\left(R=e / \varepsilon_{d}\right)$ of the error in the measurement of d from the 2 experiments is now being studied.

What is the variance of the variable \boldsymbol{R} ??

Small Exercise 1

$$
R=\frac{e}{\sqrt{\varepsilon_{a}^{2}+\varepsilon_{b}^{2}+\varepsilon_{f}^{2}}}
$$

Define $S=\sqrt{3} R=\sqrt{3} \frac{e}{\sqrt{\varepsilon_{a}^{2}+\varepsilon_{b}^{2}+\varepsilon_{f}^{2}}}$
\boldsymbol{S} is a \boldsymbol{t}-distributed variable with 3 degrees of freedom.
$\operatorname{Var}[S]=\sigma_{s}^{2}=\frac{n}{n-2}$
(Script E.9)
$\operatorname{Var}[S]=\sigma_{s}^{2}=\frac{3}{3-2}=3$
$\operatorname{Var}[S]=\operatorname{Var}[\sqrt{3} R]=3 \operatorname{Var}[R] \quad\left(\operatorname{Var}[c X]=c^{2} \operatorname{Var}[X] \quad\right.$ Script D.18)
$\operatorname{Var}[R]=\frac{1}{3} \operatorname{Var}[S]=1$

Small Exercise 2

The annual maximum flow of a given river is known to have a standard deviation of $60 \mathrm{~m}^{3} / \mathrm{s}$.

Over the last 20 years, measurements of the annual maximum flow have been recorded and the following statistics have been obtained:
sample mean $=305 \mathrm{~m}^{3} / \mathrm{s}$
sample variance $=4250\left(\mathrm{~m}^{3} / \mathrm{s}\right)^{2}$

What is the expected value of the sample variance ??

패S Swiss Federal Institute of Technology

Small Exercise 2

The annual maximum flow of a given river is known to have a standard deviation of $60 \mathrm{~m}^{3} / \mathrm{s}$.

Over the last 20 years, measurements of the annual maximum flow have been recorded and the following statistics have been obtained:
sample mean $=305 \mathrm{~m}^{3} / \mathrm{s}$
sample variance $=4250\left(\mathrm{~m}^{3} / \mathrm{s}\right)^{2}$

What is the expected value of the sample variance ??

패S Swiss Federal Institute of Technology

Small Exercise 2

The expected value of the sample variance S^{2} is:

$$
E\left[S^{2}\right]=\frac{(n-1)}{n} \sigma_{X}^{2}
$$

(Script E.19)
where $\boldsymbol{n}=$ number of samples
$\sigma_{X}=$ true standard deviation

$$
\begin{aligned}
E\left[S^{2}\right] & =\frac{(n-1)}{n} \sigma_{X}^{2} \\
& =\frac{(20-1)}{20}(60)^{2}=3420\left(\mathrm{~m}^{3} / \mathrm{s}\right)^{2}
\end{aligned}
$$

패 Swiss Federal Institute of Technology

Small Exercise 3

The compressive strength of concrete from a certain plant is known to have a variance of $2.56\left(\mathrm{~N} / \mathrm{mm}^{2}\right)^{2}$.

At a construction site which uses concrete from this plant, 64 samples are taken daily to estimate the compressive strength.

What is the largest error that one can expect to make with a probability of 0.9 when using the mean value from these samples to estimate the true mean value of the compressive strength ??

Small Exercise 3

The compressive strength of concrete from a certain batching plant is known to have a variance of $2.56\left(\mathrm{~N} / \mathrm{mm}^{2}\right)^{2}$.

At a construction site which uses concrete from this plant, 64 samples are taken daily to estimate the compressive strength.

What is the largest error that one can expect to make with a probability of 0.9 when using the mean value from these samples to estimate the true mean value of the compressive strength ??

Small Exercise 3

$$
\begin{aligned}
& P\left[-k_{\alpha / 2}<\frac{\bar{X}-\mu_{X}}{\sigma_{X} \frac{1}{\sqrt{n}}}<k_{\alpha / 2}\right]=1-\alpha \\
& \boldsymbol{\alpha}=0.1 ; \boldsymbol{n}=64 ; \boldsymbol{\sigma}_{X}=\sqrt{ } 2.56=1.6 \mathrm{~N} / \mathrm{mm}^{2} \\
& \text { For } \boldsymbol{\alpha}=0.1, \boldsymbol{k}_{\boldsymbol{\alpha} / 2}=1.645 \\
& \qquad\left[-1.645<\frac{\bar{X}-\mu_{X}}{1.6 \frac{1}{\sqrt{64}}<1.645}\right]=0.9 \\
& P\left[-0.33<\bar{X}-\mu_{X}<0.33\right]=0.9
\end{aligned}
$$

(Script E.22)

Largest error or largest difference between \bar{X} and σ_{X} is ± 0.33

패S Swiss Federal Institute of Technology

