Small Exercise 1

- If the maxima of a log-likelihood function $l(\boldsymbol{\theta} \mid \hat{\mathbf{x}})$ has been found at the value π, then the maxima of the likelihood function $L(\boldsymbol{\theta} \mid \hat{\mathbf{x}})$ is at the value

$$
\sum_{i=1}^{n} \log \left(f_{X}\left(\hat{x}_{i} \mid \boldsymbol{\theta}\right)\right)
$$

\square $\log \pi$
π

Small Exercise 2

- Consider having a sample space with only two possible states $\{0,1\}$. You choose randomly 5 outcomes out of that sample space and you get $\{0,1,0,0,0\}$. What is the corresponding likelihood function?

$$
\begin{aligned}
& L(\boldsymbol{\theta} \mid 0,1,0,0,0)=\theta^{1}(1-\theta)^{4} \\
& L(\boldsymbol{\theta} \mid \hat{\mathbf{x}})=\{0,1,0,0,0\}
\end{aligned}
$$

-

$$
L(\boldsymbol{\theta} \mid \hat{\mathbf{x}})=\theta^{1}(1-\theta)^{4}
$$

Small Exercise 3

- Which equation(s) correspond(s) to the Method of Moments?

$$
\begin{aligned}
& f_{X_{1} x_{2}, x_{n}}\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)=\prod_{i=1}^{n} f_{x}\left(x_{i} ; \theta\right) \\
& m_{k}=\int x^{k} f_{x}(x ; \theta) d x=E\left[X^{k}\right]=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{k} \\
& m_{k}=\sum_{j} x_{j}^{k} p\left(x_{j}\right)=E\left[X^{k}\right]=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{k}
\end{aligned}
$$

