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Contents of Today's Lecture

• The organisation of the lecture – practical stuff 

• Why statistics and probability in engineering? 

• Decision Problems in Engineering

• Examples

• The lecture program
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What do we offer to you ?

• It is our intention to provide you to the best of our abilities

- Motivation and overview of context

- Targeted presentation of required knowledge

- Guidance on self study

- Help on training your abilities

- Help on your self evaluation

• We are here for you and we take this statement seriously 



Swiss Federal Institute of Technology

Structure and organization of the course

• 13 weekly lectures of each two sessions of 45 minutes

• 11 weekly exercise tutorials of each two sessions of 45 
minutes

• 2 assessments of each 90 minutes

• Self study estimated to 4 times by 45 minutes per week
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The course’s web page

What can you find there?
• Course’s program and timetable
• Tutorial’s timetable
• Script (downloadable/printable)
• Exercises/Solutions for the exercise tutorials 

(downloadable/printable)
• Presentations of the lecture and of the exercise tutorial 

(uploaded a day before the respective day)
• Videos of the lecture (uploaded the day after the lecture)
• Glossary (German-English terms)
• Links to helpful web pages 
• Past examination papers
• Your exercise tutorial class and group!

http://www.ibk.ethz.ch/fa/education/ss_statistics
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Organization of the Lecture

When??
Normally…Tuesdays 8-10

Where??
HIL E1

Exceptions:
Thursday 22.03.07 8-10 HPH G 3 (lecture instead of exercise 

tutorial)
Other exceptions: Check the course’s program!

• Script (English)
Download from the course’s web page 
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Organization of the Exercise Tutorials

Eva Sabiote
HIL E 22.2

Kazuyoshi (Kazu) 
Nishijima
HIL E 22.3

Harikrishna (Hari)     
Narasimhan
HIL E 13.1

Vasiliki (Vicky)
Malioka

HIL E 23.1
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Organization of the Exercise tutorial

• When??:
Normally….Thursday 8-10 

• Where??
HPH G 3 HCI H 2.1     HCI D 8      HCI D 2 

• Where do I go???
find out in the “Group lists” link on the course’s web page

• Exceptions….☺
First tutorial: Tuesday 27.03.07
Where???: HIL E1   HIL B 21   HIL D 10.2   HIL F 10.3
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Organization of the Exercise Tutorials

2 or more exercises 
will be presented in steps

(based on the content 
of the latest lecture)

Group exercise
1 exercise -

steps 
will be shown

1 or more solution(s) 
of exercises 

shown in steps in 
the last tutorial

Group 
Presentation

25 min
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Organization of the Exercise Tutorials

Office hours:
Mondays   11.30 - 12.30
Thursdays 13.30 – 14.30
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What do we expect from you?

• Take advantage of the help we provide to you

- benefit from the lectures

- benefit from the exercise tutorials

- benefit from the help of the assistants and professor (office hours)

• Tips and tricks

- prepare yourself for the lectures

- ask questions  

- try to understand the topics rather than prepare for examination

- be curious, interested, open minded but critical to what we tell you
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What do we expect from you?

Self Study 50%

Instruction 25%Collaboration 25%
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Mode of assessment

• Two assessments during the semester 
one midterm (03.05.07) 
the other one towards the end of the course (14.06.07) 

• Final Exam
October/March….

Final mark=

Programmable calculators are strictly not allowed!
Open book assessments and final exam☺

Read carefully all the information in the “Preamble” of the script!!
If you have any questions ask!

1 2(  ) (  )
3 3

two assessments final exam+
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Why Statistics and Probability in Engineering?

• What do engineers do ?

- Plan, design, build, maintain and decommission 

Infrastructure
Roads, water supply systems, tunnels, sewage systems, 
waste deposits, power supply systems, channels

Structures
houses, hospitals, schools, industry buildings, dams, 
powerplants, wind turbines, offshore platforms

- Safeguard 
- people
- environment
- assets

from natural and man made hazards 

SUSTAINABLE DEVELOPMENT !
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Why Statistics and Probability in Engineering?

• What are engineers working with ?

Real problems – the real world - nature

Gravity Dynamics

Temperature
Water

Soil

Steel

Concrete

Wind

Waves

Electricity

Ice

Snow

Rocks
Chemicals

New materials

Waste
Air
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Why Statistics and Probability in Engineering?

• How do engineers work with the real world ?

We model the real world to the „best“ of our 
knowledge

Mathematics Physics

Models/hypothesis
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Why Statistics and Probability in Engineering?

• How do engineers use knowledge

Models

Decisions Costs/Benefits

In a perfectly known world
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Why Statistics and Probability in Engineering?

• How do engineers establish knowledge

Models

ExperienceData

Real world

Accuracy/Uncertainty
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Why Statistics and Probability in Engineering?

• How do engineers use knowledge

Models

ExperienceData

Uncertainty

Models are not precise
Data are not sufficient

Natural variabilityWHY  ?
Experience is subjective
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Why Statistics and Probability in Engineering?

• An example where models were not too 
representative
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Why Statistics and Probability in Engineering?

• How do engineers make decisions

Models

ExperienceData

Decisions Costs/Benefits
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Why Statistics and Probability in Engineering?

All activities are associated with uncertainties

Activities are e.g.

- Transport
- Work
- Sport

but also

- Production of energy
- Exploitation of resources 
- Construction and operation of 

production and infrastructure projects
- Research and development
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Why Statistics and Probability in Engineering?

Every day we must make decisions in regard to activities 
associated with uncertainties

Stock 
trading

Car driving

Cooking Smoking

Crossing the 
street

Mountain 
climbing

Every one of these activities is associated with uncertainties

We all have an opinion regarding the associated risks
We have gut Feelings !

Surfing
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Why Statistics and Probability in Engineering?

How far can we get with gut feelings ?

After all - maybe it is not so 
„straight forward“ to comprehend uncertainties ?

What can we learn from the past ? 

An example
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Why Statistics and Probability in Engineering?

Disasters and accidents have always occurred   

Some examples

Tacoma Narrows, Washington, 1940 Fort Mayer, Virginia, 1908
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Why Statistics and Probability in Engineering?

Disasters and accidents have always occurred   

Some examples

Concord, North Carolina, 2000
Concorde, Paris, 2000
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Why Statistics and Probability in Engineering?

Disasters and accidents have always occurred   

Some examples

Kobe, 1995
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Why Statistics and Probability in Engineering?

Disasters and accidents have always occurred   

Some examples

Open questions
- did we realise the risks ? 
- are the consequences acceptable ?

Canada, 1993
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Why Statistics and Probability in Engineering?

Risk assessment, within the framework of decision analysis, 
provides a basis for rational decision making subject to 
uncertain and / or incomplete information

Thereby we can take into account, in a consistent manner, 
the prevailing uncertainties and quantify their effect on risks

Thus we may find answers to the following questions 

- How large is the risk associated with a given activity ?

- How may we reduce and / or mitigate risks ?

- How much does it cost to reduce and / or mitigate risks ? 

- What risks must we accept – what can we afford ?
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The Risk associated with a given activity RA
may then be written as

the Consequences of the event CEi

The risk contribution REi
from the event Ei is defined 

through the product between  

the Event probability PEi

and 

Why Statistics and Probability in Engineering?

Risk is a characteristic of an activity relating to all possible
events nE which may follow as a result of the activity
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Decision Problems in Engineering

Uncertainties must be considered in the decision making 
throughout all phases of the life of an engineering facility

Idea & 
Concept

Planning and 
feasibility study

Investigations and 
tests

Manufacturing

Design

Execution

Operation & 
maintenance

Decommissioning

• Safety of personnel

• Safety of environment

• Economical feasibility

UncertaintiesUncertainties

Traffic volume

Loads

Resistances
(material, soil,..)

Degradation processes

Service life

Manufacturing costs

Execution costs

Decommissioning 
costs

Idea & 
Concept

Planning and 
feasibility study

Investigations and 
tests

Manufacturing

Design

Execution

Operation & 
maintenance

Decommissioning

• Safety of personnel

• Safety of environment

• Economical feasibility

Idea & 
Concept

Planning and 
feasibility study

Investigations and 
tests

Manufacturing

Design

Execution

Operation & 
maintenance

Decommissioning

• Safety of personnel

• Safety of environment

• Economical feasibility

UncertaintiesUncertainties

Traffic volume

Loads

Resistances
(material, soil,..)

Degradation processes

Service life

Manufacturing costs

Decommissioning 
costs
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Example – Decommissioning of the Frigg Field

• The Frigg Field – built 1972-1978

- TCP2
- TP1
- CDP1

• None of the platforms were designed for decommissioning !

According to international 
conventions the structures
must be decommissioned

Each structure :

Weight : 250000 t
Costs : 200 – 600 Mio. SFr
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Example – Decommissioning of the Frigg Field

• The decision problem

Decommissioning/removal taking into account 

- Safety of personnel

- Safety of the environment

- Costs

- Interest groups

Greenpeace
Fishers
IMO
....
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LATLAT

Example – Decommissioning of the Frigg Field

• The approach

- Identification of hazard scenarios
chronologically 

- Quantification of occurrence probabilities

- Quantification of consequences

• Three options are considered
- „Refloat“ and demolition Onshore 
- „Refloat“ and demolition Offshore
- Removal to a free passage of 55 m depth

• Applied approach – Bayesian Nets

LATLAT
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Example – Decommissioning of the Frigg Field

• Re-float of the TCP2 structure

AirSystemFailu

CellIntegrity

MissionFailure

Control_MonitoTriCellCrack

ShipImpact

ColumnDamag

GroutOffBefor

MaxAscent

Retraction

GroutOffAfter ApparentWeig

AcceptableCol ColumnBallast

RemRetraction

ESDVFailure

PenetrationFail ColumnBallast

HydrJack_2nd

HydrJack_1stT

Tilt

DynamicAmplif

TricellRupture

DelayCosts DirectCosts
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Example – Decommissioning of the Frigg Field

• Results of the decision analysis
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Time variation of

- Expected costs
- Probability of mission 

success

Decision support

- How much to invest before a satisfactorily level of 
probability of mission success has been reached
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Decision Problems in Engineering

• Structural Design
Exceptional structures are often associated with structures of 

„Extreme Dimensions“

Great Belt Bridge 
under Construction

Concept drawing 
of the Troll platform
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Decision Problems in Engineering

• Structural Design

or associated with structures fulfilling
„New and Innovative Purposes“

Concept drawing of  
Floating Production, Storage and Offloading unit

Illustrations of the ARIANE 5 rocket



Swiss Federal Institute of Technology

Rehabilitation of infrastructure 
functionality

Condition assessment and 
updating of reliability and risks

Optimal allocation of resources 
for rebuilding and strengthening

Optimal allocation of available 
resources for risk reduction

- strengthening
- rebuilding

in regard to possible earth-
quakes

Before During After

Damage reduction/Control

Emergency help and rescue

After quake hazards

Decision Problems in Engineering
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Decision Problems in Engineering

• Inspection and Maintenance Planning

Due to 
- operational loading 
- environmental exposure 

structures will always to some 
degree be exposed to 
degradation processes 
such as

- fatigue
- corrosion
- scour
- wear
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Why Statistics and Probability in Engineering?

• In summary 

statistics and probability theory is needed in engineering to 

- quantify the uncertainty associated with engineering 
models

- evaluate the results of experiments

- assess importance of measurement uncertainties

- safe guard

safety for persons
qualities of environment
assets

ENHANCE DECISION MAKING
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Organisation of the Lecture
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Rooms information

Group Tutorial 1 Tutorials 
2-9 and 11

Tutorial 
10 

E HIL D 10.2 HCI D 2

H HIL B 21 HCI H 2.1

K HIL F 10.3 HCI D 8

V HIL E 1 HPH G 3

To be
announced

Now…Before…

Group Tutorial 1 Tutorials 
2-9 and11

Tutorial 10 

E HCI D 2 HCI D 2

H HPT C103 HCI H 2.1

K HIL F 10.3 HCI D 8

V HIL E 1 HPH G 3

To be 
announced

Time starting (Lecture/Tutorials):

HIL: 8 Physics/Chemistry Buildings:  7.45
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Contents of Todays Lecture

• Risk and Motivation for Risk Assessment

• Overview of Probability Theory

• Interpretation of Probability

• Sample Space and Events

• The three Axioms of Probability Theory

• Conditional Probability and Bayes’s Rule
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The Risk associated with a given activity RA
may then be written as

the Consequences of the event CEi

The risk contribution REi
from the event Ei is defined 

through the product between  
the Event probability PEi

and 

Why Statistics and Probability in Engineering?

Risk is a characteristic of an activity relating to all possible
events nE which may follow as a result of the activity
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Decision Problems in Engineering

Uncertainties must be considered in the decision making 
throughout all phases of the life of an engineering facility

Safety of personnel

Safety of environment

Economical feasibility

Idea & 
Concept

Manufacturing

Planning and 
feasibility study

Investigations and 
tests

Design

Execution

Operation & 
maintenance

Decommissioning

UncertaintiesUncertainties

Traffic volume

Loads

Resistances
(material, soil,..)

Degradation processes

Service life

Manufacturing costs

Execution costs

Decommissioning 
costs

UncertaintiesUncertainties

Traffic volume

Loads

Resistances
(material, soil,..)

Degradation processes

Service life

Manufacturing costs

Decommissioning 
costs
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Example – Decommissioning of the Frigg Field

• The Frigg Field – built 1972-1978

- TCP2
- TP1
- CDP1

• None of the platforms were designed for decommissioning !

According to international 
conventions the structures
must be decommissioned

Each structure :

Weight : 250000 t
Costs : 200 – 600 Mio. SFr
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Example – Decommissioning of the Frigg Field

• The decision problem

Decommissioning/removal taking into account 

- Safety of personnel

- Safety of the environment

- Costs

- Interest groups

Greenpeace
Fishers
IMO
....
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LATLAT

Example – Decommissioning of the Frigg Field

• The approach

- Identification of hazard scenarios
chronologically 

- Quantification of occurrence 
probabilities

- Quantification of consequences

• Three options are considered

- „Refloat“ and demolition Onshore 

- „Refloat“ and demolition Offshore
- Removal to a free passage of 55 m 

depth

• Applied approach – Bayesian Nets

LATLAT
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Example – Decommissioning of the Frigg Field

• Re-float of the TCP2 structure

AirSystemFailu

CellIntegrity

MissionFailure

Control_MonitoTriCellCrack

ShipImpact

ColumnDamag

GroutOffBefor

MaxAscent

Retraction

GroutOffAfter ApparentWeig

AcceptableCol ColumnBallast

RemRetraction

ESDVFailure

PenetrationFail ColumnBallast

HydrJack_2nd

HydrJack_1stT

Tilt

DynamicAmplif

TricellRupture

DelayCosts DirectCosts
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Example – Decommissioning of the Frigg Field

• Results of the decision analysis
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Time variation of

- Expected costs
- Probability of mission 

success

Decision support

- How much to invest before a satisfactorily level of 
probability of mission success has been reached



Swiss Federal Institute of Technology

Decision Problems in Engineering

• Structural Design
Exceptional structures are often associated with structures of 

„Extreme Dimensions“

Great Belt Bridge 
under Construction

Concept drawing 
of the Troll platform
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Decision Problems in Engineering

• Structural Design

or associated with structures fulfilling
„New and Innovative Purposes“

Concept drawing of  
Floating Production, Storage and Offloading unit

Illustrations of the ARIANE 5 rocket
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Rehabilitation of infrastructure 
functionality

Condition assessment and 
updating of reliability and risks

Optimal allocation of resources 
for rebuilding and strengthening

Optimal allocation of available 
resources for risk reduction

- strengthening
- rebuilding

in regard to possible earth-
quakes

Before During After

Damage reduction/Control

Emergency help and rescue

After quake hazards

Decision Problems in Engineering
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Decision Problems in Engineering

• Inspection and Maintenance Planning

Due to 
- operational loading 
- environmental exposure 

structures will always to some 
degree be exposed to 
degradation processes 
such as

- fatigue
- corrosion
- scour
- wear
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Why Statistics and Probability in Engineering?

In summary 

statistics and probability theory is needed in engineering to 

- quantify the uncertainty associated with engineering 
models

- evaluate the results of experiments

- assess importance of measurement uncertainties

- safe guard

safety for persons
qualities of environment
assets

ENHANCE DECISION MAKING
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Overview of Probability Theory

• What are we aiming for ? 

Decision Making !

Risks

Consequences of eventsProbabilities of events

Probabilistic model

Data Model estimation

We need to be able to
quantify the probability of 
events and to update 
these based on new 
information

The probability theory provides 
the basis for the consistent
treatment of uncertainties
in decision making !
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Interpretation of Probability

• What is Probability ?

We all have some notion of probability !

and frequently use words like

Succeeding
difficult tasks

Nuclear
accidents

Stock 
exchange Smoking

Crossing
the street

Passing the
exam

Hunting

- Chance

- Likelihood

- Frequency

- Probability
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Interpretation of Probability
States of nature of which we have interest such as:

- a bridge failing due to excessive traffic loads

- a water reservoir being over-filled

- an electricity distribution system „falling out“

- a project being delayed

are in the following denoted „events“

we are generally interested in quantifying the probability 
that such events take place within a given „time frame“
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Interpretation of Probability

• There are in principle three different interpretations of 
probability

- Frequentistic ∞→=  for                                 exp
exp

lim)( n
n
NAP A

- Classical
tot

A

n
nAP =)(

- Bayesian occur    will  that  belief of  degree   )( AAP =
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Interpretation of Probability

Consider the probability of getting a „head“ when flipping a coin

- Frequentistic 0.51
1000
510)( ==AP

- Classical
2
1)( =AP

- Bayesian 0.5  )( =AP
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Sample Space and Events
The set of all possible outcomes of the state of nature 
e.g. concrete compressive strength test results is called 
the sample space   . For concrete compressive strength 
test results the sample space can be written as 

A sample space can be continuous or discrete.

Typically we illustrate the sample space and events using 
Venn diagrams  

Ω

Ω

]0; [Ω = ∞

Event
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Sample Space and Events

An event is a sub-set of the sample space

- if the sub-set is empty the event is impossible
- if the sub-set contains all of the sample space the   

event is certain
Consider the two events    and  : 
The sub-set of sample points belonging to the event   
and/or the event    is called the union of    and    and is 
written as :   

Ω

1 2E E∪

E1 E2

1 2E E∪

1E
1E

2E

2E 2E1E
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Sample Space and Events

An event is a sub-set of the sample space

- if the sub-set is empty the event is impossible
- if the sub-set contains all of the sample space the event  
is certain

Consider the two events and    : 
The sub-set of sample points belonging to the event    and
the event    is called the intersection of    and    and is 
written as:

Ω

1 2E E∩

E1 E2

1 2E E∩

1E 2E
1E

1E 2E2E



Swiss Federal Institute of Technology

Sample Space and Events
The event containing all sample points in     not included
in the event is called the complementary event to
and written as :

It follows that

and 

Ω

E

Ω

Ω

EE

E E =∅∩

E E = Ω∪

E E
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Sample Space and Events
It can be show that the intersection and union operations
obey the following commutative, associative and 
distributive laws: 

1 2 2 1E E E E=∩ ∩ Commutative law

( ) ( )1 2 3 1 2 3E E E E E E=∩ ∩ ∩ ∩

( ) ( )1 2 3 1 2 3E E E E E E=∪ ∪ ∪ ∪
Associative law

( ) ( ) ( )1 2 3 1 2 1 3E E E E E E E=∩ ∪ ∩ ∪ ∩

( ) ( ) ( )1 2 3 1 2 1 3E E E E E E E=∪ ∩ ∪ ∩ ∪
Distributive law



Swiss Federal Institute of Technology

Sample Space and Events
From the commutative, associative and distributive laws
the so-called De Morgan‘s laws may be derived: 

1 2 2 1E E E E=∩ ∩

( ) ( )1 2 3 1 2 3E E E E E E=∩ ∩ ∩ ∩

( ) ( )1 2 3 1 2 3E E E E E E=∪ ∪ ∪ ∪

( ) ( ) ( )1 2 3 1 2 1 3E E E E E E E=∩ ∪ ∩ ∪ ∩

( ) ( ) ( )1 2 3 1 2 1 3E E E E E E E=∪ ∩ ∪ ∩ ∪

1 21 2E E E E=∩ ∪

1 21 2E E E E=∪ ∩
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The Three Axioms of Probability Theory
The probability theory is built up on – only – three axioms
due to Kolmogorov:

Axiom 1:

Axiom 2:

Axiom 3:

2E

( )0 1P E≤ ≤

( ) 1P Ω =

1EWhen   ,    ,.. are mutually exclusive 

n n

i 1i 1

( )i iP E P E
==

⎛ ⎞ =⎜ ⎟
⎝ ⎠

∑∪



Swiss Federal Institute of Technology

Conditional Probability and Bayes‘s Rule
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Conditional Probability and Bayes‘s Rule
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Conditional Probability and Bayes‘s Rule
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Learn how to develop knowledge !

Utilize existing knowledge

Combine with data

Formulate hypothesis about the world

Conditional Probability and Bayes‘s Rule
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Conditional Probability and Bayes‘s Rule

Conditional probabilities are of special interest as they
provide the basis for utilizing new information in decision
making.

The conditional probability of an event given that
event has occured is written as:

The events and     are said to be statistically
independent if:

1 2
1 2

2

( )( )
( )

P E EP E E
P E

= ∩ Not defined if 2( ) 0P E =

1 2 1( ) ( )P E E P E=

2E
1E

1E 2E
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Conditional Probability and Bayes‘s Rule
From

it follows that

and when and    are statistically independent there is

1 2
1 2

2

( )( )
( )

P E EP E E
P E

= ∩

1 2 2 1 2( ) ( ) ( )P E E P E P E E=∩

1 2 2 1( ) ( ) ( )P E E P E P E=∩

2E1E
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Conditional Probability and Bayes‘s Rule

Consider the sample space divided up into mutually
exclusive events ,   , …, 

Ω

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( )
n

i 1

...

...

( )

1 2 n

1 1 2 2 n n

i i

P A P A E P A E P A E

P A E P E P A E P E P A E P E

P A E P E
=

= + + +

+ + + =

∑

∩ ∩ ∩

nE
n

2E1E
Ω

E1 E2

E5 E6 E8 

E4

E7

E3

A Ω

E1 E2

E5 E6 E8 

E4

E7

E3

A
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Conditional Probability and Bayes‘s Rule
as there is

we have

1

( ) ( ) ( ) ( )
( )

( ) ( ) ( )

i i i i
i n

i i
i

P A E P E P A E P E
P E A

P A P A E P E
=

= =
∑

( ) ( ) ( ) ( ) ( )i i i iP A E P A E P E P E A P A= =∩

Likelihood Prior

Posterior
Bayes Rule

Reverend Thomas 
Bayes
(1702-1764)
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Contents of Todays Lecture

• Overview of descriptive statistics

• Numerical summaries
- Central measures
- Dispersion measures
- Other measures
- Measures of correlation

• Graphical representations 
- One-dimensional scatter plots
- Histograms
- Quantile plots
- Tukey Box plots
- Q-Q plots and Tukey mean-difference plot
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Overview of Descriptive Statistics

• What we are aiming for ? 

Decision Making !

Risks

Consequences of eventsProbabilities of events

Probabilistic model

Data Model estimation

In the first step we 
simply want to describe
the data
- numerically
- graphically

Descriptive statistics make 
no assumptions – only describe !
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Numerical Summaries

• Central measures:

Sample mean : 

Median : The 0.5 quantile (obtained from ordered data sets, see 
quantile 

plots)

Mode : Most frequent value – obtained from histograms

∑
=

=
n

i
ix

n
x

1

1

If one number should be given to represent a data set typically 
the sample mean would be chosen 
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Numerical Summaries

• Dispersion measures:

Sample variance: 

Sample coefficient of variation (CoV):

∑
=

−=
n

i
i )xx(

n
s

1

22 1 s: standard deviation

x
s=ν

Indicator of variability relative to the sample mean 

Indicator of variability around the sample mean 
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Numerical Summaries

• Other measures:

Sample skewness: 

Sample kurtosis

3

3

11
s

)xx(

n

n

i
i∑

=

−
⋅=η

4

4

11
s

)xx(

n

n

i
i∑

=

−
⋅=κ Measure of peakedness

Measure of symmetry
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Numerical Summaries

• Measures of correlation (linear dependency between data pairs):

 

2-dimensional scatter plots

 

Almost no dependency Almost full dependency
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Numerical Summaries

• Measures of correlation (linear dependency between data pairs):

Sample covariance: 

Sample coefficient of correlation:

1

1 ( ) ( )
n

XY i i
i

s x x y y
n =

= − ⋅ −∑

The sum will get positive contributions 
in case of low-low or high-high data pairs

YX

i

n

i
i

XY ss

)yy()xx(

n
r

⋅

−⋅−
=

∑
=11

rXY is limited in the interval -1 to +1
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Numerical Summaries

• Summary:

Central measures:
- sample mean value: The center of gravity of a data set
- sample median: The mid value of a data set
- sample mode: The most frequent value/range of a data set

Dispersion measures:
- sample variance: The distribution around the sample mean  
- sample CoV: The variability relative to the sample mean

Other measures:
- sample skewness: The skewness relative to the sample mean 
- sample kurtosis: The peakedness around the sample mean

Measures of correlation:
- sample covariance: Tendency for high-high, low-low and high-low 

pairs in two data sets
- sample coefficient 
of correlation : Normalized coefficient between -1 and +1 
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Graphical Representations

• Assume that we have a set of data 
(observations of road way traffic)

Direction 1 Direction 2Date Unordered Ordered Unordered Ordered
01.01
02.01
03.01
04.01
05.01
06.01
07.01
08.01
09.01
10.01
11.01
12.01
13.01
14.01
15.01
16.01
17.01
18.01
19.01
20.01
21.01
22.01
23.01
24.01
25.01
26.01
27.01
28.01
29.01
30.01
31.01

3087
4664
4164
3710
4029
4323
4041
3737
4103
5457
4563
3906
4419
4359
4667
5098
6551
4371
3578
4366
4368
4588
5001
7118
4727
4085
4741
4739
5193
5892
7974

3087
3578
3710
3737
3906
4029
4041
4085
4103
4164
4323
4359
4366
4368
4371
4419
4563
4588
4664
4667
4727
4739
4741
5001
5098
5193
5457
5892
6551
7118
7974

3677
7357
9323

11748
10256

4453
4815
4757
4672
5401
5688
6308
4946
4635
5100
4791
5235
4560
5729
5005
4480
4880
4928
5398
4648
6183
5220
5013
5281
5318
5679

3677
4453
4480
4560
4635
4648
4672
4757
4791
4815
4880
4928
4946
5005
5013
5100
5220
5235
5281
5318
5398
5401
5679
5688
5729
6183
6308
7357
9323

10256
11748

 

Number of cars

3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

Direction 1 Direction 2

The simplest representation of the data
is the one-dimensional scatter plot

Central points

Lower points Upper points
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Interval
(Number of

cars x 10  /day)

Interval Midpoint
(Number of

cars x 10  /day)2 2

Graphical Representations

• Histograms

The data are grouped into intervals
Direction 1 Direction 2Date

Unordered Ordered Unordered Ordered
01.01
02.01
03.01
04.01
05.01
06.01
07.01
08.01
09.01
10.01
11.01
12.01
13.01
14.01
15.01
16.01
17.01
18.01
19.01
20.01
21.01
22.01
23.01
24.01
25.01
26.01
27.01
28.01
29.01
30.01
31.01

3087
4664
4164
3710
4029
4323
4041
3737
4103
5457
4563
3906
4419
4359
4667
5098
6551
4371
3578
4366
4368
4588
5001
7118
4727
4085
4741
4739
5193
5892
7974

3087
3578
3710
3737
3906
4029
4041
4085
4103
4164
4323
4359
4366
4368
4371
4419
4563
4588
4664
4667
4727
4739
4741
5001
5098
5193
5457
5892
6551
7118
7974

3677
7357
9323

11748
10256

4453
4815
4757
4672
5401
5688
6308
4946
4635
5100
4791
5235
4560
5729
5005
4480
4880
4928
5398
4648
6183
5220
5013
5281
5318
5679

3677
4453
4480
4560
4635
4648
4672
4757
4791
4815
4880
4928
4946
5005
5013
5100
5220
5235
5281
5318
5398
5401
5679
5688
5729
6183
6308
7357
9323

10256
11748
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Graphical Representations

• Histograms

The grouped data are plotted

 
Interval
(Number of
cars *102)

Interval
Midpoint (Number
of cars *102)

Number of
observations

Frequency Cumulative
frequency

30-35
35-40
40-45
45-50
50-55
55-60
60-65
65-70
70-75
75-80
80-85
85-90
90-95
95-100

100-105
105-110
110-115

32.5
37.5
42.5
47.5
52.5
57.5
62.5
67.5
72.5
77.5
82.5
87.5
92.5
97.5

102.5
107.5
112.5

0
1
2

10
9
3
2
0
1
0
0
0
1
0
1
0
1

0.0000
3.2258
6.4516

32.2581
29.0323

9.6774
6.4516
0.0000
3.2258
0.0000
0.0000
0.0000
3.2258
0.0000
3.2258
0.0000
3.2258

0.0000
0.0323
0.0968
0.4194
0.7097
0.8065
0.8710
0.8710
0.9032
0.9032
0.9032
0.9032
0.9355
0.9355
0.9677
0.9677
1.0000

[%]

mode

Simple histogram Frequency distribution
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Graphical Representations

• Histograms

The grouped data are plotted

 
Interval
(Number of
cars *102)

Interval
Midpoint (Number
of cars *102)

Number of
observations

Frequency Cumulative
frequency

30-35
35-40
40-45
45-50
50-55
55-60
60-65
65-70
70-75
75-80
80-85
85-90
90-95
95-100

100-105
105-110
110-115

32.5
37.5
42.5
47.5
52.5
57.5
62.5
67.5
72.5
77.5
82.5
87.5
92.5
97.5

102.5
107.5
112.5

0
1
2

10
9
3
2
0
1
0
0
0
1
0
1
0
1

0.0000
3.2258
6.4516

32.2581
29.0323

9.6774
6.4516
0.0000
3.2258
0.0000
0.0000
0.0000
3.2258
0.0000
3.2258
0.0000
3.2258

0.0000
0.0323
0.0968
0.4194
0.7097
0.8065
0.8710
0.8710
0.9032
0.9032
0.9032
0.9032
0.9355
0.9355
0.9677
0.9677
1.0000

[%]

Cumulative frequency distribution
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Graphical Representations

• Histograms

The number of intervals selected will influence the information 
maintained

No general rule can be given but some suggest the following

nlog.k 331+=

k: number of intervals
n: number of data 

For the traffic flow data set:
k=1+3.3 log31=5.92 = 6
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Graphical Representations

• Histograms

The number of intervals selected will influence the information 
maintained

k=17 k=6
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Graphical Representations

• Quantile plots

Definition : the Q-quantile corresponds to the value in a data set 
which is exceeded by 100% - Q x 100% of the data

e.g. the 0.75 quantile is exceeded by 100% - 0.75 x 100% 
= 25% of the data

Quantile plots are generated by plotting the data against 
their quantile values
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Graphical Representations

• Quantile plots

1i
iQ
n

=
+

The quantiles are calculated from the 
ordered data set as:

Median = 0.5 quantile value
Lower quartile = 0.25 quantile value Upper quartile = 0.75 quantile value
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Graphical Representations

D
at

a 
va

lu
es

Upper quartile value

Lower quartile value

Medianr

r : Inter-quartile range (50% of data)

Upper adjacent value:
largest value less than 
0.75 quantile + 1.5 x r 

Lower adjacent value:
lowest value larger than 
0.25 quantile - 1.5 x r 

Out side value

Out side value
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Graphical Representations

• Tukey Box plots (traffic data)
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Graphical Representations

• Q-Q plots

 
12000

N
um

be
r o

f c
ar

s 
in

 d
ir

ec
tio

n 
2

11000

10000

9000

8000

7000

5000

4000

3000
120001100010000900080007000

6000

6000500040003000

Number of cars in direction 1

Q-Q plots are produced to represent
and compare 2 data sets

Data points of the two data sets with 
the same quantile values are plotted 
against each other 



Swiss Federal Institute of Technology

Graphical Representations

• Mean vs. difference plots

Mean vs. difference plots are produced to represent
and compare 2 data sets

ii xy −

( )/2i iy x+

is plotted against 

4000

3500

3000

2500

2000

1500

500

0
10000900080007000

1000

60004000

Mean

3000 5000

D
if

fe
re

nc
e
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Graphical Representations
• Summary

One-dimensional scatter plots : illustrate the range and distribution of a 
data sets along one axis, indicate 
symmetry.

Histograms:                       illustrate how the data are distributed 
over the range of data, indicate mode 
and symmetry.

Quantile plots: Illustrate median, distribution and 
symmetry

Tukey – Box plots: Illustrate median, upper/lower quartiles, 
symmetry and distribution

Q-Q plots: Compare two data set, relative shapes

Mean vs. difference plots: Compare two data sets, relative shapes
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Contents of Today’s Lecture

• Overview of Uncertainty Modelling 

• Uncertainties in Engineering Problems

• Random Variables
- discrete cumulative distribution and probability density 

functions
- continuous cumulative distribution and probability density 

functions
- characterization of random variables
- moments of random variables
- the expectation and the variance operator
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Overview of Uncertainty Modelling

• Why uncertainty modelling

Decision Making !

Risks

Consequences of eventsProbabilities of events

Probabilistic model

Data Model estimation

Decision Making !Decision Making !

RisksRisks

Consequences of eventsProbabilities of events Consequences of eventsConsequences of eventsProbabilities of eventsProbabilities of events

Probabilistic modelProbabilistic model

Data Model estimationData Model estimation

Uncertain phenomenonUncertain phenomenon
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Uncertainties in Engineering Problems

Different types of uncertainties influence decision making

• Inherent natural variability – aleatory uncertainty
- result of throwing dices
- variations in material properties
- variations of wind loads
- variations in rain fall

• Model uncertainty – epistemic uncertainty
- lack of knowledge (future developments)
- inadequate/imprecise models (simplistic physical modelling)

• Statistical uncertainties – epistemic uncertainty 
- sparse information/small number of data
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Uncertainties in Engineering Problems

• Consider as an example a dike structure 

- the design (height) of the dike will be determining the 
frequency of floods

- if exact models are available for the prediction of future 
water levels and our knowledge about the input parameters 
is perfect then we can calculate the frequency of floods     

(per year) - a deterministic world !

- even if the world would be deterministic – we would not 
have perfect information about it – so we might as well 
consider the world as random   
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Uncertainties in Engineering Problems

In principle the so-called 

inherent physical uncertainty (aleatory – Type I)

is the uncertainty caused by the fact that the world is 
random, however, another pragmatic viewpoint is to define 
this type of uncertainty as

any uncertainty which cannot be reduced by means of 
collection of additional information

the uncertainty which can be reduced is then the 

model and statistical uncertainties (epistemic – Type II) 
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Uncertainties in Engineering Problems

Observed annual 
extreme water levels

Model for annual 
extremes

Regression model to
predict future extremes

Predicted future 
extreme water level

Aleatory 
Uncertainty

Epistemic 
Uncertainty

Observed annual 
extreme water levels

Model for annual 
extremes

Regression model to
predict future extremes

Predicted future 
extreme water level

Aleatory 
Uncertainty

Epistemic 
Uncertainty
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Uncertainties in Engineering Problems

The relative contribution of aleatory and epistemic 
uncertainty to the prediction of future water levels is thus 
influenced directly by the applied models 

refining a model might reduce the epistemic uncertainty – but 
in general also changes the contribution of aleatory
uncertainty

the uncertainty structure of a problem can thus be said to 
be scale dependent !
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Uncertainties in Engineering Problems

Knowledge

Time
Future

Past

Present

100%

Observation

Prediction

Knowledge

Time
Future

Past

Present

100%

Observation

Prediction

The uncertainty structure changes also as function of time 
– is thus time dependent !
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Random Variables

• Probability density and cumulative distribution functions

A random variable is denoted with capital letters : X

A realization of a random variable is denoted with small 
letters : x 

We distinguish between 

- continuous random variables : can take any value in 
a given range

- discrete random variables : can take only 
discrete values
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Sum of these must equal 1

• Probability density and cumulative distribution functions

The probability that the outcome of a 
discrete random variable X is smaller than
x is denoted the 
cumulative distribution function

The probability density function for a 
discrete random variable is defined by

( ) ( )
i

X X i
x x

P x p x
<

=∑

( ) ( )X i ip x P X x= =

x

A

px (x)

x

B

Random Variables

1

Px (x)
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Integral of this must equal 1

• Probability density and cumulative distribution functions

The probability that the outcome of a 
continuous random variable X is smaller
than x is denoted the
cumulative distribution function

The probability density function for a 
continuous random variable is defined by

( ) ( )X

Random Variables

F x P X x= <

( ) ( )X
X

F xf x
x

∂=
∂

Fx (x)

x

1

A

fx (x)

x

B
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Random Variables

• Moments of random variables and the expectation operator

Probability distributions (cumulative distribution function and 
probability density function) can be described in terms of 
their paramaters or their moments

Often we write

The parameters can be related to the moments and visa
versa

),( pxFX ),( pxfX

Parameters

p
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Random Variables

• Moments of random variables and the expectation operator

The i‘th moment mi for a continuous random variable X is 
defined through

The expected value E[X] of a continuous random variable X is 
defined accordingly as the first moment 

( )i
i Xm x f x dx

∞

−∞

= ∫

[ ] ( )X XE X x f x dxμ
∞

−∞

= = ∫
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Random Variables

• Moments of random variables and the expectation operator

The i‘th moment mi for a discrete random variable X is 
defined through

The expected value E[X] of a discrete random variable X is 
defined accordingly as the first moment 

[ ]
1

( )
n

X j X j
j

E X x p xμ
=

= =∑

1

( )
n

i
i j X j

j

m x p x
=

=∑
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Random Variables

• Moments of random variables and the expectation operator

The expected value (or mean value) of a random variable can 
be understood as the center of gravity of the probability 
density function of the random variable !

fx (x)

x
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Random Variables

• Moments of random variables and the expectation operator

The variance of a continuous random variable is defined 
as the second central moment i.e. for a continuous random 
variable X we have

for a discrete random variable we have correspondingly

[ ] ( ) ( )22 2( )X X X XVar X E X x f x dxσ μ μ
∞

−∞

⎡ ⎤= = − = −⎣ ⎦ ∫

2
Xσ

Variance Mean value

[ ]2 2

1
( ) ( )

n

X j X X j
j

Var X x p xσ μ
=

= = −∑
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Random Variables

• Moments of random variables and the expectation operator

The ratio between the standard deviation and the expected 
value of a random variable is called the Coefficient of 
Variation CoV and is defined as

a useful characteristic to indicate the variability of the 
random variable around its expected value

[ ] X

X

CoV X σ
μ

=

Dimensionless
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Random Variables

• Example – uniformly distributed random variable

probability density and cumulative distribution functions

⎪
⎪
⎩

⎪⎪
⎨

⎧

<

≤≤
−

<

=

                     0

             , 1
                    0

xb,

bxa
ab

ax,

)x(f X

fx (x)

x
a b

0,                                                              

1 ( )( ) ( ) ,          
( )

1,                                                             

x x

X X
a a

x a

x aF x f y dy dy a x b
b a b a

b x

<⎧
⎪

−⎪= = = ≤ ≤⎨ − −⎪
⎪ <⎩

∫ ∫
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Random Variables

• Example – uniformly distributed random variable

expected value and variance 
fx (x)

x
a b

[ ]
2

( )
2( )

( )    
2

bb b

X X
a a a

x xE X x f x dx dx
b a b a

b a

μ = = = =
− −

+=

∫ ∫

3 2 2
2

2 2 2

2

1
( ) 3( ) ( ) ( )

( ) ( )

1     ( )
12

b

b b

X X X
a

X

a

X X

a
X

x x xxE X x f x dx dx
b a b a

b a

μ μμσ μ μ
− +−⎡ ⎤= − = − = =⎣ ⎦ − −

= −

∫ ∫
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Contents of Todays Lecture

• Overview of Uncertainty Modeling

• Random Variables
- properties of the expectation operator
- random vectors and joint moments
- conditional distributions and conditional moments
- the probability distribution for the sum of two random 

variables
- the probability distribution for functions of random variables
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Overview of Uncertainty Modeling

• Random variables and their characteristics

Uncertain phenomenon

Data/observations

Model

x,y p(x,y)
1,10 0.033
1,20 0.067
1,30 0.033
1,40 0.033
2,10 0.067
2,20 0.100
2,30 0.067
2,40 0.033
3,10 0.067
3,20 0.133
3,30 0.100
3,40 0.067
4,10 0.033
4,20 0.067
4,30 0.067
4,40 0.033

Real world

Random
variables
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Random Variables

• Properties of the expectation operator

The expectation operator facilitates that we can assess the 
expected value and the variance of a random variable

By understanding how the expectation operator works we will 
be able to assess the expected value and the variance of 
functions of random variables

This is useful if we want to analyze engineering models 
involving one or more random variables in regard to their 
expected values and their variances

E.g.: Duration of a construction process as a function of the 
duration of its individual processes
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Random Variables

• Properties of the expectation operator

The expectation operator possesses the following properties:

[ ]
[ ] [ ]
[ ] [ ]
[ ] [ ] [ ])X(gE)X(gE)X(g)X(gE

XbEabXaE
XcEcXE

ccE

2121 +=+
+=+

=
=
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Random Variables

• Properties of the expectation operator

The variance can thus be written as:

[ ]

[ ]

2

2 2

2 2

2 2 2 2 2

( )

2

2

2

X

X X

X X

X X X

Var X E X

E X X

E X E X

E X E X

μ

μ μ

μ μ

μ μ μ

⎡ ⎤= −⎣ ⎦
⎡ ⎤= + −⎣ ⎦

⎡ ⎤= + −⎣ ⎦
⎡ ⎤ ⎡ ⎤= + − = −⎣ ⎦ ⎣ ⎦
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Random Variables

• Properties of the expectation operator

Furthermore there is 

[ ]
[ ] [ ]
[ ] [ ]XVarbbXaVar

XVarccXVar
cVar

2

2

0

=+
=

=

[ ]
[ ] [ ]
[ ] [ ]
[ ] [ ] [ ])X(gE)X(gE)X(g)X(gE

XbEabXaE
XcEcXE

ccE

2121 +=+
+=+

=
=
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Random Variables

• Properties of the expectation operator

From the result

it is seen that there in general is

for convex functions - Jensen‘s inequality !

[ ] 2 2 2 2 2( ) 2X X X XVar X E X E X X E Xμ μ μ μ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − = + − = −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

[ ] [ ])()( XEgXgE ≠

Equality only for linear functions

[ ] [ ])XE(g)X(gE ≥
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Random Variables

• Random vectors and joint moments

Often we are dealing with models involving not only one
random variable but several random variables

These random variables can be collected in a vector

In general the components of the vector are dependent

E.g. Rainfall and water level

It is thus necessary that we establish probabilistic models
which include this dependency – we can do this through the
joint cumulative distributions and the joint moments. 



Swiss Federal Institute of Technology

Random Variables

• Random vectors and joint moments

Now we consider not just one continuous random variable but
a vector of continuous random variables

The joint cumulative distribution function is given by

and the joint probability density function is given by

( )1 2, , , T
nX X X=X …

( ) ( )1 1 2 2 n nF P X x X x X x= ≤ ≤ ≤X x ∩ ∩…∩

( ) ( )
1 2

n

n

f F
z z z

∂
∂ ∂ ∂

=X Xx x
…
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1

2

3

4 10

20

30

40
0

0.05

0.1

0.15

Consider the two
dimensional discrete
probability density function:
x,y p(x,y)
1,10 0.033
1,20 0.067
1,30 0.033
1,40 0.033
2,10 0.067
2,20 0.100
2,30 0.067
2,40 0.033
3,10 0.067
3,20 0.133
3,30 0.100
3,40 0.067
4,10 0.033
4,20 0.067
4,30 0.067
4,40 0.033

Random Variables

• Random vectors and joint moments
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Random Variables

• Random vectors and joint moments

The marginal probability density function of a random
variable Xi is defined by

( ) ( ) 1 1 1( 1  fold) .. ..
iX i i nf x n f dx dx dx dx

∞ ∞

− +
−∞ −∞

= −∫ ∫ X x
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Random Variables

Consider the two
dimensional discrete
probability density function:
x,y p(x,y)
1,10 0.033
1,20 0.067
1,30 0.033
1,40 0.033
2,10 0.067
2,20 0.100
2,30 0.067
2,40 0.033
3,10 0.067
3,20 0.133
3,30 0.100
3,40 0.067
4,10 0.033
4,20 0.067
4,30 0.067
4,40 0.033

1

2

3

4 10

20

30

40
0

0.05

0.1

0.15

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
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Random Variables

• Random vectors and joint moments

The covariance between the i‘th and the j‘th component of 
the random vector of continuous random variables is defined
as the joint central moment i.e. by

From where we see that for i = j we get the variance for Xi
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Random Variables

• Random vectors and joint moments

The expected value and the variance of a linear function

are given by

0
1

n

i i
i

Y a a X
=

= +∑

[ ] [ ]

[ ] [ ]

0
1

2

1 , 1
 

2
i j

n

i i
i

n n

i i i j X X
i i j

i j

E Y a a E X

Var Y a Var X a a C

=

= =
≠

= +

⎛ ⎞
⎜ ⎟= + ⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑ ∑



Swiss Federal Institute of Technology

Random Variables

• Conditional distributions and conditional moments

Some times it is useful to be able to assess the probability
of an event given that we know something about one of the
random variables which are used to define the event

E.g. assume we want to calculate the probability that a 
project will be delayed under the condition that one of the
processes will exceed its planned duration by 50%.
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Random Variables

• Conditional distributions and conditional moments

The conditional probability density function for the random
variable X1 given the outcome of the random variable X2 is
given by

where if X1 and X2 are independent 

The conditional cumulative distribution function is obtained by
integration as 

)x(f
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Random Variables

• Conditional distributions and conditional moments

The un-conditional cumulative distribution function for the
random variable X1 can be derived from the conditional
comulative distribution function by use of the total 
probability theorem

The conditional expected value is defined by

1 21 21 1 2 2 2( ) ( ) ( )X XX XF x F x x f x dx
∞
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1 2 1 21 2 2 1 2 1X X X XE X X x x f x x dxμ
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Random Variables

• In many cases we are interested in assessing the probabilites
of functions of random variables

The functions are useful for describing the events we are
interested in – they are our engineering models.

A simple case is the sum of two random variables – it is
useful to derive the cumulative distribution function for such 
a sum.

A more general case concerns monotonic functions of random
variables – we will also derive the cumulative distribution for
this case.
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Random Variables

• The cumulative distribution function for the sum of two
random variables

Consider the sum

and assume that we have

First we derive the density function for

assuming that X1 is given i.e.

and we get

21 XXY +=

1 2, 1 2( , )X Xf x x
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Random Variables

• The cumulative distribution function for the sum of two
random variables

The marginal probability density function for Y is now
achieved by integrating out over X1, i.e. 

For the case where X1 and X2 are independent we get the
so-called convolution integral

∫
∞

∞−

−= 11112
dx)x,xy(f)y(f X,XY

∫
∞

∞−

−= 111 12
dx)x(f)xy(f)y(f XXY



Swiss Federal Institute of Technology

Random Variables

• The cumulative distribution function for functions of random
variables

Consider the more general problem of deriving the cumulative
distribution function for a function of a random variables i.e. 

where the probability distribution function of X
is given as

If is monotonically increasing and represents a one-to-one
mapping, a realization of Y is only smaller than y0
if the realization of X is smaller than x0 where

The cumulative distribution function for Y is then given by

( )Y g X=
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Random Variables

• The cumulative distribution function for functions of random
variables

starting now with

we have

1( ) ( ( ))Y XF y F g y−=
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Random Variables

• The cumulative distribution function for functions of random
variables

In case the function is monotonically decreasing, a 
realization of Y is only smaller than y0 if the realization of X
is larger than x0 , and in this case we have to change the
sign i.e.

yielding

In the general case – for monotonically increasing or
decreasing functions there is thus

1( ) ( ( ))Y XF y F g y−= −
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y
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Random Variables

• The cumulative distribution function for functions of random
variables

For the case where the components of a random vector
can be given as one-to-one mappings of monotonically increasing
or decreasing functions of the components of a 
random vector

in the form:

there is

with being the absolute value
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Overview of Uncertainty Modeling

• Random variables and their characteristics
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Overview of Uncertainty Modeling

• Random variables and their characteristics

Design of rock-fall galleries
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Overview of Uncertainty Modeling

• Random variables and their characteristics

Detachment modeling

Fall modeling
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Tools in Uncertainty Modeling

• Engineering problems – also those involving uncertainty are 
very often specific – unique !

Being able to solve such problems requires 

- basic tools (physical, mathematical, natural sciences, 
human sciences, engineering,…)

- innovation (being able to identify ways of solving problems)

- training ! 

Training is important because it provides experience. 

By training we start to recognize patterns !
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Tools in Uncertainty Modeling

• Pattern recognition helps to 
identify:

the usefulness of solution 
strategies from previous problems

the potential of the available 
tools in a given context 
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• Random variables and their characteristics
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Tools in Uncertainty Modeling

• Random variables and their characteristics

Functions of random variables

- sum of two random variables

- non-linear function of random variables
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Tools in Uncertainty Modeling

• Random variables and their characteristics

Functions of random variables
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Contents of Todays Lecture

• Random variables 
- The Central Limit Theorem

- The Normal distribution

- The Log-Normal distribution

• Stochastic Processes and Extremes
- Random sequences (Bernoulli trials)
- Binomial distribution
- Geometric distribution
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Random Variables

• The Central Limit Theorem states:

The probability distribution function of a sum of a number of 
random variables approaches the Normal (Gaussian) 
distribution as the number becomes large
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Random Variables

• The Central Limit Theorem

Conditions for the validity of the theorem:

The sum should not be dominated by one or a few components

The statistical dependency between components should not be 
strong

No requirements to the type of distribution of the 
components

If the components have skew distributions the number 
increases

1 2 ... nY X X X= + + +
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Random Variables

• Illustration: 

A structural member is measured using a ruler. 
- The ruler has limited length (2 m).
- The smallest unit on the ruler is 1 mm.

All measurements are rounded to the closest unit on the ruler.
Each measurement is subject to a measurement uncertainty 
uniformly distributed in the range of +/- 0.5 mm.
We now consider the accumulated error associated with 
measurements over lengths 
- up to 2 m (one measurement)
- between 2 and 4 m (two measurements)
- between 6 and 8 m (four measurements)
- between 14 and 16 m (eight measurements)
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Random Variables

• Illustration: 
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Random Variables

• The Normal distribution

The analytical form of the Normal distribution may be
derived by repeated use of the result regarding the
probability density function for the sum of two random
variables

The Normal distribution is very frequently applied in 
engineering modeling when a random quantity can be assumed
to be composed as a sum of a number of individual
contributions:

A linear combination S of n Normal distributed random
variables                   is thus also a Normal distributed
random variable 

, 1,2,..,iX i n=

0
1

n

i i
i
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Random Variables

• The Normal distribution

The Normal distribution also results from
other considerations

The distribution of energy in an isolated
system
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Random Variables

• The Normal distribution

The accumulation of random movements
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Random Variables

• The Normal distribution:

In the case where the mean value is equal to zero and the 
standard deviation is equal to 1 the random variable is said 
to be standardized.

X
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Random Variables

• The Normal distribution:

In the case where the mean value is equal to zero and the 
standard deviation is equal to 1 the random variable is said 
to be standardized.
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Random Variables

When the logarithm of a random variable X i.e. 

Y = ln(X),     Y : N(μY,σY)

is Normal distributed the random variable X is said to be
Log-Normal distributed

X : LN(λ,ζ) 
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Random Variables

Where the Normal distribution follows from the sum of 
random variables – Central Limit Theorem

the Log-Normal distribution follows from the product of 
random variables 
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Random Variables

The Log-Normal distribution has the useful property that if

and all Yi are independent Log-Normal distributed random
variables with parameters ,      and           then P is
also Log-Normal with parameters
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Random Variables

The Log-Normal distribution is often used to model

- uncertain parameters which cannot have negative 
realizations

- fatigue lives

- steel and concrete resistance

- daily river flows

- whenever a random variable results as a product of several
random variables
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Random Variables

Concrete compression strength

Probability of value
lower than 25 MPa
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Random Variables

There exist a large 
number of different 
probability density and 
cumulative distribution
functions:

Uniform
Normal
Log-normal
Exponential
Beta
Gamma
…
…

Distribution type Parameters Moments 
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Small Example 1

We remember the convolution integral 
which we used for establishing the
probability density function for the sum
of two random variables:

Let us see how easily this works
for two uniformly distributed random
variables:

1 1( )Xf x

21 XXY +=

∫
∞

∞−

−= 111 12
dx)x(f)xy(f)y(f XXY

a b

c d

2 2( )Xf x

1x

2x



Swiss Federal Institute of Technology

Small Example 1

Assuming that the two random variables 
are independent we can write the
convolution integral as:
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Stochastic Processes and Extremes

• Random quantities may be “time variant” in the sense that 
they take new values at different times or at new trials.

- If the new realizations occur at discrete times and have 
discrete values the random quantity is called a random 
sequence

failure events, traffic congestions,…

- If the new realizations occur continuously in time and take 
continues values the random quantity is called a random 
process or stochastic process

wind velocity, wave heights,…
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Stochastic Processes and Extremes

• Random sequences

- A sequence of experiments with only two possible and 
mutually exclusive outcomes is called a Bernoulli trial
- Typically the outcomes of Bernoulli trials are denoted 
successes or failures

If the probability of success in one trial is constant and 
equal to p the probability density of Y successes in n trials, 
i.e.          is given by:)(ypY
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Stochastic Processes and Extremes

• Random sequences

- A sequence of experiments with only two possible and 
mutually exclusive outcomes is called a Bernoulli trial

The Binomial cumulative distribution function then follows as:

,...n,,ypp
i
y

yP ini
y
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Y 210      ,)1()(
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Stochastic Processes and Extremes

• Random sequences

- A sequence of experiments with only two possible and 
mutually exclusive outcomes is called a Bernoulli trial

Binomial probability density function for n=5 and p=0.15 and 
p=0.5  
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Small Example 2

We remember that we can establish the probability
density function of a function of a random variable 
through:

( ) ( )Y X
xf y f x
y

∂=
∂

( )Y g X=
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Small Example 2

Let us see how easily this works:

1
21

2
yx y

y y
−∂∂ = =

∂ ∂

2Y X

X Y

=
⇓

=

1
21( ) ( )

2Y Xf y y f y
−

=

( ) ( )Y X
xf y f x
y

∂=
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Stochastic Processes and Extremes

• Random sequences

The expected value and the variance of a binomially 
distributed random variable Y is given by:

[ ] npYE =

[ ] (1 )Var Y np p= −
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Stochastic Processes and Extremes

• Random sequences

The probability density function for the number of 
(independent) trials before the first success can be given as:

and the corresponding cumulative distribution function is thus

1)1()( −−= n
N ppnp

n
n

i

i
N )p()p(p)n(P −−=−=∑

=

− 111
1

1

Geometric probability density

Geometric cumulative distribution
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Small Example 3

We remember that we could establish the probability
density function of a vector of random variables Y which
were given as functions of a vector of random variables X

1 2( , ,.. )T
nY Y Y=Y

1 2( , ,.. )T
nX X X=X ( )i iY g= X ( )i iX f= Y

( ) ( )f f=Y Xy J x
1 1

1

1

.....

.....

n

n n

n

x x
y y

x x
y y

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥=
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

J # % #
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Small Example 3

Let us see how easily this approach can be applied for the
following problem:

1 1 2

2 2

Y X X
Y X

= +
=

1 2 1 2 2( , ) ( , )f y y f y y y= −Y X

1 1

1

1
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⎢ ⎥∂ ∂⎣ ⎦
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= ⎢ ⎥
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Stochastic Processes and Extremes

The median of the geometric distribution provides 
information in regard to how “long” we need to play a 
game with probability p of winning per time unit.

Time units might be
- tosses (dices)
- years (earthquakes) 

The median is defined through

All we need to determine is n as a function of p

( ) 0.5 1 (1 )n
NP n p= = − −
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Stochastic Processes and Extremes

The median of the geometric distribution provides 
information in regard to how “long” we need to play a game 
with probability p of winning per time unit.

We take the natural logarithm on both sides and get:

Now we use that the natural logarithm of 

( ) 0.5 1 (1 )n
NP n p= = − −

ln(0.5) ln(1 )

0.7 ln(1 )

n p

n p

= −
⇓

≈ − −

2 3

1

1 1ln(1 ) ... ( 1)
2 3

ln(1 )    for small 

k
k

k

pp p p p
k

p p p

∞

=

− = − + − + = −

⇓
− ≈ −

∑
0.70.7 np n
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Stochastic Processes and Extremes

We can now apply this result:

50% chance of getting a 6 requires (n tosses):
n = 0.7 x 6 = 4 tosses

50% chance of getting two 6 (with 2 dices) requires:
n = 0.7 x 36 = 25 tosses

50% chance experiencing an earthquake with an annual 
probability of 0.001 requires (n years): 
n = 0.7 x 1000 = 700 years
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Stochastic Processes and Extremes

• Random sequences

The expected value and the variance of a random variable 
with a Geometrically distributed random variable are given 
by:

[ ]
p

NE 1=

[ ] 2

1
p

pNVar −=

If p is the annual probability of e.g. an 
extreme earthquake E[N] is the return 
period of such earthquakes 
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Contents of Todays Lecture

• Presentation on the result of the classroom assessment 

• What is a random variable?

• The decision context!

• What are we doing today?

• Details will follow ☺
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What is a random variable?

• Let us consider a very simple structural engineering
problem!

• We want to design a steel beam – and assume – based on 
experience that the design controlling load effect is the
midspan bending moment M
- the design variable being the moment of resistance W of  

the cross section
- the load p and the yield stress sy of the beam are
associated with uncertainty

Mid span
cross-section

21
6

W bh=

b

h
p

l
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What is a random variable?

• The moment capacity of the cross-section RM and the mid
span moment M are calculated as:

Mid span
cross-section

21
6

W bh=
b

h
p

l

moment capacity of cross section
   moment of resistance
  yield stress of the steel

M y

M

y

R W

R
W

σ

σ

= 1
4

 mid span moment
   load

   length of beam

M pl

M
p
l

=
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What is a random variable?

• We can now establish a design equation as:

Mid span
cross-section

b

h

p

l

2

( , ) 0

1( , ) 0
4

1 1 0
6 4

M

y

y

R b h M

W b h Pl

bh Pl

σ

σ

− ≥

⇓

− ≥

⇓

− ≥

The engineer must now select W, 
or rather b and h such that the
design equation is fulfilled

But as p and σy are associated with
uncertainty – she/he must take this
uncertainty into account !
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What is a random variable?

• The uncertainty is accounted for by representing p and sy
in the design equation as two random variables.

The random variable P represents the random variability of 
the load p during a period of one year

The random variable Sy represents the random variability
of the steel yield stress sy - produced by an unknown steel
producer.

:    Normal distributed: ( , )
:   Normal distributed: ( , )

y y

P P

y

P N
N

μ σ
μ σΣ ΣΣ

Mid span
cross-section

b

h

P

L
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What is a random variable?

• As the load and yield stress are uncertain the design 
equation cannot be fulfilled with certainty – independent 
on the choice of b and h.

• However, it can be fulfilled with probability !

• The beam can be designed such that the probability of 
failure is less or equal to a given number – the requirement
to safety.
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What is a random variable?

• Let us assume that the load and yield stress are given as:

we can now write the event of failure as:

let us further assume that l=5000mm and b=50mm
• Let us now determine h such that the annual probability of 

failure is equal to 10-3

:            ( , )     (100kN, 20kN)
:           ( , )   (370mPa,15mPa)

y y

P P

y

P N N
N N

μ σ
μ σΣ Σ
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Σ =

2

2

1 1 0
6 4

3 0
2
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bh Pl
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Σ − ≤

⇓

Σ − ≤

2

3 0
2yS Pl
bh

= Σ − ≤ This is called a 
safety margin!
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What is a random variable?

• We have already learned that a linear combination of 
Normal distributed random variables is also Normal 
distributed
The expected value of S is equal to:   

The variance of S is equal to:

2

2 2

3 5
2 0.05

3 150000370 5 370
2 0.05
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h h

μ μ μ

μ

Σ= − ⋅
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⎝ ⎠

The probability of failure is
now easily determined from 
the standard Normal 
cumulative distribution 
function
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What is a random variable?

• Calculating the probability of failure as a function of h we 
get:

The height of the beam must thus be equal to 73mm!

0.0000001
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The decision context!

• Why uncertainty modeling?

Decision Making !

Risks

Consequences of eventsProbabilities of events

Probabilistic model

Data Model estimation

Decision Making !Decision Making !

RisksRisks

Consequences of eventsProbabilities of events Consequences of eventsConsequences of eventsProbabilities of eventsProbabilities of events

Probabilistic modelProbabilistic model

Data Model estimationData Model estimation

Uncertain phenomenonUncertain phenomenon

Random variables
Random processes



Swiss Federal Institute of Technology

What are we doing today?

• We have already introduced random variables as a means
of representing uncertainties which we may quantify based
on observations – related to time frames from which we
have experience and observations!

• In many real problems of decision making we need to take
into account what might happen in the far future –
exceeding the time frames for which we have experience!

- 475 year design earthquake!

- 100 year storm/flood

- 100 year maximum truck load

- etc.. Thus we need to develop models which
can support us in the modeling of extremes 
of uncertain/random phenomena !
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What are we doing today?

• We have already introduced random variables as a means 
of representing uncertainties which we may quantify based 
on observations.

• Often we use random variables to represent uncertainties 
which do not vary in time:

- Model uncertainties (lack of knowledge)
- Statistical uncertainties (lack of data).

• Or we use such random variables to represent the random 
variations which can be observed within a given reference 
period.
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What are we doing today?

• In many engineering problems we need 
to be able to describe the random 
variations in time more specifically:

The occurrences of events at random 
discrete points in time (rock-fall, 
earthquakes, accidents, queues, 
failures, etc.) 
- Poisson process, exponential and 
Gamma distribution

The random values of events occurring 
continuously in time (wind pressures, 
wave loads, temperatures, etc.)
- Continuous random processes (Normal 

process)

Discrete event of flood

Continuous stress 
variations due to waves
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What are we doing today?

• However, we are also interested in 
modeling extreme events such as:

the maximum value of an uncertain 
quantity within a given reference 
period
- extreme value distributions

the expected value of the time till 
the occurrence of an event 
exceeding a certain severity 
- return period

Extreme water level

Maximum wave load
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What are we doing today?

• In summary we will look at:

- Random sequences (Poisson process)

- Waiting time between events (Exponential and Gamma  
distributions)

- Continuous random processes (the Normal process)

- Criteria for extrapolation of extremes (stationarity and 
ergodicity)

- The maximum value within a reference period (extreme 
value distributions)

- Expected value of the time till the occurrence of an event 
exceeding a certain severity (return period) 
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Random Sequences

• The Poisson counting process is one of the most commonly 
applied families of probability distributions applied in 
reliability theory

The process N(t) denoting the number of events in a (time) 
interval (t,t+Δt[ is called a Poisson process if the following 
conditions are fulfilled:

1) the probability of one event in the interval (t,t+Δt[ is 
asymptotically proportional to Δt.

2) the probability of more than one event in the interval 
(t,t+Δt[ is a function of higher order of Δt for Δt→0.

3) events in disjoint intervals are mutually independent.
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Random Sequences

• The Poisson process can be described completely by its 
intensity n(t)

if n(t) = constant, the Poisson process is said to be 
homogeneous, otherwise it is inhomogeneous.

The probability of n events in the time interval (0,t[ is:

[ [
0

1( ) lim (one event in , )
t

t P t t t
t

ν
Δ →

= +Δ
Δ

Homogeneous case !
( ) 0

0
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⎛ ⎞
⎜ ⎟
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⎝ ⎠

∫
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tP t t
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Random Sequences

• The mean value and variance of the random variable 
describing the number of events in a given time interval 
(0,t[ are given as:

[ ] [ ]
0

t

E N t Var N t dν τ τ= = ∫( ) ( ) ( )

[ ] [ ]E N t Var N t tν= =( ) ( ) Homogeneous case !

Inhomogeneous case !
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Random Sequences

• The Exponential distribution

The probability of no events in a given time interval (0,t[ 
is often of special interest in engineering problems

- no severe storms in 10 years
- no failure of a structure in 100 years
- no earthquake next year
- …….
This probability is directly achieved as:

Homogeneous case !

( )

0

0
0

0

0

( )
exp ( )

0!

exp ( )

t

t

t

d
P t d

d

ν τ τ
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⎛ ⎞
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⎝ ⎠

⎛ ⎞
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⎝ ⎠

∫
∫

∫

( ) ( )0 expP t tν= −
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Random Sequences

• The probability distribution function of the (waiting) time 
till the first event T1 is now easily derived recognizing 
that the probability of T1 >t is equal to P0(t) we get:

Homogeneous case !

Exponential cumulative distribution

Exponential probability density

1 1 0 1

0

( ) 1 ( )

1 exp( ( ) )

T

t

F t P t

dν τ τ

= −

= − −∫

1 1( ) 1 exp( )TF t tν= − −

1 1( ) exp( )Tf t tν ν= −
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Random Sequences

The Exponential probability density and cumulative 
distribution functions
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Random Sequences

• The exponential distribution is frequently applied in the 
modeling of waiting times

- time till failure
- time till next earthquake
- time till traffic accident
- ….

The expected value and variance of an exponentially 
distributed random variable T1 are:

[ ] [ ]1 1 1E T Var T ν= = /

1 1( ) exp( )Tf t tν ν= −
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Random Sequences

• Sometimes also the time T till the n’th event is of interest in 
engineering modeling:

- repair events
- flood events
- arrival of cars at a roadway crossing

If Ti, i=1,2,..n are independent exponentially distributed 
waiting times, then the sum T i.e.:

follows a Gamma distribution:

1 2 1... n nT T T T T−= + + + +

( -1)( ) exp( )( )
( 1)!

n

T
t tf t

n
ν ν ν−=

−
This follows from repeated use
of the result of the distribution
of the sum of two random variables 
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Random Sequences

The Gamma probability density function
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Random Processes

• Continuous random processes

A continuous random process is a random process which 
has realizations continuously over time and for which the 
realizations belong to a continuous sample space.

20
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Random Processes

• Continuous random processes

The mean value of the possible realizations of a random 
process is given as:

The correlation between realizations at any two points in 
time is given as:

[ ]( ) ( ) ( ; )X Xt E X t x f x t dxμ
∞

−∞

= = ∫

Function of time !

[ ]1 2 1 2 1 2 1 2 1 2 1 2( , ) ( ) ( ) ( , ; , )XX XXR t t E X t X t x x f x x t t dx dx
∞ ∞

−∞ −∞

= = ∫ ∫
Auto-correlation function – refers to a scalar valued random process
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Random Processes

• Continuous random processes

The auto-covariance function is defined as:

for t1=t2=t the auto-covariance function becomes the 
covariance function:

[ ]1 2 1 1 2 2

1 1 2 2 1 2 1 2 1 2

( , ) ( ( ) ( ))( ( ) ( ))

( ( )) ( ( )) ( , ; , )

XX X X

X X XX

C t t E X t t X t t

x t x t f x x t t dxdx

μ μ

μ μ
∞ ∞

−∞ −∞

= − −

= − −∫ ∫

)t()t,t(R)t,t(C)t( XXXXXX
22 μσ −==

( )X tσ Standard deviation function
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Random Processes

• Continuous random processes

A vector valued random process is a random process 
with two or more components:

with covariance functions:

The correlation coefficient function is defined as:

T
n tXtXtXt ))(),..,(),(()( 21=X

1 2

1 1 2 2
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( ( ) ( ))( ( ) ( ))

i j

i j

X X
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Random Processes

• Normal or Gauss process

A random process X(t) is said to be Normal if: 

For any set; X(t1), X(t2),…,X(tj)

the joint probability distributions of X(t1), X(t2),…,X(tj)

is the Normal distribution.
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Random Processes

• Stationarity and ergodicity

A random process is said to be strictly stationary if all its 
moments are invariant to a shift in time.

A random process is said to be weakly stationary if the 
first two moments i.e. the mean value function and the 
auto-correlation function are invariant to a shift in time  

( )X t cstμ =

1 2 2 1( , ) ( )XXR t t f t t= − Weakly stationary
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Random Processes

• Stationarity and ergodicity

- A random process is said to be strictly ergodic if it is 
strictly stationary and in addition all its moments may 
be determined on the basis of one realization of the process.

- A random process is said to be weakly ergodic if it is weakly 
stationary and in addition its first two moments may be 
determined on the basis of one realization of the process.  

• The assumptions in regard to stationarity and ergodicity are 
often very useful in engineering applications. 

- If a random process is ergodic we can extrapolate 
probabilistic models of extreme events within short reference 
periods to any longer reference period.
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Extreme Value Distributions

In engineering we are often interested in extreme values
i.e. the smallest or the largest value of a certain quantity
within a certain time interval e.g.:

The largest earthquake in 1 year

The highest wave in a winter season

The largest rainfall in 100 years
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Extreme Value Distributions

We could also be interested in the smallest or the largest
value of a certain quantity within a certain volume or area
unit e.g.:

The largest concentration of pesticides in a volume of 
soil

The weakest link in a chain

The smallest thickness of concrete cover
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Extreme Value Distributions

 

Observed monthly
extremes

Observed annual
extremes

Observed 5-year 
extremes
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Extreme Value Distributions

If the extremes within the period T of an ergodic random
process X(t) are independent and follow the distribution: 

Then the extremes of the same process within the period:

will follow the distribution:

)(max
, xF TX

Tn ⋅

( )max max
, ,( ) ( )

n

X nT X TF x F x=
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Extreme Value Distributions

Extreme Type I – Gumbel Max

When the upper tail of the probability density function falls 
off exponentially (exponential, Normal and Gamma 
distribution) then the maximum in the time interval T is
said to be Type I extreme distributed

)))(exp()(exp()(max
, uxuxxf TX −−−−−= ααα

)))(exp(exp()(max
, uxxF TX −−−= α

max

max

0.577216
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= )ln(6
maxmaxmax n
TTnT XXX σ

π
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For increasing time 
intervals the variance 
is constant but mean 
value increases as: 
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Extreme Value Distributions

Extreme Type II – Frechet Max

When a probability density function is downwards limited 
at zero and upwards falls off in the form 

then the maximum in the time interval T is said to be Type 
II extreme distributed  
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Extreme Value Distributions

Extreme Type III – Weibull Min

When a probability density function is downwards limited
at     and the lower tail falls off towards in the form

then the maximum in the time interval T is said to be Type 
III extreme distributed
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Return Period

The return period for extreme events TR may be defined as:

Example:
Let us assume that - according to the cumulative
probability distribution of the annual maximum traffic load
- the annual probability that a truck load is larger than 100 
ton is equal to 0.02 – then the return period of such heavy
truck events is: 

max
,( ( ))R

X T

T n T T
F x

= ⋅ =
−
1

1

1 1 50 years
0.02RT n T= ⋅ = = T=1 since we speak for annual probability of the 

extreme load event
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Contents of Today‘s Lecture

• Presentation on the result of the classroom assessment 

• Catching up with the lecture from last time
- Continuous random processes
- Extremes of random processes

• Overview of Estimation and Model Building

• Probability Distribution Functions in Statistics

• Estimators for Sample Descriptors – Sample Statistics
- statistical characteristics of the sample average
- statistical characteristics of the sample variance
- confidence intervals on estimators
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Random Processes

• Continuous random processes

A continuous random process is a random process which 
has realizations continuously over time and for which the 
realizations belong to a continuous sample space.

20
21
22
23
24
25
26
27

0 10 30
Time (days)

W
at

er
 le

ve
l

20 40 50 60 70 80 90 100

28
29
30

Realization of continuous scalar valued random process

Variations of; 
water levels
wind speed
rain fall
.
.
.
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Random Processes

• Continuous random processes

The mean value of the possible realizations of a random 
process is given as:

The correlation between realizations at any two points in 
time is given as:

[ ]( ) ( ) ( ; )X Xt E X t x f x t dxμ
∞

−∞

= = ∫

Function of time !

[ ]1 2 1 2 1 2 1 2 1 2 1 2( , ) ( ) ( ) ( , ; , )XX XXR t t E X t X t x x f x x t t dx dx
∞ ∞

−∞ −∞

= = ∫ ∫
Auto-correlation function – refers to a scalar valued random process
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Random Processes

• Continuous random processes

The auto-covariance function is defined as:

for t1=t2=t the auto-covariance function becomes the 
covariance function:

[ ]1 2 1 1 2 2

1 1 2 2 1 2 1 2 1 2

( , ) ( ( ) ( ))( ( ) ( ))

( ( )) ( ( )) ( , ; , )

XX X X

X X XX

C t t E X t t X t t

x t x t f x x t t dx dx

μ μ

μ μ
∞ ∞

−∞ −∞

= − −

= − −∫ ∫

)t()t,t(R)t,t(C)t( XXXXXX
22 μσ −==

( )X tσ Standard deviation function



Swiss Federal Institute of Technology 6 / 40

Random Processes

• Continuous random processes

A vector valued random process is a random process 
with two or more components:

with covariance functions:

The correlation coefficient function is defined as:

T
n tXtXtXt ))(),..,(),(()( 21=X

1 2

1 1 2 2

( , )

( ( ) ( ))( ( ) ( ))

i j

i j

X X

i X j X

C t t

E X t t X t tμ μ
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⎡ ⎤− −⎣ ⎦

ji = auto-covariance functions

ji ≠ cross-covariance functions

1 2
1 2

1 2
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i j

X X

C t t
X t X t

t t
ρ

σ σ
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Random Processes

• Normal or Gauss process

A random process X(t) is said to be Normal if: 

for any set; X(t1), X(t2),…,X(tj) 

the joint probability distribution of X(t1), X(t2),…,X(tj)  

is the Normal distribution.
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Random Processes

• Stationarity and ergodicity

A random process is said to be strictly stationary if all its 
moments are invariant to a shift in time.

A random process is said to be weakly stationary if the 
first two moments i.e. the mean value function and the 
auto-correlation function are invariant to a shift in time  

( )X t cstμ =

1 2 2 1( , ) ( )XXR t t f t t= − Weakly stationary
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Random Processes

• Stationarity and ergodicity

- A random process is said to be strictly ergodic if it is 
strictly stationary and in addition all its moments may 
be determined on the basis of one realization of the process.

- A random process is said to be weakly ergodic if it is weakly 
stationary and in addition its first two moments may be 
determined on the basis of one realization of the process.  

• The assumptions in regard to stationarity and ergodicity are 
often very useful in engineering applications. 

- If a random process is ergodic we can extrapolate 
probabilistic models of extreme events within short reference 
periods to any longer reference period.
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Extreme Value Distributions

In engineering we are often interested in extreme values
i.e. the smallest or the largest value of a certain quantity
within a certain time interval e.g.:

The largest earthquake in 1 year

The highest wave in a winter season

The largest rainfall in 100 years
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Extreme Value Distributions

We could also be interested in the smallest or the largest 
value of a certain quantity within a certain volume or area
unit e.g.:

The largest concentration of pesticides in a volume of 
soil

The weakest link in a chain

The smallest thickness of concrete cover 
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Extreme Value Distributions

 

Observed monthly
extremes

Observed annual
extremes

Observed 5-year 
extremes
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Extreme Value Distributions

If the extremes within the period T of an ergodic random
process X(t) are independent and follow the distribution: 

Then the extremes of the same process within the period:

will follow the distribution:

)(max
, xF TX

Tn ⋅

( )max max
, ,( ) ( )

n

X nT X TF x F x=
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Extreme Value Distributions

Extreme Type I – Gumbel Max

When the upper tail of the probability density function falls 
off exponentially (exponential, Normal and Gamma 
distribution) then the maximum in the time interval T is
said to be Type I extreme distributed

)))(exp()(exp()(max
, uxuxxf TX −−−−−= ααα

)))(exp(exp()(max
, uxxF TX −−−= α

max

max

0.577216

6
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X

X

u uγμ
α α

πσ
α

= + = +

= )ln(6
maxmaxmax n
TTnT XXX σ

π
μμ +=

For increasing time 
intervals the variance 
is constant but the mean 
value increases as: 



Swiss Federal Institute of Technology 15 / 40

Extreme Value Distributions

Extreme Type II – Frechet Max

When a probability density function is downwards limited 
at zero and upwards falls off in the form 

then the maximum in the time interval T is said to be Type 
II extreme distributed  

k
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Extreme Value Distributions

Extreme Type III – Weibull Min

When a probability density function is downwards limited
at ε and the lower tail falls off towards ε in the form

then the minimum in the time interval T is said to be Type 
III extreme distributed
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Return Period

The return period for extreme events TR may be defined as:

Example:
Let us assume that - according to the cumulative 
distribution function of the annual maximum traffic load -
the annual probability that a truck load larger than 100 ton 
is equal to 0.02 – then the return period of such heavy 
truck events is: 

))(1(
1
max
, xF

TnT
TX

R −
=⋅=

1 1 50 years
0.02 1 0.02RT n T n= ⋅ = ⇒ = =

⋅
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Overview of Estimation and Model Building

• How do engineers establish knowledge

Models

ExperienceData

Real world
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Overview of Estimation and Model Building

Different types of information is used when 
developing engineering models

- subjective information 
- frequentististic information

Distribution family

Distribution 
parameters

Probabilistic model
Frequentistic
- Data

Subjective
- Physical understanding
- Experience
- Judgement
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Overview of Estimation and Model Building

Model building may be seen to consist of five steps

1) Assessment and statistical quantification of the  
available data

2) Selection of distribution function

3) Estimation of distribution parameters

4) Model verification

5) Model updating
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Probability Distribution Functions in Statistics

In the classical statistical theory a number of 
probability distribution functions which may all be 
derived from the normal distribution function are 
repeatedly used for assessment and testing 
purposes. 

These derived probability distribution functions are 
the :

Chi-square distribution
Chi-distribution
t-distribution
F-distribution
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Probability Distribution Functions in Statistics

The Chi-square (   ) distribution

When 

are standard Normal distributed and independent 
random variables then the sum of the squares of 
the random variables i.e.

is said to be Chi-square distributed

It is seen that the Chi square distribution is 
regenerative i.e. sums of Chi-square distributed 
random variables are also Chi-square distributed
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Probability Distribution Functions in Statistics

The Chi-square (   ) distribution

Consider the simplest case with n=1, i.e. :

Then we can write

and we get
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Probability Distribution Functions in Statistics

The Chi-square probability density function is given as

The mean value is

The variance

is the complete Gamma function

for large n the Chi-square distribution converges to a 
Normal distribution – Central Limit Theorem 
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Probability Distribution Functions in Statistics

The Chi-square probability density function
Chi-square probability density function
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Probability Distribution Functions in Statistics

The Chi (   ) distribution

When a random variable     is given as the square
root of a Chi-square distributed random variable    
i.e.

it is said to be Chi-distributed witn n degrees of 
freedom

χ

nY
Z

nYZ =
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Probability Distribution Functions in Statistics

The Chi (   ) distribution

Assume that is Chi-square distributed with n

degrees of freedom

If then we can write

and we get

χ
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Probability Distribution Functions in Statistics

The Chi probability density function is given as

The mean value is

The variance
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Probability Distribution Functions in Statistics

The Chi probability density function

Chi probability density function
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Probability Distribution Functions in Statistics

The (Student‘s) t distribution

When a random variable     is given as standard Normal 
distributed, devided by a Chi distributed random
variable i.e.

it is said to be t-distributed witn n degrees of freedom

For large n the t-distribution converges to a Normal 
distribution.
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Probability Distribution Functions in Statistics

The (Student‘s) t probability density function is
given as

The mean value is zero

The variance
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Probability Distribution Functions in Statistics

The (Student‘s) t probability density function
t-distribution
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Probability Distribution Functions in Statistics

The F distribution

When a random variable     is given as the ratio
between two Chi-square distributed random
variables i.e.

it is said to be F-distributed witn parameters n1, n2
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Probability Distribution Functions in Statistics

The F probability density function is given as

The mean value is

The variance
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Probability Distribution Functions in Statistics

The F probability density function
F-distribution 
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Probability Distribution Functions in Statistics

Summary of derived probability density functions:

Distribution Type When

Chi-square distribution sum of squared N(0;1)
Chi-distribution square root of Chi-square
t-distribution ratio of N(0;1) to Chi/n
F-distribution ratio of two Chi-square
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Probability Distribution Functions in Statistics

Example Chi distribution

In the field measurements have been performed of 
a and b with the purpose to assess c

a

b

c
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Probability Distribution Functions in Statistics

Example Chi distribution

It is assumed that the measurements of a and b are
performed with the same absolute error e which is
assumed to N(0; σe ) i.e. Normal distributed, 
unbiased and with standard deviation σe.  

Determine the statistical characteristics of the
error in c when this is assessed using the
measurements of a and b.

a

b

c
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Probability Distribution Functions in Statistics

Example Chi distribution

Knowing that the error propagates according to

we realize that

is Chi distributed with 2 degrees of freedom
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Probability Distribution Functions in Statistics

Example Chi distribution

The probability density function of

can thus be determined from

yielding

where it was used that for we have

εσ
εcZ =

0          ),5.0exp()( 2 ≥−= zzzzfZ

0          ),5.0exp()( c
22 ≥−= εσε

σ
εε ε

ε
ε c

c
cc

f

))(()( 1
1

ygf
dy

dgyf Xy
−

−

=)(xgy =

a

b

c



Swiss Federal Institute of Technology 41 / 40

Estimators for Sample Descriptors

The first step when new data are achieved is to 
assess the data

n xn FX(xn)
1 24.4 0.047619048
2 27.6 0.095238095
3 27.8 0.142857143
4 27.9 0.19047619
5 28.5 0.238095238
6 30.1 0.285714286
7 30.3 0.333333333
8 31.7 0.380952381
9 32.2 0.428571429

10 32.8 0.476190476
11 33.3 0.523809524
12 33.5 0.571428571
13 34.1 0.619047619
14 34.6 0.666666667
15 35.8 0.714285714
16 35.9 0.761904762
17 36.8 0.80952381
18 37.1 0.857142857
19 39.2 0.904761905
20 39.7 0.952380952

D
at

a/
ob

se
rv

at
io
ns Mean value

Variance

Median

etc

.....

Any function of 
samples:

Sample 
characteristics

or

Sample statistics
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Estimators for Sample Descriptors

We want to have a look at the statistical characteristics
of such sample statistics – in order to better
understand the information they contain

Assume we have a yet unknown sample of experiment
outcomes

generated by the cumulative distribution functions

then we can write the sample statistics for the

sample mean

sample variance
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Estimators for Sample Descriptors

The sample statistics are random variables because
the experiment outcomes have not yet been realized
– however we can evaluate the expected value and 
the variance of the sample statistics, i.e. for the
sample mean we get : 
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Estimators for Sample Descriptors

The probability density function for the sample
average can be assumed to be a Normal distribution
– Central Limit Theorem
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Estimators for Sample Descriptors

For the sample variance we get: 

The expected value of the
sample variance is thus
different from the
variance – biased !
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Estimators for Sample Descriptors

We can however easily identify an unbiased
estimator for the variance as:
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Estimators for Sample Descriptors

The goodness of an estimator cannot be judged upon
whether it is biased or not alone – other properties are
important such as 

- efficiency least mean square error E[(s2-s2)] 
- invariance
- consistent converge to the true values
- sufficiency make maximum use of the data
- robustness sensitivity to omission of individual

data

we will not consider these in detail – just remember that
these considerations may also be important

)()( θθ hh =
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Confidence Intervals on Estimators

In the previous we have seen that estimators of e.g. 
the mean value are associated with uncertainty and we 
have established expressions to determine their mean 
value and variance –
Based on this information we are also able to 
determine so called confidence intervals on the 
estimators.
For the case where it is assumed that the variance is 
known and only the mean value is uncertain the so-
called double sided and symmetrical confidence 
interval on the mean value is given by
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In words the confidence interval defines an interval
within which e.g. the true mean value will lie with a 
probability 1-α

For the case where α= 0.05, n = 16 and σX = 20 we
get

Confidence Intervals on Estimators
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If we then observe that the sample mean is equal to 
e.g. 400 we know that with a probability equal to 0.95 
the true mean will lie within the interval

Typically confidence intervals are considered for mean 
values, variances and characteristic values – e.g. lower 
percentile values.

Confidence intervals represent/describe the 
(statistical) uncertainty due to lack of data.

Confidence Intervals on Estimators

9.8 9.8 0.95XP X μ⎡ ⎤− < − < =⎣ ⎦

and so:   390.2 409.8Xμ< <
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The number of available data has a significant 
importance for the confidence interval  - using the 
same example as in the previous the confidence 
interval depends on n as shown below

Confidence Intervals on Estimators
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Contents of Todays Lecture

• Overview of Estimation and Model Building

• A short Summary of the Previous Lecture

• Estimators for Sample Descriptors

• Testing for Statistical Significance
- The hypothesis testing procedure
- Testing of the mean with known variance
- Testing of the mean with unknown variance
- Testing of the variance
- Test of two or more data sets
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Overview of Estimation and Model Building

Different types of information is used
when developing engineering models

- subjective information
- frequentistic information

Frequentistic
- Data

Subjective
- Physical understanding
- Experience
- Judgement

Distribution family

Distribution parameters

Probabilistic model
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A Short Summary of the Previous Lecture

• Continuous random processes

A continuous random process is a random process which 
has realizations continuously over time and for which the 
realizations belong to a continuous sample space.
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A Short Summary of the Previous Lecture

If the extremes within the period T of an ergodic random
process X(t) are independent and follow the distribution: 

then the extremes of the same process within the period:

will follow the distribution:
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A Short Summary of the Previous Lecture

If the extremes within the period T of an ergodic random
process X(t) are independent and follow the distribution: 
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A Short Summary of the Previous Lecture

Based on independent Normal distributed random
variables we could derive the following distributions:

Distribution Type When

Chi-square distribution sum of squared N(0;1)
Chi-distribution square root of Chi-square
t-distribution ratio of N(0;1) to Chi/n
F-distribution ratio of two Chi-square
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Probability Distribution Functions in Statistics

Example Chi distribution

In the field, measurements have been performed of 
a and b with the purpose to assess c

a

b

c
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Probability Distribution Functions in Statistics

Example Chi distribution

It is assumed that the measurements of a and b are
performed with the same absolute error ε which is
assumed to N(0; σε ) i.e. Normal distributed, 
unbiased and with standard deviation σε.  

Determine the statistical characteristics of the
error in c when this is assessed using the
measurements of a and b.

a

b

c
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Probability Distribution Functions in Statistics

Example Chi distribution

Knowing that the error propagates according to

we realize that

is Chi distributed with 2 degrees of freedom
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Probability Distribution Functions in Statistics

Example Chi distribution

The probability density function of

can thus be determined from

yielding

εσ
εcZ =

0          ),5.0exp()( 2 ≥−= zzzzfZ
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Estimators for Sample Descriptors

The first step when new data are achieved is to 
assess the data

n xn FX(xn)
1 24.4 0.047619048
2 27.6 0.095238095
3 27.8 0.142857143
4 27.9 0.19047619
5 28.5 0.238095238
6 30.1 0.285714286
7 30.3 0.333333333
8 31.7 0.380952381
9 32.2 0.428571429

10 32.8 0.476190476
11 33.3 0.523809524
12 33.5 0.571428571
13 34.1 0.619047619
14 34.6 0.666666667
15 35.8 0.714285714
16 35.9 0.761904762
17 36.8 0.80952381
18 37.1 0.857142857
19 39.2 0.904761905
20 39.7 0.952380952

D
at

a/
ob

se
rv

at
io
ns Mean value

Variance

Median

etc

.....

Any function of 
samples:

Sample 
characteristics

or

Sample statistics
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Estimators for Sample Descriptors

We want to have a look at the statistical characteristics
of such sample statistics – in order to better
understand the information they contain

Assume we have a yet unknown sample of experiment

outcomes

generated by the cumulative distribution functions

then we can write the sample statistics for the

sample mean sample variance
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Estimators for Sample Descriptors

The sample statistics are random variables, 
because the experiment outcomes have not yet been
realized –
however we can evaluate the expected value and the
variance of the sample statistics, i.e. for the sample
mean we get : 
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Estimators for Sample Descriptors

The probability density function for the sample
average can be assumed to be a Normal distribution
– Central Limit Theorem
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Estimators for Sample Descriptors

For the sample variance we get: 
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Estimators for Sample Descriptors

We can however easily identify an unbiased
estimator for the variance as:
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Confidence Intervals on Estimators

• In the previous we have seen that estimators of e.g. 
the mean value are associated with uncertainty and we 
have established expressions to determine their mean 
value and variance.

• Based on this information we are also able to 
determine so called confidence intervals on the 
estimators.

• Confidence intervals may be understood as intervals
within which e.g. the mean value can be found

• Confidence is expressed in terms of probability
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Confidence Intervals on Estimators

We may e.g. establish a confidence interval for the 
mean value.

For the case where it is assumed that the mean value is 
uncertain and the variance is known the so-called
double sided and symmetrical confidence interval on 
the mean value is given by
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In words: the confidence interval defines an interval
within which the sample average will be located with
a probability 1-α

The confidence interval may be determined using the
assumption that the mean value is Normal 
distributed whereby there is:

Confidence Intervals on Estimators
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For the case where α= 0.05, n = 16 and σX = 20 we
get

Confidence Intervals on Estimators

9.8 9.8 0.95XP X μ⎡ ⎤− < − < =⎣ ⎦

-1.96 1.96 1- 0.05120
XXP

n

μ
⎡ ⎤
⎢ ⎥
− < < =⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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• If we then observe that the sample mean is equal to 
e.g. 400 we know that with a probability equal to 0.95 
the true mean will lie within the interval

• Typically confidence intervals are considered for mean 
values, variances and characteristic values – e.g. lower 
percentile values.

• Confidence intervals represent/describe the 
(statistical) uncertainty due to lack of data.

Confidence Intervals on Estimators

and so:   390.2 409.8Xμ< <

9.8 9.8 0.95XP X μ⎡ ⎤− < − < =⎣ ⎦
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The number of available data has a significant 
importance for the confidence interval  - using the 
same example as in the previous the confidence 
interval depends on n as shown below

Confidence Intervals on Estimators
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Contents of Todays Lecture

• Short Summary of Previous Lecture

• Overview of Estimation and Model Building

• Testing for Statistical Significance
- The hypothesis testing procedure
- Testing of the mean with known variance
- Testing of the mean with unknown variance
- Testing of the variance
- Test of two or more data sets

• Selection of Distribution Function
- Model selection by use of probability paper
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Short Summary of Previous Lecture

In the previous lecture we looked at:

Estimators for Sample Descriptors

Confidence Intervals on Estimators

n xn FX(xn)
1 24.4 0.047619048
2 27.6 0.095238095
3 27.8 0.142857143
4 27.9 0.19047619
5 28.5 0.238095238
6 30.1 0.285714286
7 30.3 0.333333333
8 31.7 0.380952381
9 32.2 0.428571429

10 32.8 0.476190476
11 33.3 0.523809524
12 33.5 0.571428571
13 34.1 0.619047619
14 34.6 0.666666667
15 35.8 0.714285714
16 35.9 0.761904762
17 36.8 0.80952381
18 37.1 0.857142857
19 39.2 0.904761905
20 39.7 0.952380952
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Short Summary of Previous Lecture

Sample descriptors are simply e.g. 

The sample mean value

The sample variance

What did we learn?

The sample descriptors are associated with uncertainty
due to statistical uncertainty (epistemical uncertainty)



Swiss Federal Institute of Technology 5

Short Summary of Previous Lecture

The sample mean value is an unbiased descriptor
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Short Summary of Previous Lecture

The sample variance is biased !
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Short Summary of Previous Lecture

• Due to the uncertainty associated with the descriptors
(e.g. sample mean) we dont know their exact value

• We can however determine intervals where we can find 

These intervals we call confidence intervals!

them with a given probability
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The number of available data has a significant 
importance for the confidence interval  - using the 
same example as in the previous the confidence 
interval depends on n as shown below

Short Summary of Previous Lecture
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Overview of Estimation and Model Building

Different types of information is used
when developing engineering models

- subjektive information
- frequentististic information

Frequentistic
- Data

Subjektive
- Physical understanding
- Experience
- Judgement

Distribution family

Distribution 
parameters

Probabilistic model
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Testing for Statistical Significance

Engineering dilemma :

Draw simple conclusions based on limited data with a high 
degree of variability –

E.g. : Make a few „on site“ tests to verify a calculation
model of the soil strength characteristics

Use observations of traffic crossing a bridge to 
check if design traffic volume assumptions are
valid

Collect ground water „samples“ to verify that the
water is of drinking quality
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Testing for Statistical Significance

It is important that such conclusions are drawn on a basis
which is consistent and transparent – i.e. the conclusions
should reflect the evidence (data) and a given formalism in 
regard to what evidence triggers which conclusions

One highly utilized and useful formalism for supporting
such conclusions is to

1 Formulate hypothesis

2 Test hypothesis

We shall have a look into this approach is some detail in 
the following
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Testing for Statistical Significance

1 The first step is to formulate a null-hypothesis - H0 e.g. 
postulating that a sample statistic (e.g. sample mean) is
equal to a given value

2 The next step is to formulate an operating rule on the basis
of which the null-hypothesis can either be accepted or
rejected – given the evidence (test results) – such an 
operating rule is often defined by an interval D within
which the observed sample statistic has to be in – for the
null-hypothesis to be accepted - rejecting the null-
hypothesis H0 corresponds to accepting the alternate H1
hypothesis

3 Select a significance level a for conducting the test – where
a is the probability that the hypothesis will be rejected
even though it is true (Type I error) – in this way a also 
influences the probability that the null-hypothesis is
accepted even though it is false (Type II error)
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Testing for Statistical Significance

4 Calculate the value of D corresponding to a – calculate also 
if relevant the probability of performing a Type II error

5 Perform the planned tests and evaluate the observed
sample statistic – check if the null-hypothesis should be
rejected or accepted

6 Given that the null-hypothesis is not supported by the
evidence (data) the null-hypothesis is rejected at 
significance level a – otherwise it is accepted. 
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Testing for Statistical Significance

The hypothesis testing procedure may be visualized as 
follows

Postulate 
Null-Hypothesis

Formulate
operating rule

Select
significance
level Assess

acceptance
criteriaPerform test and 

check for
acceptance Conclude at 

choosen
significance
level
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Testing for Statistical Significance

Typical Tests in Engineering

- Testing of the mean – with known variance

- Testing of the mean – with unknown variance

- Testing of the variance

- Test of two or more data sets
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Testing for Statistical Significance

Example – chloride induced corrosion of concrete
structures

CL-

CL-

Consider an example where we want to verify whether the
chloride concentration on the surface of a concrete structure
is in compliance with our design assumptions
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Testing for Statistical Significance

Testing of the mean – with known variance

The design assumptions: mean surface chloride
concentration is 0.3%

we assume that we know the std. dev. of the surface
chloride concentration – equal to 0.04%

Null-hypothesis

The operating rule is formulated as: 
Accept the Null-hypothesis at the α-level if

Δ+≤≤Δ− 3.03.0 X
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Testing for Statistical Significance

Testing of the mean – with known variance

The acceptance criteria may be determined for given by

Choosing α = 0.1, n= 10 experiments and assuming that
the sample average is normal distributed we get
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Testing for Statistical Significance

Testing of the mean – with known variance

If the sample average lies in the interval
the Null-hypothesis H0 should be accepted

Assume that 10 experiments are carried out and the
following results are obtained

with sample average μ = 0.29  - it is concluded that the
Null-hypothesis should be accepted at the 0.1 level.

[ ]32.028.0 ≤≤ x

T)28.0,27.0,3.0,29.0,27.0,28.0,31.0,25.0,32.0,33.0(=x
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Testing for Statistical Significance

Testing of the mean – with unknown variance

If now it is assumed that the variance is unknown the
following sample statistic must be considered

which may be realized to be t-distributed with n-1 degree
of freedom

The operating rule is then: accept Ho if

The critical value can be calculated from:

from which Δ = 1.83 is determined using the t-distribution
with 9 degrees of freedom

n
S
XT
unbiased

μ−=

T−Δ ≤ ≤ Δ

( ) α−=Δ≤≤Δ− 1TP
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Testing for Statistical Significance

Testing of the mean – with unknown variance

Assuming the same experiment outcomes as before we get
the same sample average but now the variance is given by

and the t-statistic becomes

which is within the interval given by ± Δ (= ± 1.83)

Thus the Null-hypothesis should not be rejected
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Testing for Statistical Significance

Testing of the variance

Consider as an example the case where the variance of the
fatigue lifes of welded joints is attempted reduced by
means of weld surface treatment. 

As experiments are very expensive only a few data are
available to verify the effect of the weld surface treatment. 
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Testing for Statistical Significance

Testing of the variance

We may as Null-hypothesis postulate that the variance of 
the fatigue lifes with the surface treatment is smaller that
the variance before the surface treatment i.e. :

The operating rule is then to accept the Null hypothesis if

where Δ is determined from

and it is used that S2 is Chi-square distributed with n
degrees of freedom

22
oldnew σσ ≤

2S ≤ Δ
2 1P S α⎡ ⎤Δ = −⎣ ⎦≤



Swiss Federal Institute of Technology 24

Testing for Statistical Significance

Testing of more than one data set

Typically we are in a situation where we have two or more
data sets each not very large – and we would like to know
how the data compare in terms of :

- mean values Test for equal mean values

- variances Test for equal variances

- correlation Test for zero correlation
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Testing for Statistical Significance

Testing for equal mean values

Here we assume that we have two data sets

being realizations of the random variables X and Y
both assumed to be normal distributed with mean
values μX, μY and variances σX, σY

the statistic

is Normal distributed with mean value

and variance

( )Tkxxx ,..,, 21=x ( )T
lyyy ,..,, 21=y

YXT −=

YXYX μμμ −=−

lk
YX

YX

22
2 σσσ +=−
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Testing for Statistical Significance

Testing for equal mean values

For α equal to 0.1 Δ can be calculated as

( ) ⇒−=Δ≤−               1 αYXP
lk
YX
22

28.1 σσ
+=Δ
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Testing for Statistical Significance

Testing for equal variances

A test for equal variances can be performed by considering
the following statistic

which is seen to be the ratio between two Chi-square
distributed random variables – and T is thus F-distributed
with parameters k and l.

The Null-hypothesis H0 would be that

and the operating rule to accept H0 if

where Δ is determined from

2
,

2
,

unbiasedY

unbiasedX

S
S

T =

22
YX σσ =

Δ≤T

( ) α−=Δ≤ 1TP
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Testing for Statistical Significance

Some considerations regarding testing for significance

Test for statistical significance can be formulated for a 
variety of different types of problems

we must be very careful not to „over estimate“ the value of 
the significnace tests because the hypothesis can be
formulated in different ways and using different 
significance levels a  -
consequently it is in principle possible to prove anything –

the different choises have direct effect on the probability of 
performing Type I and Type II errors – which may be
related to significant economical consequences

the formulation of hypothesis and the choise of significance
levels should be treated as a decision problem - which will 
be treated later.
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Overview of Estimation and Model 
Building
Different types of information is used
when developing engineering models

- subjektive information
- frequentististic information

Frequentistic
- Data

Subjektive
- Physical understanding
- Experience
- Judgement

Distribution family

Distribution 
parameters

Probabilistic model
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Estimation and Model Building

Selection of probability distribution function

In general the distribution function for a given
random variable or random process must be chosen
on the basis of

Frequentistic information: Data
Physical arguments: Engineering understanding

A formalized classical approach is to
1 postulate a hypothesis for the probability

distribution family
2 estimate the parameters of the postulated

probability distribution
3 Perform a statistical test to reject/verify the

hypothesis
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Estimation and Model Building

Selection of probability distribution function

In engineering application it is often the case that

the available data is too sparse

to be able to support/reject the hypothesis of a given
probability distribution – with a reasonable significance

Therefore it is necessary to use common sence i.e. :

First to consider physical reasons for selecting a given
distribution

Thereafter to check if the available data are in gross 
contradiction with the selected distribution



Swiss Federal Institute of Technology 32

Estimation and Model Building

Model selection by use of probability paper

Probability paper is constructed such that when a 
given probability distribution is plotted on the paper
it will have the shape of a straight line
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Estimation and Model Building

Model selection by use of probability paper

)()(
X

X
X

x
xF

σ
μ−

Φ=

XXX xFx μσ +⋅Φ= − ))((1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-4 -3 -2 -1 0 1 2 3 4

Example – probability paper for
the normal probability distribution
function

The y-axis scale is non-linear
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Estimation and Model Building

Model selection by use of probability paper
– graphical approach

Normal probability distribution
 

-3 -1-2 0 1 2 3

0.001

0.159 0.159

0.001

0.5 0.5

0.841 0.841
0.999

0.999
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x

FX (x)
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Estimation and Model Building

Model selection by use of probability paper

The sample probability distribution
function may be established from
the ordered sample as 

1
)(

+
=

N
ixF iX

Example – concrete
compression strength

Normal probability
paper

i xi Fx(xi) Φ-1(F(xi))

1 24.4 0.047619 -1.668391
2 27.6 0.095238 -1.309172
3 27.8 0.142857 -1.067571
4 27.9 0.190476 -0.876143
5 28.5 0.238095 -0.712443
6 30.1 0.285714 -0.565949
7 30.3 0.333333 -0.430727
8 31.7 0.380952 -0.302981
9 32.2 0.428571 -0.180012

10 32.8 0.47619 -0.059717
11 33.3 0.52381 0.059717
12 33.5 0.571429 0.180012
13 34.1 0.619048 0.302981
14 34.6 0.666667 0.430727
15 35.8 0.714286 0.565949
16 35.9 0.761905 0.712443
17 36.8 0.809524 0.876143
18 37.1 0.857143 1.067571
19 39.2 0.904762 1.309172
20 39.7 0.952381 1.668391
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Estimation and Model Building

Model selection by use of probability paper
Plotting the sample probability distribution function in 
the probability paper yields

 
 -1

X(F (x))Φ

x

F (x)X
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Contents of Todays Lecture

• The Results of the Assessment of the Lecture

• Short Summary of the Previous Lecture

• Overview of Estimation and Model Building

• Estimation of Distribution Parameters

- The method of moments
- The method of maximum likelihood
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What did we Learn in the Previous Lecture

• In the previous lecture we introduced the concept of 

hypothesis testing

- testing of the mean
- testing of the variance
- testing of more data sets

and we also introduced the concept of 

probability paper

- supporting the choice of a given probabilistic model
based on data/observations
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What did we Learn in the Previous Lecture

• hypothesis testing – which are the steps!

Postulate 
Null-Hypothesis

Formulate
operating rule

Select
significance
level Assess

acceptance
criteriaPerform test and 

check for
acceptance Conclude at 

choosen
significance
level
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CL-

CL-

What did we Learn in the Previous Lecture

The design assumption: 
The mean surface chloride concentration is 0.3%

Knowledge:
Standard deviation of the surface chloride
concentration – equal to 0.04%

Hypothesis (H0 hypothesis):
Design assumption is correct!

Operating rule/testing approach
Given that we know the standard deviation we know that the
uncertain mean is normal distributed – we thus have a normal 
distributed test statistic T

0.3 0.3T−Δ ≤ ≤ +Δ
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CL-

CL-

What did we Learn in the Previous Lecture

The test acceptance criteria: 
The operating rule must be fulfilled with a 
probability of 1-α. 

Assessing acceptance criteria:
The interval for the operating rule is
determined as:

Perform test and check for acceptance
Collect samples and calculte the mean value

( )0.3 0.3 1P T α−Δ ≤ ≤ +Δ = −

(0.3 ) 0.3 (0.3 ) 0.3 0.9               Δ 0.02080.04 0.04
10 10

U Lx xμ μ
σ σ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− − +Δ − −Δ −⎛ ⎞ ⎛ ⎞Φ −Φ = Φ −Φ = ⇒ =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

0

5
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15
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35

0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35

x

fX(x)

0

5
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15
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30

35

0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35

x

fX(x)

(0.33,0.32,0.25,0.31,0.28,0.27,0.29,0.3,0.27,0.28) 0.29T t= ⇒ =x

[ ]0.28 0.32t≤ ≤

Conclusion
The validity of design assumtions cannot be rejected at the 0.1 
significance level
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What did we Learn in the Previous Lecture

• Probability paper – what is the idea!

Fundamentally what we want to do is to check whether
data/observations follow a given cumulative distribution function

If they do we have support for assuming that the uncertain
phenomenon which generated the data can be modelled by the given
cumulative distribution function

The concept of probability paper provides us a standardized manner
to  perform this check



Swiss Federal Institute of Technology 7

What did we Learn in the Previous Lecture

• Probability paper – what is the idea!

We construct probability paper for a given family of cumulative
distribution functions such that a plot of the cumulative distribution
follows a straight line in the paper

In order to do that we perform an non-linear transformation of the
y-axis of the usual CDF plot
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Analytically Graphically
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What did we Learn in the Previous Lecture

• Probability paper – what is the idea!

When we have the paper (we can construct it our selves or buy it in 
the book store ☺ we can plot observed values as a quantile-plot
into the paper

 -1
X(F (x))Φ

x

F (x)X

1
)(

+
=

N
ixF iX

i xi Fx(xi) Φ-1(F(xi))

1 24.4 0.047619 -1.668391
2 27.6 0.095238 -1.309172
3 27.8 0.142857 -1.067571
4 27.9 0.190476 -0.876143
5 28.5 0.238095 -0.712443
6 30.1 0.285714 -0.565949
7 30.3 0.333333 -0.430727
8 31.7 0.380952 -0.302981
9 32.2 0.428571 -0.180012

10 32.8 0.47619 -0.059717
11 33.3 0.52381 0.059717
12 33.5 0.571429 0.180012
13 34.1 0.619048 0.302981
14 34.6 0.666667 0.430727
15 35.8 0.714286 0.565949
16 35.9 0.761905 0.712443
17 36.8 0.809524 0.876143
18 37.1 0.857143 1.067571
19 39.2 0.904762 1.309172
20 39.7 0.952381 1.668391

If the q-plot is close to straight in the important regions we have
support for our model!
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Overview of Estimation and Model Building

Different types of information is used when
developing engineering models

- subjective information
- frequentististic information

Frequentistic
- Data

Subjective
- Physical understanding
- Experience
- Judgement

Distribution family

Distribution parameters

Probabilistic model
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Estimation of Distribution Parameters

We assume that we have identified a plausible family
of probability distribution functions – as an example : 

and thus now need to determine – estimate - its
parameters

⎟
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Estimation of Distribution Parameters

There are several methods for estimating the 
parameters of probability distribution functions, 
hereunder the so-called 

- Point estimators

- Interval estimators

however, in the following we shall restrict ourselves 
to consider the 

Method of moments

Method of maximum likelihood
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Estimation of Distribution Parameters

• The method of moments (MoM)

The idea behind the method of moments is to 
determine the distribution parameters such that
the sample moments (from the data) and the
analytical moments (from the assumed
distribution) are identical. 

∑
=

=
n

i

j
ij x

n
m

1

1

Sample moments

1 2( , ,.., ) ( )j
j j k Xx f x dxλ λ θ θ θ

∞

−∞

= = ⋅∫ θ

Analytical moments

To start with we assume that we have
data on the basis of which we can estimate
the distribution parameters

T
nxxx )ˆ,..,ˆ,ˆ(ˆ ,21=x
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Estimation of Distribution Parameters

• The method of moments (MoM)

If we assume that the considered probability
distribution function has n parameters that we
must estimate we thus need n equations, i.e:

njdxxfxx
n

njm

X
j

n

i

j
i

jj

,..,2,1,)(1

,..,2,1),(

1
=⋅=

⇓

==

∫∑
∞

∞−=

θ

θλ

Sample moment

Analytical moment
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Estimation of Distribution Parameters

• The method of moments (MoM)

Consider as an example the data regarding the
concrete compressive strength –

Again we assume that the concrete compressive
strength is normal distributed – „the normal 
distribution family“

The normal distribution family has two
parameters – we need thus to establish two
equations

∑
=

=
n

i
ixn

m
1

1 ˆ1

∑
=

=
n

i
ixn

m
1

2
2 ˆ1

∫
∞

∞−

⋅= dxxfx X ),(1 σμλ

∫
∞

∞−

⋅= dxxfx X ),(2
2 σμλ
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Estimation of Distribution Parameters

• The method of moments (MoM)

The sample moments are easily calculated as

The analytical moments can be established as 
function of the parameters
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ixm
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Estimation of Distribution Parameters

• The method of moments (MoM)

By formulating the following object function

The parameters estimation problem can be
solved numerically using Excel Solver finding the
parameters minimizing the object function

Let‘s have a look !

2
22

2
11 )),(()),((),( mmg −+−= σμλσμλσμ
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Estimation of Distribution Parameters

• The Maximum Likelihood Method (MLM)

The idea behind the method of maximum
likelihood is that

The parameters are determined such that the
likelihood of the observations is maximized

The likelihood can be understood as the
probability of occurence of the observed data
conditional on the model

The Maximum Likelihood Method may seem more
complicated that the MoM but has a number of 
attractive properties which we shall see later
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Estimation of Distribution Parameters

• The Maximum Likelihood Method (MLM)

Let us assume that we know that outcomes of 
experiments are generated according to the
normal distribution, i.e.:

⎟
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Then the likelihood L of one experiment outcome is calculated as:
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Estimation of Distribution Parameters

• The Maximum Likelihood Method (MLM)

Let us assume that we know that outcomes of 
experiments are generated according to the
normal distribution, i.e.:

⎟
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If we have n experiment outcomes the likelihood L
becomes:
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Estimation of Distribution Parameters

• The Maximum Likelihood Method (MLM)

The parameters θ are estimated as those 
maximizing the likelihood function or 
equivalently minimizes the – likelihood function 
i.e.:

))ˆ((min xθ
θ

L−

It is avantageous to consider the log-likelihood 
function        :)ˆ( xθl

∑
=

=
n

i
iX xfl

1
))ˆ(log()( θxθ
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Estimation of Distribution Parameters

• The Maximum Likelihood Method (MLM)

If the parameters θ are estimated as those
minimizing the – log likelihood function i.e.:

))ˆ((min xθ
θ

l−

It can be shown that the estimated parameters are
normal distributed with

mean values

covariance matrix

not just point estimates – full distribution information!

T
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Estimation of Distribution Parameters

• The Maximum Likelihood Method (MLM)

Let us consider the concrete compressive strength
example

The log-likelihood function can be written as

the minimum of which may be found by the solution
of the following equations
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Estimation of Distribution Parameters

• The Maximum Likelihood Method (MLM)

Putting numbers into the solution we get:
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Estimation of Distribution Parameters

• The Maximum Likelihood Method (MLM)

As mentioned we may also determine the
covariance matrix:
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Estimation of Distribution Parameters

• The Maximum Likelihood Method (MLM)

We may also estimate the parameters
completely numerically using Excel 

Lets take a look !
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Estimation of Distribution Parameters

• Summary

Given that we have selected a model for the
distribution i.e. a distribution family

we have to estimate the distribution parameters

- Method of Moments
- Maximum Likelihood Method
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x
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x
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Maximum Likelihood Method provide point 
estimates of the estimated parameters

- Full distribution information – normal 
distributed parameters, mean values and 
covariance matrix.

Estimation of Distribution Parameters

• Summary

Method of Moments provide point estimates of 
the parameters

- No information about the uncertainty with
which the parameter estimates are associated. 
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Contents of Todays Lecture

• Short Summary of the Previous Lecture

• Overview of Estimation and Model Building

• Model Evaluation by Statistical Testing

- The χ2 goodness of fit test

- The Kolmogorov-Smirnov goodness of fit test

- Model comparison
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Short Summary of the Previous Lecture

• We considered the problem of assessing the
parameters of distributions based on 
observations/data

What did we learn?

We learned that parameters can be estimated using
the

- Method of Moments

- Method of Maximum Likelihood
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Short Summary of the Previous Lecture

• The Method of Moments (MoM) – point estimates

The principle behind the MoM is that we estimate the
parameters such that the moments we can calculate
based on the analytical expressions become equal to 
the sample moments.
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This leads to n equations which have to be solved simultaneously
where n is the number of parameters
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Short Summary of the Previous Lecture

• The Method of Maximum Likelihood (MLM) –
full distribution estimates

The principle behind the MLM is that we estimate the 
parameters such that the likelihood of the 
observations (data) is maximized)

The MLM provides an extremely strong statistical tool!
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Overview of Estimation and Model Building

Different types of information is used when 
developing engineering models

- subjective information 
- frequentististic information

Frequentistic
- Data

Subjective
- Physical understanding
- Experience
- Judgement

Distribution 
family

Distribution 
parameters

Probabilistic
model

Sample statistics
- confidence intervals
Statistical Significance

Probability paper

Method of Moments
Maximum Likelihood Method
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Model Evaluation by Statistical Testing

Let us assume that we have selected a 
distribution function as a model to describe an 
uncertain quantity

Data

Distribution parameters

Data + Physics

Distribution family

μ, σ

)(xfX

x

)(xfX

x

Concrete Compressive
Strength

Now we want to validate our model selection –
by means of statistical tests
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Model Evaluation by Statistical Testing

Two different cases are considered – namely
verification of

1: Discrete distribution
functions

CHI-Square (χ2) test

2: Continuous distribution
functions

Kolmogorov Smirnov test

)(xpX

x

)(xpX

x

)(xfX

x

)(xfX

x
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Model Evaluation by Statistical Testing

The CHI-square goodness of fit test

The idea behind the CHI-Square goodness of fit 
test is that the difference between predicted and 
observed/sample histograms should be small
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Model Evaluation by Statistical Testing

The CHI-square goodness of fit test

We remember that a discrete cumulative
distribution is given by:
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Probability density function Cumulative distribution function
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Model Evaluation by Statistical Testing

The CHI-square goodness of fit test

Assuming that we sample a discrete random variable X
n times the number of realizations of X=xi i.e. Ni is a 
binomial distributed random variable with expected
value and variance given as: 

[ ]
[ ]
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( )
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i i p i

i i i p i i

E N np x N

Var N np x p x N p x
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a given value

If the postulated model is correct and n large enough –
Central Limit Theorem - the difference εi

will be standard Normal distributed
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, (1 ( ))
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i
p i i

N N
N p x

ε
−

=
− Observed number of 

occurences at a given
value
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CHI-Square distributed
k-1 degree of freedom

The CHI-square goodness of fit test

Model Evaluation by Statistical Testing
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By summing up the squared differences between the
observed and the predicted histograms we get:
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Model Evaluation by Statistical Testing

The CHI-square goodness of fit test

The idea is then to test – at a given significance level
– α – if the sum of observed squared differences is
plausible i.e. 
Postulating the H0 hypothesis that the assumed
distribution function is not in gross contradiction
with the observed data and formulating the
operating rule such as the null hypothesis cannot be
accepted if . The critical value can be
estimated such as:              

The alternate hypothesis H1 is far less informative 
because it considers all other distribution functions
than the assumed.

2( )mP ε α≥ Δ =

2
mε ≥ Δ Δ
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Model Evaluation by Statistical Testing

The CHI-square goodness of fit test

Consider as an example that we assume a 
Normal distribution with parameters not
estimated from the available data

Mean: 33 Mpa
Standard deviation: 5  Mpa

The Normal distribution is a continuous
probability density function but can easily be
discretized
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Model Evaluation by Statistical Testing

The CHI-square goodness of fit test

The postulated probability density function is
discretized:
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Model Evaluation by Statistical Testing

The CHI-square goodness of fit test

The observed and the predicted histograms may
be compared
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The CHI-square goodness of fit test

The following calculation sheet may
be produced

Interval - jx   
Number of 
observed 
values joN ,  

Predicted 
probability 

)( jxp  

Predicted 
number of 
observations 

)(20, jjp xpN =  

Sample 
statistic 
Equation 
(5.68) 

0 -30 5 0.296671 5.933415 0.14684 
30-35 9 0.381169 7.65443 0.236537 
35-∞ 6 0.344578 6.412155 0.026492 

   Sum 0.40987 
 

Model Evaluation by Statistical Testing

∑
=

−
=

k

j jp

jpjo
m N

NN

1 ,

2
,,2 )(

ε

At the 5% significance level the CHI-Square distribution with
3-1=2 degree of freedom yields = 5.99
As 0.40987 is smaller than 5.99 the H0 hypothesis
cannot be rejected !

Δ
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The CHI-square goodness of fit test

If one or more (m) of the parameters of the
postulated distribution function had been
assessed using the same data as used for the
testing we must reduce the number of degrees
of freedom accordingly i.e. n= k-1-m

Assuming that we had estimated  the variance 
from the data but not the mean value we would 
have n= 3-1-1=1

Model Evaluation by Statistical Testing
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The CHI-square goodness of fit test

Assuming a postulated Normal distribution with
μ = 33.00
σ = 4.05

We get the following calculation sheet

Model Evaluation by Statistical Testing

Interval - jx   
Number of 
observed 
values joN ,  

Predicted 
probability 

)( jxp  

Predicted 
number of 
observations 

)(20, jjp xpN =  

Sample 
statistic 
Equation 
(5.26) 

0 -30 5 0.274253 5.485061 0.042896 
30-35 9 0.381169 7.623373 0.248591 
35-∞ 6 0.344578 6.891566 0.115342 

   Sum 0.406829 
 

At the 5% significance level the CHI-Square distribution with
3-1-1 = 1 degrees of freedom yields = 3.84
As 0.406829 is smaller than 3.84 the H0 hypothesis
cannot be rejected !

Δ
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Model Evaluation by Statistical Testing

The Kolmogorov-Smirnov goodness of fit test

The idea behind the Kolmogorov-Smirnov test is
that

If the postulated cumulative distribution
function is in accordance with the observed data
then the maximal difference between the
observed and the predicted cumulative
distribution functions should be small
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Model Evaluation by Statistical Testing

The Kolmogorov-Smirnov goodness of fit test

The observed cumulative distribution function
may be calculated from

The following statistic has been proposed

n
ixF io =)(
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Model Evaluation by Statistical Testing

The Kolmogorov-Smirnov goodness of fit test

The Kolmogorov-Smirnov statistic may be
assessed from

i xi Fxo(xi) Fxp(xi) εi

1 24.4 0.05 0.042716 0.007284
2 27.6 0.1 0.140071 0.040071
3 27.8 0.15 0.14917 0.00083
4 27.9 0.2 0.153864 0.046136
5 28.5 0.25 0.18406 0.06594
6 30.1 0.3 0.280957 0.019043
7 30.3 0.35 0.294598 0.055402
8 31.7 0.4 0.397432 0.002568
9 32.2 0.45 0.436441 0.013559

10 32.8 0.5 0.484047 0.015953
11 33.3 0.55 0.523922 0.026078
12 33.5 0.6 0.539828 0.060172
13 34.1 0.65 0.587064 0.062936
14 34.6 0.7 0.625516 0.074484
15 35.8 0.75 0.71226 0.03774
16 35.9 0.8 0.719043 0.080957
17 36.8 0.85 0.776373 0.073627
18 37.1 0.9 0.793892 0.106108
19 39.2 0.95 0.892512 0.057488
20 39.7 1 0.909877 0.090123
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Model Evaluation by Statistical Testing

The Kolmogorov-Smirnov goodness of fit test

The Kolmogorov-Smirnov statistic is tabulated

 n 
α 1 5 10 15 20 25 30 40 50 60 70 80 
0.01 0.9950 0.6686 0.4889 0.4042 0.3524 0.3166 0.2899 0.2521 0.2260 0.2067 0.1917 0.1795 
0.05 0.9750 0.5633 0.4093 0.3376 0.2941 0.2640 0.2417 0.2101 0.1884 0.1723 0.1598 0.1496 
0.1 0.9500 0.5095 0.3687 0.3040 0.2647 0.2377 0.2176 0.1891 0.1696 0.1551 0.1438 0.1347 
0.2 0.9000 0.4470 0.3226 0.2659 0.2315 0.2079 0.1903 0.1654 0.1484 0.1357 0.1258 0.1179 

 

For n = 20 and a = 5% we get 0.2941

compared to observed statisic 0.1061

The H0 hypothesis
cannot be rejected
at the 5% 
significance level.
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Model Evaluation by Statistical Testing

Model comparison

Model verification by significance testing can be
used to quantify the plausibility of a given model
relative to given data (evidence) 

Two cases have to be considered

1 it is shown that a model hypothesis cannot be
rejected

2 it is shown that a model hypothesis can be
rejected

What information is actually contained in these two
cases ?
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Model Evaluation by Statistical Testing

Model comparison

Given that the significance test shows that a 
model hypothesis cannot be rejected: 

we must remember that other models could also 
be postulated – in fact it is often the case that
several model hypothesis may pass testing !

Given that the significance test shows that a 
model hypothesis should be rejected:

it does not mean that the model necessary is bad 
– it may just say that the evidence is not strong
enough to show it with significance – too little
data !
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Model Evaluation by Statistical Testing

Model comparison

If testing of two different model hypothesis both
fall out positive i.e. both models are plausible we
can compare the goodness of fit of the two
models either by

- comparing the sample statistics directly
could be misleading/inconclusive due to 
different number of degrees of freedom

- comparing the sample likelihoods
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Model Evaluation by Statistical Testing

Model comparison

Consider the example with two different models

Model 1: N(33;5)

Model 2: N(33;4.05)

Parameters estimated not using
data
n=3-1=2

Parameters estimated using data
n=3-1-1=1

CHI-Square sample statistic = 0.40987

CHI-Square sample statistic = 0.40683

Sample likelihood = 0.8151

Sample likelihood = 0.5236
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Model Evaluation by Statistical Testing

Summary

The selection of appropriate probabilistic models
may be supported by significance testing of the
model hypothesis

The CHI-Square test is designed especially for
discrete distribution functions

The Kolmogorov-Smirnov test is designed
especially for continuous distribution functions

The goodness of fit of different model
alternatives may be compared by comparing
sample likelihood
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Contents of Todays Lecture

• Basics of Reliability Analysis

- Short summary of previous lecture

- The course at a glance

- Failure events and basic random variables

- Linear limit state functions and Normal distributed 
variables

- Error propagation

- Non-linear limit state functions

- Monte-Carlo simulation
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Summary of Previous Lecture

• Testing for goodness of fit

- The χ2 goodness of fit test

- The Kolmogorov-Smirnov goodness of fit test

• Model comparison



Swiss Federal Institute of Technology 4

CHI-Square distributed
k-1 degree of freedom

Summary of Previous Lecture

The CHI-square goodness of fit test
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We test a ststistic constructed from the squared
differences between the observed and the predicted
histograms:
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Summary of Previous Lecture

The Kolmogorov-Smirnov goodness of fit test

The observed cumulative
distribution function may
be calculated from:

The following statistic is applied (tabularized): 
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Summary of Previous Lecture

Model comparison

If testing of two different model hypothesis both
fall out positive i.e. both models are plausible we
can compare the goodness of fit of the two
models either by

- comparing the sample statistics directly
could be misleading/inconclusive due to 
different number of degrees of freedom

- comparing the sample likelihoods
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The Course at a Glance
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Basics of Reliability Analysis

• Failure events and basic random variables

By a failure event we associate in principle an event
of special interest e.g. :

- Loss of functionality

- Costs

- Loss of lives

- Damage to the environment
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Basics of Reliability Analysis

• Failure events and basic random variables

A failure event may conveniently be described in 
terms of a functional relationship

Such a functional relationship is denoted a limit state
function

)(xg

{ }0)( ≤= xF g

Realizations of basic
random variables
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Basics of Reliability Analysis

• The probability of an event

The probability of an event e.g. a failure event can be
calculated by the following integral 

∫
≤

=
0)(

)(
x

X xx
g

f dfP

FailureSafe

Resistance
Load

Joint probability 
density function 

FailureSafe

Resistance
Load

Joint probability 
density function 

0)( =xg

0)( >xg
0)( ≤xg

srg −=)(x

Joint probability density function of the
basic random variables X

r : Resistance
s : Load
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Basics of Reliability Analysis

• The probability of an event

The probability integral is in general non-trivial – can
be multi-dimensional and can have a complicated
integration domain

Classical nummerical integration techniques such as 
e.g. Simpson, Gauss or Schebyschev integration are
not computationally efficient for dimensions larger 
than 5-6. Other apporaches are needed – which we
will study further -

∫
≤

=
0)(

)(
x

X xx
g

f dfP
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Basics of Reliability Analysis

• Linear limit state functions and normal distributed
basic variables  

First we consider the case where the limit state
function is linear in the random variables and the
random variables are normally distributed

For the case where the random variables X are
normal distributed the safety margin M is also normal 
distributed

0
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Basics of Reliability Analysis

• Linear limit state functions and normal distributed
basic variables  

The probability of failure is then determined as

Which reduces to the determination of the standard
normal probability distribution function

)0()0)(( ≤=≤= MPgPPF X

0( ) ( )M
F

M

P μ β
σ
−=Φ =Φ −

M

M

σ
μβ =with

Reliability or safety index
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Basics of Reliability Analysis

• Linear limit state functions and normal distributed
basic variables

)(mfM

m
Mμ

SafeFailure

Mσ Mσ

)(mfM

m
Mμ

SafeFailure

Mσ Mσ

The safety margin

M

M

σ
μβ =
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Basics of Reliability Analysis

• Linear limit state functions and normal distributed
basic variables  

The reliability index β has a geometrical
interpretation
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Basics of Reliability Analysis

• Linear limit state functions and normal distributed
basic variables  

Example : Reliability of steel rod under tension
loading

s

r

350, 35R Rμ σ= =

40,200 == SS σμ

The resistance R and the max
annual loading S are both
assumed to be normal distributed
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Basics of Reliability Analysis

• Linear limit state functions and normal distributed
basic variables  

Example : Reliability of steel rod under tension
loading

s

r
The safety margin is thus normal 
distributed with parameters

150200350 =−=Mμ

15.534035 22 =+=Mσ

The reliability index β becomes 84.2
15.53

150 ==β

3104.2)84.2( −⋅=−Φ=FP
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Basics of Reliability Analysis

• The error accumulation law

In many engineering applications the accumulation 
of errors is a central question

Examples are : 

- errors due to fabrication tolerances of building 
components

- errors in connection with surveying

- errors in connection with measurements performed 
in the laboratory  
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Basics of Reliability Analysis

• The error propagation law

Assume that the error ε can be written as a 
differentiable function of random variables i.e. : 

with parameters

The idea is to linearize f(x)

( )hε = x T
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basic random variables
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Basics of Reliability Analysis

• The error propagation law

If we linearize the error function around the mean
value of the random variables its expected value and 
variance becomes :

1
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The mean value and the variance depends on 
the linearization point
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Basics of Reliability Analysis

• Example : Error propagation in measurements

In order to estimate the length c i.e. the distance 
between the two points A and B the lengths a and b
are measured 

due to measurement uncertainty in assessing a and b
also the length of c will be associated with 
uncertainty and it is of interest to know the 
probability that the length of c will exceed 13.5 

A

B

C

a

b

c
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Basics of Reliability Analysis

• Example : Error propagation in measurements

It is assumed that a and b can be modeled as normal 
distributed random variables with parameters 

Using that c can be given as 

the statistical characteristics of c may be estimated 
through the error propagation law

A

B

C

a

b

c
2.12=aμ 1.5=bμ

4.0=aσ 3.0=bσ

22 bac +=
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Basics of Reliability Analysis

• Example : Error propagation in measurements
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Basics of Reliability Analysis

• Non-linear limit state functions

Limit state functions are often non-linear

As seen from the error propagation law it is
possible to linearize such limit state functions but
the results will depend on the linearization point 
and on the formulation of the limit state function
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Basics of Reliability Analysis

• Non-linear limit state functions

Limit state functions are often non-linear
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Hasofer and Lind suggested to linearize in the point 
where the limit state function is zero and closest to 
the origin in normal distributed space
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Basics of Reliability Analysis

• Non-linear limit state functions

The identification of the
reliability index may be
performed by solving an 
optimization problem
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Basics of Reliability Analysis

• Non-linear limit state functions

The optimization problem may be
solved using the following iteration
scheme
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Provided that the limit state function
is differentiable !
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Basics of Reliability Analysis

In summary the iteration follows 
the following steps

1 ) the linearization point is 
chosen as u* = β α

2) the Normal vector to the 
limit state function is 
determined in 
the linearization point

3) the reliability index β is 
calculated from

4) the new linearization point 
is 

5) continue with step 2) until 
convergence in β
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Basics of Reliability Analysis

Non-linear safety margins

Transformation

g(Z): linear g(U): non-linear

μZ1, μZ2 R μU1= μU2= 0

σZ1, σZ2 R σU1= σU2= 1

∈
∈
∈
∈
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Basics of Reliability Analysis

• Non-linear safety margins

“Limit state 
function”

g(U) = R-S
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Basics of Reliability Analysis

Start point X1
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Basics of Reliability Analysis

Linearization of limit
state function in X1
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Basics of Reliability Analysis

Calculation of a new
linearization point X2
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Basics of Reliability Analysis

Linearization of limit
state function in X2
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Basics of Reliability Analysis

Calculation of new
linearization point X3
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Basics of Reliability Analysis

Linearization of limit
state function in X3
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Basics of Reliability Analysis

β1=3.556

β2=3.607

β3=3.608

β4=3.608

Convergence criteria : εβββ ≤−=Δ + nn 1
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Basics of Reliability Analysis

• Example : Reliability of steel rod

it is assumed that R, S and A are normal distributed
random variables

s

r

sarg −⋅=)(x

Limit state function
Yield stress

Cross sectional area

Load

35,350 == RR σμ

300,1500 == SS σμ

2,10 == AA σμ

R

R
R

RU
σ

μ−=
S

S
S

SU
σ

μ−=
A

A
A

AU
σ

μ−=

a
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Basics of Reliability Analysis

• Example : Reliability of steel rod

We can now write the limit state
function in terms of u-variables 

200035300350350u          
)1500300()10)(35035(          

)())(()(

R ++−+=
+−++=

+−++=

ARSA

SAR

SSSAAARRR

uuuu
uuu

uuuug μσμσμσ
r                 a                    s

s

r
a
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Basics of Reliability Analysis

• Example : Reliability of steel rod

The reliability index β may be found
by iteration

200035300350350u          
)1500300()10)(35035(          

)())(()(

R ++−+=
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350 350 300 35R A S R A

β
α α α βα α

−=
+ − +

)35350(1
AR k

βαα +−=

)35350(1
RA k

βαα +−=

kS
300=α

222
SARk ααα ++=

Iteration Start 1 2 3 4 5
β 3.0000 3.6719 3.7399 3.7444 3.7448 3.7448
αR -0.5800 -0.5701 -0.5612 -0.5611 -0.5610 -0.5610
αΑ -0.5800 -0.5701 -0.5612 -0.5611 -0.5610 -0.5610
αS 0.5800 0.5916 0.6084 0.6086 0.6087 0.6087

1/ 2

2

1

( )
,    1, 2,..

( )

i
i

n

j i

g
u i n

g
u

β
α

β
=

∂−
∂= =

⎡ ⎤∂
⎢ ⎥∂⎣ ⎦
∑

α

α

1 2( , ,... ) 0ng βα βα βα =



Swiss Federal Institute of Technology 41

Basics of Reliability Analysis

• Monte Carlo Simulation
The probability integration
problem may be solved by
Monte Carlo simulation

1) m realizations of the vector
X are produced
2) for every realization the
limit state function is
calculated
3) the realizations for which
the limit state function is
equal to or less than zero are
counted
4) The probability of failure is
estimated as

{ }
∫

≤=Ω

=
0)(

)(
x

X xx
g

f

f

dfP

R
an

d
o

m
n

u
m

b
er

1

)( iX xF
i

jz

jx ix

fn

m
n

p f
f =

Z is a random number
uniformly distributed
between 0 and 1
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Basics of Reliability Analysis

• Monte Carlo Simulation
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m random realizations of R
and S are generated and the
number of realizations nf
occuring in the failure space
are counted nf

The probability of failure pf is
then
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A Summary of the Lecture
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Decision Analysis in Engineering

• Introduction to Decision Theory

- The problem

- The decision tree

- Prior decision analysis

- Posterior decision analysis

- Pre-posterior decision analysis
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Decision Analysis in Engineering

• The basic engineering problem

Several solutions
may be identified

The available
information
is uncertain

A decision must
be made

!
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Decision Analysis in Engineering

Approach

- Formulation of the decision problem
The decision maker and the preferences of the decision maker
must be identified
Mapping of the decision process
All the possible decision alternatives must be identified
Identification of the contributing uncertainties

- Identification of potential consequences and their utility
(cost/benefit)

- Assessment of the probabilities of the consequences

- Comparison of the different decision alternatives based on 
their expected utilities

- Final decision making and reporting of the assumptions
underlying the selected alternative
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Decision Analysis in Engineering

• The decision tree

Action alternatives Outcome Consequence u(consequence)

40 ft Pile

50 ft Pile

depth=40 ft

depth=50 ft

depth=40 ft

depth=50 ft

0

400

100

0

none

splice

cutting

none

40 ft Pile

50 ft Pile

depth=40 ft

depth=50 ft

depth=40 ft

depth=50 ft

0

400

100

0

none

splice

cutting

none

Pile

Depth of rock bed 
40ft or 50ft ?
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Decision Analysis in Engineering

Assignment of utility

- The assignment of utility must reflect the preferences of the 
decision maker

- Utility functions may be defined as linear functions in 
monetary unity

- It is important to include all monetary consequences in the 
utility function

ij

jj

jj

jjj

ii

n

j
jji

aK

KKu

Kp

KKup
aau

Kupau

action   with theassociated econsequenc potentialA              

 econsequenc  with theassociatedility         Ut)(

  econsequenc  theof occurence  theofy Probabilit             

 econsequenc with associatedutility  Expected  )(
action  with associated fit)(cost/benetility          U)(
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…
…

…
…

…
⋅

⋅= ∑
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Decision Analysis in Engineering

The different types of decision analysis

- Prior
- Posterior
- Pre-posterior

Illustrated on an example :

Question : What pile length should be applied ?

Alternatives :
a0 : Choose a 40 ft pile
a1 : Choose a 50 ft pile

States of nature 
(depth to rock bed)
0 : Rock bed in 40 ft
1 : Rock bed at 50 ft

Pile

Depth of rock bed 
40ft or 50ft ?



Swiss Federal Institute of Technology 9

Decision Analysis in Engineering

Prior Analysis

P’[q0] = 0.70
P’[q1 ] = 0.30

The expected utility is calculated to be equal to

[ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

Pile)(50ft  afor Decision      70}70,120min{           
}03.01007.0 ,4003.007.0min{           

}''                    

 , ''min{         
}, min{'

1

111100

011000

10

⇒==
×+××+×=

×+×

×+×=
=

auPauP

auPauP
auauuE

θθθθ
θθθθ

a0

a1

θ0

θ1

p=0.70 u = 0

u = 400 (Pile is spliced)
p=0.30

p=0.70
θ0

θ1

p=0.30

u = 100 (Pile is cut)

u = 0

120120

7070
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Decision Analysis in Engineering

Choice of pile a1 (50ft Pfahl)⇒

a0

a1

θ0

θ1

p=0.70 u = 0

u = 400 (Pile is spliced)
p=0.30

p=0.70
θ0

θ1

p=0.30

u = 100 (Pile is cut)

u = 0

120120

7070
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Decision Analysis in Engineering

Posterior Analysis

[ ] [ ]
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)(''
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θ

θ θ
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⎞
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Decision Analysis in Engineering

Posterior Analysis

Prior

Posterior Likelihood

Prior Posterior Likelihood

Prior
Likelihood

Posterior
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Posterior Analysis
Ultrasonic tests to determine the depth to bed rock

True state

Test result

θ0

40 ft – depth

θ1

50 ft – depth

z0  - 40 ft indicated 0.6 0.1

z1  - 50 ft indicated 0.1 0.7

z2 - 45 ft indicated 0.3 0.2

Likelihoods of the different indications/test results given the
various possible states of nature – ultrasonic test methods

[ ]P zi jθ

[ ] [ ]
[ ] [ ]∑

=

j
PzP

PzP
P

jjk

iik
i θθ

θθ
θ

'
'

)(''
Decision Analysis in Engineering
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Decision Analysis in Engineering

Posterior Analysis
It is assumed that a test gives a 45 ft indication

[ ] [ ] [ ] [ ] 0.21 = 0.7  3.0'' 002200 xPzPzPP =∝= θθθθ

[ ] [ ] [ ] [ ] 0.06 = 0.3  2.0'' 112211 xPzPzPP =∝= θθθθ

[ ]P z' '
.

. .
θ0 2

021
021 006

=
+

 =  0.78

[ ]P z' '
.

. .
θ1 2

006
021 006

=
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 =  0.22

[ ] [ ]
[ ] [ ]∑

=

j
PzP

PzP
P

jjk

iik
i θθ

θθ
θ

'
'
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Decision Analysis in Engineering

Posterior Analysis
Test result indicates 45ft to 
rock bed

Choice of alternative a1 
(50ft Pile)

⇒

a0

a1

θ0

θ1

p=0.78 u = 0

u = 400 (Pile is spliced)
p=0.22

p=0.78
θ0

θ1

p=0.22
u = 100 (Pile is cut)

u = 0

8888

7878
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Decision Analysis in Engineering

Posterior Analysis

[ ] [ ]

[ ] [ ] [ ] [ ]

7878} , min{88              

}022.010078.0 ,40022.0078.0{min              
}0''100'' ,400''0''min{               

})(''{min''

1010

22

==

×+××+×=
×+××+×=

=

θθθθ PPPP

zauE
j

zuE j

Choice of alternative a1 
(50ft Pile)

⇒

a0

a1

θ0

θ1

p=0.78 u = 0

u = 400 (Pile is spliced)
p=0.22

p=0.78
θ0

θ1

p=0.22
u = 100 (Pile is cut)

u = 0

8888

7878
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Pre-posterior Analysis

[ ] [ ] [ ] [ ] [ ]E u P z E uz P z E u a zi
i

n

i i
i

n

j m j i= × = ×
= = =
∑ ∑' ' ' ' min{ '' ( ) }

,1 1 1

[ ] [ ] [ ] [ ] [ ]P z P z P P z Pi i i' ' '= × + ×θ θ θ θ0 0 1 1

[ ] [ ] [ ] [ ] [ ]P z P z P P z P' ' ' . . . . .0 0 0 0 0 1 1 06 07 01 03 045= × + × = × + × =θ θ θ θ

[ ] [ ] [ ] [ ] [ ]P z P z P P z P' ' ' . . . . .1 1 0 0 1 1 1 01 07 07 03 028= × + × = × + × =θ θ θ θ

[ ] [ ] [ ] [ ] [ ]P z P z P P z P' ' ' . . . . .2 2 0 0 2 1 1 03 07 02 03 027= × + × = × + × =θ θ θ θ

Decision Analysis in Engineering
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Decision Analysis in Engineering

Pre-posterior Analysis

[ ] [ ]

[ ] [ ] [ ] [ ]
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Decision Analysis in Engineering

Pre-posterior Analysis

[ ] [ ]
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a0 a1
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The minimum expected costs based on pre-posterior
decision analysis
– not including costs of experiments

[ ] [ ]

Decision Analysis in Engineering

Pre-posterior Analysis

[ ]E u P z E uzi
i

n

i= × = × + × + × =
=
∑ ' ' ' . . . .

1
28 045 25 028 78 027 4066

[ ] [ ]E u E u' . . .− = − =7000 4066 29 34

Allowable costs for the experiment
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Decision Analysis in Engineering
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