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Decision Problems in Engineering

Examples
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What do we offer to you ?

* It is our intention to provide you to the best of our abilities

- Motivation and overview of context

- Targeted presentation of required knowledge

- Guidance on self study
- Help on training your abilities

- Help on your self evaluation

* We are here for you and we take this statement seriously
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Structure and organization of the course

13 weekly lectures of each two sessions of 45 minutes

11 weekly exercise tutorials of each two sessions of 45
minutes

2 assessments of each 90 minutes

Self study estimated to 4 times by 45 minutes per week
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The course’s web page
http://www.ibk.ethz.ch/fa/education/ss statistics

What can you find there?

* Course's program and timetable
* Tutorial's timetable

* Script (downloadable/printable)

* Exercises/Solutions for the exercise tutorials
(downloadable/printable)

* Presentations of the lecture and of the exercise tutorial
(uploaded a day before the respective day)

* Videos of the lecture (uploaded the day after the lecture)

* Glossary (German-English terms)

* Links to helpful web pages

* Past examination papers

* Your exercise tutorial class and group!
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Organization of the Lecture

When??
Normally...Tuesdays 8-10

Where??
HIL E1

Exceptions:

Thursday 22.03.07 8-10 HPH G 3 (lecture instead of exercise
tutorial)

Other exceptions: Check the course's program!

* Script (English)
Download from the course's web page
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Organization of the Exercise Tutorials

Eva Sabiote
HIL E 22.2

Harikrishna (Hari)
Narasimhan
HIL E 13.1

Kazuyoshi (Kazu)
Nishijima
HIL E 22.
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Organization of the Exercise tutorial

When??:
Normally.... Thursday 8-10

Where??
HPH G 3 HCI H 2.1 HCI D 8 HCI D 2

Where do I go???
find out in the “"Group lists” link on the course's web page

Exceptions....©

First tutorial: Tuesday 27.03.07
Where???: HILE1 HILB21 HILD 10.2 HILF 10.3
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Organization of the Exercise Tutorials

2 or more exercises 1 or more solution(s)
will be presented in steps of exercises

(based on the content shown in steps in

of the latest lecture the last tutoria

Group exercise
1 exercise -
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Organization of the Exercise Tutorials

O
O
Office hours:
Mondays 11.30 - 12.30
Thursdays 13.30 - 14.30
O
O
®e
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What do we expect from you?

* Take advantage of the help we provide to you
- benefit from the lectures
- benefit from the exercise tutorials

- benefit from the help of the assistants and professor (office hours)

* Tips and tricks

- prepare yourself for the lectures

- ask questions
- try to understand the topics rather than prepare for examination

- be curious, interested, open minded but critical to what we tell you
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What do we expect from you?

Self Study 50%

Collaboration 25% Instruction 25%
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Mode of assessment

* Two assessments during the semester
one midterm (03.05.07)

the other one towards the end of the course (14.06.07)

* Final Exam
October/March....

Final mark= %(two assessments)+§(fi nal exam)

Programmable calculators are strictly not allowed!
Open book assessments and final exam©

Read carefully all the information in the "Preamble” of the scriptl!
If you have any questions ask!
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Why Statistics and Probability in Engineering?

* What do engineers do ?

- Plan, design, build, maintain and decommission

Infrastructure

Roads, water supply systems, tunnels, sewage systems,
waste deposits, power supply systems, channels

Structures

houses, hospitals, schools, industry buildings, dams,
powerplants, wind turbines, offshore platforms

- Safeguar'dl
o PR e ment  SUSTAINABLE DEVELOPMENT !

- assets

from natural and man made hazards
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Why Statistics and Probability in Engineering?

* What are engineers working with ?

Real problems - the real world - nature

Wmaterial
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Why Statistics and Probability in Engineering?

* How do engineers work with the real world ?

L

‘),I\/IatAheﬂaE :_@a‘cs l
“

Model s/hypoth

We model the real world to the ,best" of our
knowledge
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Why Statistics and Probability in Engineering?

* How do engineers use knowledge

In a perfectly known world

fModels‘)
osts/Benefit
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Why Statistics and Probability in Engineering?

* How do engineers establish knowledge

Experience

Real world

G

~ Accuracy/Uncertainty

?

Models
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Why Statistics and Probability in Engineering?

* How do engineers use knowledge

Models are not precise
Uncertainty Data are not sufficient
WHY ? Natural variability

Experience is subjective
m Swiss Federal Institute of Technology



Why Statistics and Probability in Engineering?

* An example where models were not too
representative |
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Why Statistics and Probability in Engineering?

* How do engineers make decisions

Experience

osts/Benefit

E Decisions \
é
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Why Statistics and Probability in Engineering?

All activities are associated with uncertainties

Activities are e.qg.
- Transport
- Work
- Sport

but also

- Production of energy

- Exploitation of resources

- Construction and operation of
production and infrastructure projects

- Research and development
E"H Swiss Federal Institute of Technology




Why Statistics and Probability in Engineering?

Every day we must make decisions in regard to activities
associated with uncertainties

Car driving
Cooking Smoking
Mountain
Crossing the =k :
freet Surfing
Stock
trading

Every one of these activities is associated with uncertainties

We all have an opinion regarding the associated risks
We have gut Feelings !
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Why Statistics and Probability in Engineering?

How far can we get with gut feelings ?

An example

After all - maybe it is not so
.Straight forward” to comprehend uncertainties ?

What can we learn from the past ?
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Why Statistics and Probability in Engineering?

Disasters and accidents have always occurred

Some examples

Tacoma Narrows, Washington, 1940 Fort Mayer, Virginia, 1908
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Why Statistics and Probability in Engineering?

Disasters and accidents have always occurred

Some examples

Concorde, Paris, 2000
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Why Statistics and Probability in Engineering?

Disasters and accidents have always occurred

Some examples
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Why Statistics and Probability in Engineering?

Disasters and accidents have always occurred

Some examples

Canada, 1993

Open questions
- did we realise the risks ?
- are the consequences acceptable ?

E’H Swiss Federal Institute of Technology



Why Statistics and Probability in Engineering?

Risk assessment, within the framework of decision analysis,
provides a basis for rational decision making subject to
uncertain and / or incomplete information

Thereby we can take into account, in a consistent manner,
the prevailing uncertainties and quantify their effect on risks

Thus we may find answers to the following questions

- How large is the risk associated with a given activity ?

- How may we reduce and / or mitigate risks ?

- How much does it cost to reduce and / or mitigate risks ?

-  What risks must we accept - what can we afford ?

m Swiss Federal Institute of Technology



Why Statistics and Probability in Engineering?

Risk is a characteristic of an activity relating to all possible
events n. which may follow as a result of the activity

The risk contribution R. from the event E; is defined
through the product between

the Event probability P

and

the Consequences of the event C¢

The Risk associated with a given activity R,
may then be written as

RA:ZREi :ZPEi .CEi
=1 =1
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Decision Problems in Engineering

Uncertainties must be considered in the decision making
throughout all phases of the life of an engineering facility

Planning and h Investigations and
feasibility study tests \
Uncertaiinties Design
Traffic volume ldea & b
Loads concep! - Safety|of personnel I
Resistances Manufacturing

. Safet;’/ of ep_,v-i rc;-n ment

hicalteasibili I

Execution

(material, soil,..)
Degradation processes
Service life
Manufacturing costs

Decommissioning “ Operation &

Execution costs maintenance

Decommissioning
costs
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Example — Decommissioning of the Frigg Field

* The Frigg Field - built 1972-1978

- TCP2
- TP1 ] O\
- CDP1 ' ) PP
According to internationgl ™ =% ;r-h &
conventions the s‘rruc‘rurgS/ et qL ¥

Weight : 250000 t
Costs : 200 - 600 Mio. SFr

* None of the platforms were designed for decommissioning !
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Example — Decommissioning of the Frigg Field

* The decision problem

Decommissioning/removal taking into account

- Safety of personnel
- Safety of the environment

- Costs

- Interest groups

Greenpeace
Fishers
IMO

E"H Swiss Federal Institute of Technology



Example — Decommissioning of the Frigg Field

* Three options are considered
- ,Refloat" and demolition Onshore

- ,Refloat” and demolition Offshore
- Removal to a free passage of

—

* The approach

- Identification of hazard scenari
chronologically

- Quantification of occurrence probabilities -

- Quantification of consequences

* Applied approach - Bayesian Nets

E"H Swiss Federal Institute of Technology



Example — Decommissioning of the Frigg Field

* Re-float of the TCP2 structure

0
GroutOffBefo @ @
GroutOffAfter emRetractlo

/'

ydrJack_1st

olumnBallasi

YR

Cellintegrity Retractlon @ ricellRupture) Control_Monitg olumnBallasy

4
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Example — Decommissioning of the Frigg Field

* Results of the decision analysis

. -
Time variation of @ \\ —
B3 :
SN
- Expected costs 35 /
- .. 82/
- Probability of mission 22 .«
success F--F-- === -+
1 3 4 S 6 7

Decision support

Time [steps]

- How much to invest before a satisfactorily level of
probability of mission success has been reached

E"H Swiss Federal Institute of Technology
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Decision Problems in Engineering

* Structural Design
Exceptional structures are often associated with structures of
.Extreme Dimensions™

w: ; -

Great Belt Bridge Concept drawing
under Construction of the Troll platform
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Decision Problems in Engineering
* Structural Design

or associated with structures fulfilling
.New and Innovative Purposes”

:mag
e
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pat |
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]
i
]
]
E
|
=
-

L

J-\‘ "

1111 : &

Illustrations of the ARIANE 5 rocket
Concept drawing of
Floating Production, Storage and Offloading unit
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Decision Problems in Engineering

Before
%- #"F“ “‘ W H 1A R NIRRT SE ‘ %u
Optimal allocation of available Damage reduction/Control Rehabilitation of infrastructure
resources for risk reduction functionality
Emergency help and rescue
- strengthening Condition assessment and
- rebuilding After quake hazards updating of reliability and risks
in regard to possible earth- Optimal allocation of resources
guakes for rebuilding and strengthening
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Decision Problems in Engineering

Inspection and Maintenance Planning

Due to
- operational loading
- environmental exposure

structures will always to some|
degree be exposed to

degradation processes
such as

- fatigue

- corrosion
- scour

- wear

E"H Swiss Federal Institute of Technology



Why Statistics and Probability in Engineering?

In summary
statistics and probability theory is needed in engineering to

- quantify the uncertainty associated with engineering
models

- evaluate the results of experiments
- assess importance of measurement uncertainties
- safe guard

safety for persons

qualities of environment
assets

ENHANCE DECISION MAKING
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Organisation of the Lecture

Module A

Engineering decisions under uncertainty

Module B - Basic probability theory

12

Module C - Descriptive statistics
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Module E - Estimation and model building

Module D - Uncertainty modeling

S e

%:
5‘[

—
L]

N
Module F - Methods of structural reliability

Module G - Bayesian decision analysis
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Rooms information

Before... Now...
Group Tutorial 1 | Tutorials Tutorial Group | Tutorial 1 Tutorials Tutorial 10
2-9and 11 10 2-9and1l
E HIL D 10.2 | HCID 2 E HCI D 2 HCI D 2
H HILB21 |HCIH21 H HPT C105 | HCIH 21
Tobe To be
K HILF103 |HCID8 | anounced K HILF103 |HciDg | @mounced
V HILE1 HPH G 3 Vv HILE1 HPH G 3

Time starting (Lecture/T utorials):

HIL: 8 Physics/Chemistry Buildings. 7.45
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Contents of Todays Lecture

Risk and Motivation for Risk Assessment
Overview of Probability Theory
Interpretation of Probability

Sample Space and Events

The three Axioms of Probability Theory

Conditional Probability and Bayes's Rule
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Why Statistics and Probability in Engineering?

Risk is a characteristic of an activity relating to all possible
events n. which may follow as a result of the activity

The risk contribution R. from the event E; is defined
through the product befween

the Event probability P

and

the Consequences of the event C¢

The Risk associated with a given activity R,
may then be written as

RA:ZREi :ZPEi .CEi
=1 =1
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Decision Problems in Engineering

Uncertainties must be considered in the decision making
throughout all phases of the life of an engineering facility

Planning and ” Investigations and
feasibility study tests \

Uncertaintiies ,

Design
Traffic volume ldea & 1
Concept Safety of personnel I
Loads |
Resistances Safety d | envi___r_pm\n ent Manufacturing
(material, soil,..) [ I
. Economigal feasibility
Degradation processes _
5 Execution

Service life

Manufacturing costs Decommissioning | Ioperation&

Execution costs maintenance

Decommissioning
costs
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Example — Decommissioning of the Frigg Field

* The Frigg Field - built 1972-1978

- TCP2
- TP1 ] O\
- CDP1 ' ) PP
According to internationgl ™ =% ;r-h &
conventions the s‘rruc‘rurgS/ et qL ¥

Weight : 250000 t
Costs : 200 - 600 Mio. SFr

* None of the platforms were designed for decommissioning !
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Example — Decommissioning of the Frigg Field

* The decision problem

Decommissioning/removal taking into account

- Safety of personnel
- Safety of the environment

- Costs

- Interest groups

Greenpeace
Fishers
IMO
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Example — Decommissioning of the Frigg Field

* Three options are considered
- ,Refloat" and demolition Onshore

- Refloat" and demolition Offshore
- Removal to a free passage of 55 m LAT

depth sinis

* The approach

—
—

- Identification of hazard scenarios
chronologically

- Quantification of occurrence
probabilities

- Quantification of consequences

* Applied approach - Bayesian Nets
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Example — Decommissioning of the Frigg Field

* Re-float of the TCP2 structure

0
GroutOffBefo @ @
GroutOffAfter emRetractlo

/'

ydrJack_1st

olumnBallasi
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Cellintegrity Retractlon @ ricellRupture) Control_Monitg olumnBallasy

4
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Example — Decommissioning of the Frigg Field

* Results of the decision analysis

. -
Time variation of @ \\ —
B3 :
SN
- Expected costs 35 /
- .. 82/
- Probability of mission 22 .«
success F--F-- === -+
1 3 4 S 6 7

Decision support

Time [steps]

- How much to invest before a satisfactorily level of
probability of mission success has been reached

E"H Swiss Federal Institute of Technology
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Decision Problems in Engineering

* Structural Design
Exceptional structures are often associated with structures of
.Extreme Dimensions™

w: ; -

Great Belt Bridge Concept drawing
under Construction of the Troll platform
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Decision Problems in Engineering
* Structural Design

or associated with structures fulfilling
.New and Innovative Purposes”
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IllLlSTraTions of the ARTIANE 5 rocket

Concept drawing of
Floating Production, Storage and Offloading unit
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Decision Problems in Engineering

Before
%- #"F“ “‘ W H 1A R NIRRT SE ‘ %u
Optimal allocation of available Damage reduction/Control Rehabilitation of infrastructure
resources for risk reduction functionality
Emergency help and rescue
- strengthening Condition assessment and
- rebuilding After quake hazards updating of reliability and risks
in regard to possible earth- Optimal allocation of resources
guakes for rebuilding and strengthening
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Decision Problems in Engineering

Inspection and Maintenance Planning

Due to
- operational loading
- environmental exposure

structures will always to some|
degree be exposed to

degradation processes
such as

- fatigue

- corrosion
- scour

- wear

E"H Swiss Federal Institute of Technology



Why Statistics and Probability in Engineering?

In summary
statistics and probability theory is needed in engineering to

- quantify the uncertainty associated with engineering
models

- evaluate the results of experiments

- assess importance of measurement uncertainties
- safe guard
safety for persons

qualities of environment
assets

ENHANCE DECISION MAKING
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Overview of Probability Theory

* What are we aiming for ? The probability theory provides
the basis for the consistent

treatment of uncertainties
in decision making !

" Model estimation

L
]\ Probabilistic model

@lbiliﬁes of events 1 @nsequences of even@
We need to be able to (

quantify the probability of
Decision Making !

events and to update
these based on new
information
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Interpretation of Probability

* What is Probability ?

We all have some notion of probability !

and frequently use words like

Nuclear
Stock accidents
oc :
- Chance exchange Smokmg
Passing the
- Likelihood Araeaiis e
the street . Hunting
- Frequency Succeeding

difficult tasks
- Probability

E"H Swiss Federal Institute of Technology



Interpretation of Probability
States of nature of which we have interest such as:
- a bridge failing due to excessive traffic loads
- a water reservoir being over-filled
- an electricity distribution system ,falling out™

- a project being delayed
are in the following denoted ,events"

we are generally interested in quantifying the probability
that such events take place within a given ,time frame"

E'H Swiss Federal Institute of Technology



Interpretation of Probability

* There are in principle three different interpretations of
probability

- Frequentistic P(A) = Iimﬁ for n,,—eo
Moo
- Classical P(A) =2
ot
- Bayesian P(A) = degreeof belief that A will occur
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Interpretation of Probability

Consider the probability of getting a ,head” when flipping a coin

- Frequentistic P(A) -9 o1
1000

- Classical P(A)%

- Bayesian P(A=05

E"H Swiss Federal Institute of Technology



Sample Space and Events

The set of all possible outcomes of the state of nature
e.g. concrete compressive strength test results is called
the sample space 2. For concrete compressive strength
test results the sample space can be written as Q =]0;[

A sample space can be continuous or discrete.

Typically we illustrate the sample space and events using

Venn diagrams

Q

__ Event

m Swiss Federal Institute of Technology



Sample Space and Events

An event is a sub-set of the sample space

- if the sub-set is empty the event is impossible
- if the sub-set contains all of the sample space the
event is certain

Consider the two events E and E;
The sub-set of sample points belonging to the event E,

and/or the event E, is called the union of E, and E, and is
written as : E,UE,

— EUE,

E"H Swiss Federal Institute of Technology



Sample Space and Events

An event is a sub-set of the sample space

- if the sub-set is empty the event is impossible
- if the sub-set contains all of the sample space the event

is certain
Consider the two events E and E;:
The sub-set of sample points belonging to the event E, and
the event E, is called the intersection of E and E, and is
written as: E NE,

— ENE,

Q

E"H Swiss Federal Institute of Technology




Sample Space and Events

The event containing all sample points in Q@ not included
in the event E is called the complementary event to E

and writtenas : E

It follows that EUE=Q

and ENE=0

M|
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Sample Space and Events

It can be show that the intersection and union operations

obey the following commutative, associative and
distributive laws:

ENE =E[E Commutative law
ENENE)=(ENE)NE

E U(E,UE,)=(E UE,)UE, /
EN(EUE)=(ENE)UENE)
EUENE)=(EUE)N(EUE) _

>~ Associative law

> Distributive law
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Sample Space and Events

From the commutative, associative and distributive laws
the so-called De Morgan’'s laws may be derived:

ENE=ENE

ENENE)=(ENE)NE NE, =E.UE;
—>

E,U(E,UE))=(E,UE,)UE, E,UE, =E:NE>

ENEUE)=(ENE)UENE)

EUENE)=(EUE)N(EUE)

m Swiss Federal Institute of Technology



The Three Axioms of Probability Theory

The probability theory is built up on - only - three axioms
due to Kolmogorov:

Axiom 1: 0< P(E)Sl
Axiom 2: P(Q)=1
Axiom 3: P U |- 3P

WhenE , E, ... are mutually exclusive
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Conditional Probability and Bayes's Rule
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Conditional Probability and Bayes's Rule
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Conditional Probability and Bayes's Rule
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Conditional Probability and Bayes's Rule

‘ Formulate hypothesis about the wor%

Utilize existing knowledge

@ne with d@ 4-/

Learn how to develop knowledge !

E’H Swiss Federal Institute of Technology



Conditional Probability and Bayes's Rule

Conditional probabilities are of special interest as they
provide the basis for utilizing new information in decision
making.

The conditional probability of an event E given that
event E, has occured is written as:

p(E1|EZ):P(FE>1(Q)Ez) Not defined if P(E,)=0

The events E;, and E, are said to be statistically
independent if:
P(E,[E,) = P(E))

m Swiss Federal Institute of Technology



Conditional Probability and Bayes's Rule

From P(E[E) =~
it follows that P(E,NE,)=P(E,)P(E|E,)

and when E and E,are statistically independent there is

P(E:I. M Ez) = P(Ez)P(E1)

E"H Swiss Federal Institute of Technology



Conditional Probability and Bayes's Rule

Consider the sample space {2 divided up into N mutually
exclusive events E, E,, .., E

n

E; E2 E3 E4

)
- J

P(A) =P(ANE,)+P(ANE,)+..+P(ANE,)
P(AE)P(E,)+P(AE,) P(E,)+..+P(AE,) P(E,) =

n

> P(AE)P(E)

i=1

E’H Swiss Federal Institute of Technology



Conditional Probability and Bayes's Rule
as there is P(ANE)=P(AE)P(E)=P(E|AP(A

we have Likelihood Prior

P(AE)P(E) _ P(AE)P(E)

P(E |A) = ;
/ A Y PAEIPE)
Posterior
Bayes Rule

Reverend Thomas
Bayes
(1702-1764)

E"H Swiss Federal Institute of Technology
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ETH Zlrich, Switzerland
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Contents of Todays Lecture

* Overview of descriptive statistics

* Numerical summaries

- Central measures

- Dispersion measures

- Other measures

- Measures of correlation

* Graphical representations
- One-dimensional scatter plots
- Histograms
- Quantile plots
- Tukey Box plots
- Q-Q plots and Tukey mean-difference plot
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Overview of Descriptive Statistics

* _What we are aiming for ? Descriptive statistics make

no assumptions - only describe !
<
Data
—>

r Probabilistic model

L

@.‘biliﬁes of events 1 @nsequences of even@
In the first step we M (
simply want to describe

the data

- numerically
- graphically

Model estimation

Decision Making !

m Swiss Federal Institute of Technology



Numerical Summaries

* Central measures:

| =

Sample mean : X =

D %
i=1

If one number should be given to represent a data set typically
the sample mean would be chosen

n

Median : The 0.5 quantile (obtained from ordered data sets, see
quantile
plots)

Mode : Most frequent value - obtained from histograms

E"H Swiss Federal Institute of Technology



Numerical Summaries

Dispersion measures:

n
Sample variance: s° =}Z()§ ~-X)? s: standard deviation
niz

Indicator of variability around the sample mean

X | v

Sample coefficient of variation (CoV): V=
Indicator of variability relative to the sample mean

m Swiss Federal Institute of Technology



Numerical Summaries

* Other measures:

1 Z( X — X )3
Sample skewness: 7= " = 3 Measure of symmetry
. ( X =X )4
Sample kurtosis I ; Measure of peakedness
n st

m Swiss Federal Institute of Technology



Numerical Summaries

* Measures of correlation (linear dependency between data pairs):

2-dimensional scatter plots

Almost no dependency Almost full dependency

m Swiss Federal Institute of Technology



Numerical Summaries

* Measures of correlation (linear dependency between data pairs):

The sum will get positive contributions
in case of low-low or high-high data pairs

(X =X)- (Y- Y)
Sample coefficient of correlation: r,, ===
n Sx " Sy

rv iS limited in the interval -1 to +1

E'H Swiss Federal Institute of Technology



Numerical Summaries

*  Summary:

Central measures:
- sample mean value: The center of gravity of a data set

- sample median: The mid value of a data set

- sample mode: The most frequent value/range of a data set
Dispersion measures:

- sample variance: The distribution around the sample mean

- sample CoV: The variability relative to the sample mean
Other measures:

- sample skewness: The skewness relative to the sample mean

- sample kurtosis: The peakedness around the sample mean

Measures of correlation:
- sample covariance:  Tendency for high-high, low-low and high-low
pairs in two data sets
- sample coefficient
of correlation : Normalized coefficient between -1 and +1

E'H Swiss Federal Institute of Technology



Graphical Representations

* Assume that we have a set of data
(observations of road way traffic)

The simplest representation of the data
is the one-dimensional scatter plot

Lower points

A Directionl o Direction?2

@mmoa:ooooo o o o GI

A
@MM:MA A A A Q
I I I | | I I | I |}

3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

Central poimrtss
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Upper points:q

Date Directjdn 1 Diregfion 2 ——

Unordered | | Ordered J Unordered [ Ordered|

0L01 | 3087 %77 | 3T
02.01 4664 3578 7357 4453
03.01 4164 3710 9323 4480
04.01 3710 3737 11748 4560
05.01 4029 3906 10256 4635
06.01 4323 4029 4453 4648
07.01 4041 4041 4815 4672
08.01 3737 4085 4757 4757
09.01 4103 4103 4672 4791
10.01 5457 4164 5401 4815
11.01 4563 4323 5688 4880
12.01 3906 4359 6308 4928
13.01 4419 4366 4946 4946
14.01 4359 4368 4635 5005
4667 4371 5100 5013
16.01 5098 4419 4791 5100
17.01 6551 4563 5235 5220
18.01 4371 4588 4560 5235
19.01 3578 4664 5729 5281
20.01 4366 4667 5005 5318
21.01 4368 4727 4480 5398
22.01 4588 4739 4880 5401
23.01 5001 4741 4928 5679
24.01 7118 5001 5398 5688
25.01 4727 5098 4648 5729
26.01 4085 5193 6183 6183
27.01 4741 5457 5220 6308
28.01 4739 5892 5013 7357
29.01 5193 6551 5281 9323
30.01 5892 7118 5318 10256
31.01 7974 7974 5679 11748




Graphical Representations
100

* Histograms

1
2

The data are grouped into intervals

Date Direction 1 Direction 2
Unordered Ordered | Unordered Ordered
0101 3087 3087 3677 3677
02.01 4664 3578 7357 4453
03.01 4164 3710 9323 4480
04.01 3710 3737 11748 4560
05.01 4029 3906 10256 4635
06.01 4323 4029 4453 4648
07.01 4041 4041 4815 4672
08.01 3737 4085 4757 4757
09.01 4103 4103 4672 4791
10.01 5457 4164 5401 4815
11.01 4563 4323 5688 4880
12.01 3906 4359 6308 4928
13.01 4419 4366 4946 4946
14.01 4359 4368 4635 5005
15.01 4667 4371 5100 5013
16.01 5098 4419 4791 5100 I I
17.01 6551 4563 5235 5220
18.01 4371 4588 4560 5235
19.01 3578 4664 5729 5281
20.01 4366 4667 5005 5318
21.01 4368 4727 4480 5398
22.01 4588 4739 4880 5401
23.01 5001 4741 4928 5679
24.01 7118 5001 5398 5688
25.01 4727 5098 4648 5729
26.01 4085 5193 6183 6183
27.01 4741 5457 5220 6308
28.01 4739 5892 5013 7357
29.01 5193 6551 5281 9323
30.01 5892 7118 5318 10256
3101 7974 7974 5679 11748
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Graphical Representations

MNumber of observations

* Histograms
The grouped data are plotted
I(rllltlejrn:ger of ll\?l]ti?ir[;loe?n’[ (Number Nl;l mber-éf Cumulative
cars*10°) | of cars*109) opservations frequency
30-35 325 0.0000
35-40 375 1 0.0323
40-45 425 2 0.0968
45-50 475 10 0.4194
50-55 525 9 0.7097
55-60 575 3 0.8065
60-65 62.5 2 0.8710
65-70 67.5 0 0.8710
70-75 725 1 0.9032
75-80 715 0 0.9032
80-85 825 0 0.9032
85-90 875 0 0.9032
90-95 925 1 0.9355
95-100 975 0 0.9355
100-105 102.5 1 0.9677
105-110 107.5 0 0.9677
110-115 1125 1 1.0000

10 .
9 z
8 =
7 B
: i
5 -
. :
3] ¥
2 ]
I g
] -
Wumber of cars x 10F Number of cars x 107
Simple histogram Frequency distribution
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Graphical Representations

* Histograms

The grouped data are plotted
Interval Interval .

o Number of Frequen Cumulative
e i s S5 9 e
30-35 325 0 0.0000 .0000
35-40 375 1 3.2258 0.
40-45 25 2 6.4516 0.0968
45-50 475 10 32.2581 0.4194
50-55 525 9 29.0323 0.7097
55-60 575 3 9.6774 0.8065
60-65 62.5 2 6.4516 0.8710
65-70 67.5 0 0.0000 0.8710
70-75 725 1 3.2258 0.9032
75-80 775 0 0.0000 0.9032
80-85 825 0 0.0000 0.9032
85-90 875 0 0.0000 0.9032
90-95 925 1 3.2258 0.9355
95-100 975 0 0.0000 0.9355
100-105 102.5 1 3.2258 0.9677
105-110 107.5 0 0.0000 0.9677
110-115 1125 1 3.2258 1.0000

E"H Swiss Federal Institute of Technology
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Graphical Representations

Histograms

The number of intervals selected will influence the information
maintained

No general rule can be given but some suggest the following

k=1+3.3logn

: For the traffic flow data set:
k: number of intervals | _1,33/0931=592=6

n: number of data

E'" Swiss Federal Institute of Technology



Graphical Representations

* Histograms

The number of intervals selected will influence the information
maintained

k=17 k=6

[ 78]
wn

d
=

8 U

— —_
= wny
: 1

Frequency of observations (%)

Frequency of observations (%)
e P

5 .
1]
wi w wy L a] wy La] wy wi i
ul ‘f \tll g I“I- - (=3 (=] —_
=] f== aQ =] = =] o n i
(g} =+ wi K= ~ k=] (=3 g 2
. -7 A 50465 6580 B0-55 95110 110125
Number of cars x 10

Mumbser of ears x 10
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Graphical Representations

* Quantile plots

Definition : the Q-quantile correspondsto the valuein a data set
which is exceeded by 100% - Q x 100% of the data

e.d. the 0.75 quantileis exceeded by 100% - 0.75 x 100%
= 25% of the data

Quantile plots are generated by plotting the data against
their quantile values

E’H Swiss Federal Institute of Technology



Graphical Representations

* Quantile plots

The quantiles are calculated from the

ordered data set as:

gt

1+ n * [Mrection 2
| 2000 %

1 10D

Number of cars
=
=

0.4 (.6

lue

Quantile

Lower quartile = 0.25 quantile value
Median = 0.5 quantile value

X Direction | | Direction2 | Q quantile
1 3087 3677 0.0313
2 3578 4453 0.0625
3 3710 4480 0.0938
4 3737 4560 0.1250
5 3906 4635 0.1563
6 4029 4648 0.1875
7 4041 4672 0.2188
3 4085 4757 0.2500
0 4103 4791 0.2813
10 4164 4815 0.3125
11 4323 4880 0.3438
12 4359 4928 0.3750
13 4366 4946 0.4063
14 4368 5005 0.4375
15 4371 5013 0.4688
16 4419 5100 0.5000
17 4563 5220 0.5313
18 4588 5235 0.5625
19 4664 5281 00.5938
20 4667 5318 0.6250
21 4727 5398 .6563
22 4739 5401 0.6875
23 4741 5679 0.7188
24 5001 5688 0.7500
25 5098 5729 0.7813
26 5193 6183 0.8125
27 5457 6308 0.8438
28 5892 7357 0.8750
29 6351 9323 0.9063
30 7118 10256 0.9375
3l 7974 11748 0.9688

Upper quartile=0.75 quantile value

m Swiss Federal Institute of Technology




Graphical Representations

Out side value

A

Datavalues

A

Out side value

r : Inter-quartile range (50% of data)

m Swiss Federal Institute of Technology

Upper adjacent value:
largest value less than
0.75 quantile+ 1.5xr

Upper quartile value

Median

Lower quartile value

Lower adjacent value:
lowest value larger than
0.25 quantile- 1.5xr



Graphical Representations

* Tukey Box plots (traffic data)

Direction 1 Direction 2
12000
£000 o
Statistic 11000
i 7300 1 outside values
Lower adjacent value R ’
Lower quartile T000 - 10000 1
Median
Upper quartile 6300 - L4 9000
Upper adjacent value
: B -
Outside values 5 upper adjacent value . 8000 4
o e
E 5500 - -
= 2 700 4
,-i':' 5000 - upper quartile 2
—— — E E conn J
Direction 1 Direction 2 3 E B0
< 4500 mediar| »
3087 3677 . 5000
4085 4?5? A000 4 lower I:_'.J.-".'ﬂ]lf! -
4419 5100 - 4000 |
5001 5688 1500 -
58492 6308 3000 lower adjacent value S0
63351 7357
7118 0323
7974 10256
11748
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Graphical Representations

* Q-Q plots

Q-Q plots are produced to represent
and compare 2 data sets

Data points of the two data sets with
the same quantile values are plotted
against each other

3000

m Swiss Federal Institute of Technology

3000 4000 5000 6000 7000 8000 9000 10000 1100012000

Number of carsin direction 1



Graphical Representations

* Mean vs. difference plots

Mean vs. difference plots are produced to represent
and compare 2 data sets

BOOO e

4+ x)/2 0
(yl X) 3000 Y
7
L -t liiilill iiiii I

is plotted against

Difference

(1210 — S —
100 (N IS S —
L

i =X

O I I I I I 1 1
3000 4000 5000 6000 7000 8000 9000 10000

Mean
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Graphical Representations

Summary

One-dimensional scatter plots : illustrate the range and distribution of a
data sets along one axis, indicate
symmetry.

Histograms: illustrate how the data are distributed
over the range of data, indicate mode
and symmetry.

Quantile plots: Illustrate median, distribution and
symmefry
Tukey - Box plots: Tllustrate median, upper/lower quartiles,

symmetry and distribution

Q-Q plots: Compare two data set, relative shapes

Mean vs. difference plots: Compare two data sets, relative shapes

E'H Swiss Federal Institute of Technology
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Contents of Today's Lecture

Overview of Uncertainty Modelling
Uncertainties in Engineering Problems

Random Variables

- discrete cumulative distribution and probability density
functions

- continuous cumulative distribution and probability density
functions

- characterization of random variables

- moments of random variables

- the expectation and the variance operator

E'H Swiss Federal Institute of Technology



Overview of Uncertainty Modelling

* Why uncertainty modelling

Uncertain phenomenon

o) 25

Probabilistic model

Model estimation

¢--l

Probabilities of events COV‘SCQU@"CQS of eve@

~ e ¢
Decision Making !

m Swiss Federal Institute of Technology




Uncertainties in Engineering Problems

Different types of uncertainties influence decision making

* Inherent natural variability - aleatory uncertainty
- result of throwing dices
- variations in material properties
- variations of wind loads
- variations in rain fall

* Model uncertainty - epistemic uncertainty
- lack of knowledge (future developments)
- inadequate/imprecise models (simplistic physical modelling)

* Statistical uncertainties - epistemic uncertainty
- sparse information/small number of data

E'H Swiss Federal Institute of Technology



Uncertainties in Engineering Problems

* Consider as an example a dike structure

- the design (height) of the dike will be determining the
frequency of floods

- if exact models are available for the prediction of future
water levels and our knowledge about the input parameters
is perfect then we can calculate the frequency of floods

(per year) - a deterministic world !

- even if the world would be deterministic - we would not
have perfect information about it - so we might as well
consider the world as random

E'H Swiss Federal Institute of Technology



Uncertainties in Engineering Problems

In principle the so-called
inherent physical uncertainty (aleatory - Type I)
is the uncertainty caused by the fact that the world is

random, however, another pragmatic viewpoint is to define
this type of uncertainty as

any uncertainty which cannot be reduced by means of
collection of additional information

the uncertainty which can be reduced is then the

model and statistical uncertainties (epistemic - Type IT)

E’H Swiss Federal Institute of Technology



Uncertainties in Engineering Problems

'\

Observed annual Model for annual
extreme water levels extremes

>AIeatory

\

Uncertainty

Regression model to
predict future extremes

Predicted future
extreme water level

E'" Swiss Federal Institute of Technology
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Uncertainty



Uncertainties in Engineering Problems

The relative contribution of aleatory and epistemic
uncertainty to the prediction of future water levels is thus
influenced directly by the applied models

refining a model might reduce the epistemic uncertainty - but

in general also changes the contribution of aleatory
uncertainty

the uncertainty structure of a problem can thus be said to
be scale dependent |

E’H Swiss Federal Institute of Technology



Uncertainties in Engineering Problems

predicton

eNa{\O\'\
obs y

waons
/ Futufe
0/0
100 — past— " Time
/

present

The uncertainty structure changes also as function of time
- is thus time dependent |

E’H Swiss Federal Institute of Technology



Random Variables

* Probability density and cumulative distribution functions
A random variable is denoted with capital letters : X

A realization of a random variable is denoted with small
letters : x

We distinguish between

- continuous random variables can take any value in
a given range

- discrete random variables : can take only
discrete values

E'H Swiss Federal Institute of Technology
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Random Variables

* Probability density and cumulative distribution functions

The probability that the outcome of a
discrete random variable X is smaller than
x is denoted the

cumulative distribution function

P(¥) =2 Py (%)

X <X

The probability density function for a
discrete random variable is defined by

px()ﬁ) =P(X = )ﬂ)
Sum of

E"H Swiss Federal Institute of Technology
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1
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Random Variables

* Probability density and cumulative distribution functions

Fx () A

The probability that the outcome of a |

continuous random variable X is smaller *

than x is denoted the

cumulative distribution function

F (X)=P(X <X
(9 B

The probability density function for a

continuous random variable is defined by

I (¥)
fe (X)=
aX > X

Integral of thismust equal 1
E"H Swiss Federal Institute of Technology 12



Random Variables

* Moments of random variables and the expectation operator
Probability distributions (cumulative distribution function and
probability density function) can be described in terms of
their paramaters p or their moments

Often we write

Fe(Xp)  f(x,p)

Parameters

The parameters can be related to the moments and visa
versa

m Swiss Federal Institute of Technology 13



Random Variables

* Moments of random variables and the expectation operator

The i'th moment m for a continuous random variable X is
defined through

m = j X' f, (X)dx

The expected value E[X] of a continuous random variable X is
defined accordingly as the first moment

E"H Swiss Federal Institute of Technology
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Random Variables

Moments of random variables and the expectation operator

The i'th moment m;, for a discrete random variable X is
defined through

m = Z Xij Px (Xj)
j=1

The expected value E[X] of a discrete random variable X is
defined accordingly as the first moment

Hy = E[X]:ixj pX(Xj)

E"H Swiss Federal Institute of Technology
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Random Variables

* Moments of random variables and the expectation operator

The expected value (or mean value) of a random variable can
be understood as the center of gravity of the probability
density function of the random variable !

fy (X)
A

E"H Swiss Federal Institute of Technology



Random Variables

Moments of random variables and the expectation operator
The variance O'>2< of a continuous random variable is defined

as the second central moment i.e. for a continuous random
variable X we have

of =Var [X]=E| (X —u,)? |= ]o (x—;;x )* £, (X)dx

Variance M ean value

for a discrete random variable we have correspondingly

O->2< =Val’[X]=i(Xj _:ux)2 pX(Xj)

E"H Swiss Federal Institute of Technology 17



Random Variables

* Moments of random variables and the expectation operator

The ratio between the standard deviation and the expected
value of a random variable is called the Coefficient of
Variation CoV and is defined as

Cov[X]=2x

\ A

Dimensionless

a useful characteristic to indicate the variability of the
random variable around its expected value

E"H Swiss Federal Institute of Technology
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Random Variables

* Example - uniformly distributed random variable

probability density and cumulative distribution functions
fx (¥

0, X< a
fx(X)=<i, a<x<b
b—a
\0’ b< x
(0, X< a
h 1 (x—a)
F.(X)=<|f dy=|——dy= , asx<b
< (%) <£ < (y)dy ib_a Y= -2
1, b< x

E"H Swiss Federal Institute of Technology
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Random Variables

Example - uniformly distributed random variable

expected value and variance

b
X2

b— a 2(b—a) .

i, =E[X] jxf(x)dx j

_(b+a)

2

E,H Swiss Federal Institute of Technology
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Contents of Todays Lecture

Overview of Uncertainty Modeling

Random Variables

- properties of the expectation operator

- random vectors and joint moments

- conditional distributions and conditional moments

- the probability distribution for the sum of two random
variables

- the probability distribution for functions of random variables
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Overview of Uncertainty Modeling

Random variables and their characteristics

Real world

Uncertain phenomenon

U

Data/obser vations

m Swiss Federal Institute of Technology
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Random Variables

* Properties of the expectation operator

The expectation operator facilitates that we can assess the
expected value and the variance of a random variable

By understanding how the expectation operator works we will
be able to assess the expected value and the variance of
functions of random variables

This is useful if we want to analyze engineering models
involving one or more random variables in regard to their
expected values and their variances

E.g.: Duration of a construction process as a function of the
duration of its individual processes

E'H Swiss Federal Institute of Technology



Random Variables

* Properties of the expectation operator

m m m MM

The expectation operator possesses the following properties:

c|l=c

cX | = cE[X]

a+bX]|=a+bE[X]

9,(X)+g,(X)]= Elg,(X)]+ Elg,(X)]

m Swiss Federal Institute of Technology



Random Variables

* Properties of the expectation operator

The variance can thus be written as:

Var [ X] =E| (X— 1)’ |
=E| X?+ 45 —2u, X

::u>2< +E| X* _le'lXE:

X]

=15 +E| X |- 20 =E| X* |15

m Swiss Federal Institute of Technology



Random Variables

* Properties of the expectation operator

Elc]=c
Furthermore there is Elex ] = cE[X]
Ela+bX]|=a+bE[X]
Var|c]=0 Elg,(X)+ g,(X)]= Elg,( X))+ E[g,( X)]
Var[cX | = c?Var|X]
Var|a+bX |=b*Var[X]

m Swiss Federal Institute of Technology



Random Variables

* Properties of the expectation operator

From the result

Var [ X] =E| (X—ty)* | = E| X?+ 11 =21, X | =E| X* |- 4
it is seen that there in general is Elg(X)]= g(E[ X))

Elg( X)|=g(E[X]) for convex functions - Jensen's inequality !

Y

Equality only for linear functions

m Swiss Federal Institute of Technology



Random Variables

* Random vectors and joint moments
Often we are dealing with models involving not only one
random variable but several random variables
These random variables can be collected in a vector
In general the components of the vector are dependent
E.g. Rainfall and water level
It is thus necessary that we establish probabilistic models

which include this dependency - we can do this through the
joint cumulative distributions and the joint moments.

E'H Swiss Federal Institute of Technology



Random Variables

* Random vectors and joint moments

Now we consider not just one continuous random variable but
a vector of continuous random variables

.

X:(Xl, XZ,...,Xn)

The joint cumulative distribution function is given by
F (X)=P(X, £xNX, <x%N..NX, £X,)

and the joint probability density function is given by

&n
£ (X)= F

E"H Swiss Federal Institute of Technology




Random Variables

* Random vectors and joint moments

Consider the two
dimensional discrete
probability density function:

X,y p(x.y)

1,10 0.033
1,20 0.067
1,30 0.033
1,40 0.033
2,10 0.067
2,20 0.100
2,30 0.067
2,40 0.033
3,10 0.067
3,20 0.133
3,30 0.100
3,40 0.067
4,10 0.033
4,20 0.067
4,30 0.067
4,40 0.033

m Swiss Federal Institute of Technology



Random Variables

* Random vectors and joint moments

The marginal probability density function of a random
variable X is defined by

fy (X)= [ [ (n—1 fold) f, (x) dx,..dx _,dx,,..dx,

E"H Swiss Federal Institute of Technology



Random Variables

* Random vectors and joint moments

Consider the two
dimensional discrete
probability density function:

X,y p(x,y)

1,10 0.033

1,20 0.067

1,30 0.033 . . . .
10 0053 Discrete joint density
2,10 0.067

2,20 0.100

2,30 0.067

2,40 0.033

3,10 0.067

3,20 0.133 04

3,30 0.100 035 ]

3,40 0.067 03

4,10 0.033 025 ]

4,20 0.067 02

4,30 0.067 0.5 —
4,40 0.033 o1
0.05
0

Marginal density for x
E"H Swiss Federal Institute of Technology g y




Random Variables

* Random vectors and joint moments

The covariance between the i'th and the j'th component of
the random vector of continuous random variables is defined
as the joint central moment i.e. by

Cxixj :E[(Xi —Hy )(X, _;ux ] II X —Hy )(X —Hx. ) xx X| X )dde
Cxixi :Var[Xi] o

From where we see that for i = j we get the variance for X

Cyx
Correlation coefficient p, = dld Oy x =1
17%] GXI O-XJ [

E"H Swiss Federal Institute of Technology




Random Variables

* Random vectors and joint moments

The expected value and the variance of a linear function

Y=a[,+zn:agxi
1=1

are given by

E,H Swiss Federal Institute of Technology



Random Variables

* Conditional distributions and conditional moments

Some times it is useful to be able to assess the probability
of an event given that we know something about one of the
random variables which are used to define the event

E.g. assume we want to calculate the probability that a
project will be delayed under the condition that one of the
processes will exceed its planned duration by 50%.

E'H Swiss Federal Institute of Technology



Random Variables

* Conditional distributions and conditional moments

The conditional probability density function for the random
variable X, given the outcome of the random variable X is

given by f : ‘ ) fo o (%,%)
X[x, ) =%
i fu, (%)

where if X, and X, are independent
fx1|x2 (Xl‘xz) = fxl(xl)
The conditional cumulative distribution function is obtained by
integration as X
| T x, (z.%,)dz
Fx, (%%) ==
e (6 fy, (%)

E"H Swiss Federal Institute of Technology




Random Variables

* Conditional distributions and conditional moments

The un-conditional cumulative distribution function for the
random variable X, can be derived from the conditional
comulative distribution function by use of the fota/
probability theorem

Fxl(xl) = ]? |:x1|><2 (Xl‘xz)fx2 (X,)dX,

The conditional expected value is defined by
Hyx, = E[Xl‘xz — X2:| = _[ X fx1|x2 (X‘Xz)dxl

E"H Swiss Federal Institute of Technology



Random Variables

* In many cases we are interested in assessing the probabilites
of functions of random variables

The functions are useful for describing the events we are
intferested in - they are our engineering models.

A simple case is the sum of two random variables - it is
useful to derive the cumulative distribution function for such
a sum.

A more general case concerns monotonic functions of random

variables - we will also derive the cumulative distribution for
this case.

E'H Swiss Federal Institute of Technology



Random Variables

* The cumulative distribution function for the sum of two
random variables

Consider the sum Y= X + X,
and assume that we have f, , (X,%)

First we derive the density function for Y =X + X,

fy x, (X:%;)
fy (%)

assuming that X is given i.e. fxz‘xl(xz‘xl):

fv\xl(y‘xl) - fxz\xl(y_ Xl‘xl)

and we get £ (9= o (V=% 0) fi () = fi_x (V=%,%)

E"H Swiss Federal Institute of Technology



Random Variables

* The cumulative distribution function for the sum of two
random variables

The marginal probability density function for ¥ is now
achieved by integrating out over X, i.e.

f(Y)= [ o (Y=%0% )

For the case where X, and X, are independent we get the
so-called convolution integral

o (¥) = [ T, (Y= )y, (%)

m Swiss Federal Institute of Technology



Random Variables

The cumulative distribution function for functions of random
variables

Consider the more general problem of deriving the cumulative
distribution function for a function of a random variables i.e.
Y =¢g(X) where the probability distribution function of X

is given as F, (X)

If 9(X) is monotonically increasing and represents a one-to-one
mapping, a realization of Y is only smaller than y,

if the realization of X is smaller than x, where Xy = g‘l(yo)
F(y)=P(Y<y)=P(X<g™(y))

The cumulative distribution function for Y is then given by

R (¥) =F (g7 (y)

m Swiss Federal Institute of Technology



Random Variables

* The cumulative distribution function for functions of random
variables

starting now with F (y)=F, (g‘l(y))

oF, (g7(Y))
f —
we have v(Y) Y

(=30 0 (0" w1, ()= 60

m Swiss Federal Institute of Technology



Random Variables

The cumulative distribution function for functions of random
variables

In case the function g(x) is monotonically decreasing, a

realization of Y is only smaller than y, if the realization of X
is larger than x, , and in this case we have to change the

sign i.e. F (y)=—F (g7(y))

yielding 1, (y) :—g—; fy (%)

In the general case - for monotonically increasing or
decreasing functions there is thus
oX
fy(y)= fy (X)

m Swiss Federal Institute of Technology




Random Variables

* The cumulative distribution function for functions of random
variables

For the case where the components of a random vector Y=(Y.Y,.Y,)’

can be given as one-to-one mappings of monotonically increasing
or decreasing functions g,i=12.n of the components of a
random vector X=(X,X,,.X )"

in the form: Y =g (X)

there is f, (y)=|3|f,(x) ES X
Sy ”
with |J| being the absolute value J=| : L
of the determinant of 9%, 9%,
9, dn |

m Swiss Federal Institute of Technology
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Overview of Uncertainty Modeling

* Random variables and their characteristics

Models of real world Real World
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Overview of Uncertainty Modeling

* Random variables and their characteristics

I

P
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Design of rock-fall galleries
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Overview of Uncertainty Modeling

Random variables and their characteristics
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Tools in Uncertainty Modeling

* Engineering problems - also those involving uncertainty are
very often specific - unique !

Being able to solve such problems requires

- basic tools (physical, mathematical, natural sciences,
human sciences, engineering,...)

- innovation (being able to identify ways of solving problems)
- training !
Training is important because it provides experience.

By training we start to recognize patterns !

E'H Swiss Federal Institute of Technology



Tools in Uncertainty Modeling

* Pattern recognition helps to
identify:

the usefulness of solution
strategies from previous problems

the potential of the available
tools in a given context

E’H Swiss Federal Institute of Technology



Tools in Uncertainty Modeling

Random variables and their characteristics

Elc]=c

E[cX | = cE[X]

Ela+bX]=a+bE[X]
Elg,(X)+g,(X)]= Elg,(X)]+ E[g,(X)]

The expectation operator

The variance operator Var[c]=0
Var[cX | = c*Var[X]
Var[a+bX]=b?Var[X]

Jointly distributed random variables

F (X)=P(X <xNX,<xN..NX,<X,)

E"H Swiss Federal Institute of Technology



Tools in Uncertainty Modeling

* Random variables and their characteristics
Functions of random variables

- sum of two random variables
Y =X, +X,
fo(y) = [ i (y=x )y (%)

- non-linear function of random variables
Y= Q(X)

fy(y)= f(X)

m Swiss Federal Institute of Technology



Tools in Uncertainty Modeling

Random variables and their characteristics

Functions of random variables

Y=(,Y,,.Y)'

Y. =g(X), X =T%()

fy () =[3] (%) J=

E"H Swiss Federal Institute of Technology




Contents of Todays Lecture

* Random variables
- The Central Limit Theorem

- The Normal distribution
- The Log-Normal distribution

Stochastic Processes and Extremes
- Random sequences (Bernoulli trials)
- Binomial distribution

- Geometric distribution
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Random Variables

The Central Limit Theorem states:

The probability distribution function of a sum of a number of
random variables approaches the Normal (Gaussian)
distribution as the number becomes large

Y=X+X, +..+ X

_ ] 1 x=uY
f(x)== zﬂexp[ = )]

E"H Swiss Federal Institute of Technology |



Random Variables

* The Central Limit Theorem

Conditions for the validity of the theorem:
Y=X+X,+..+ X,

The sum should not be dominated by one or a few components

The statistical dependency between components should not be
strong

No requirements to the type of distribution of the
components

If the components have skew distributions the number
increases

E"H Swiss Federal Institute of Technology



Random Variables

Illustration:

A structural member is measured using a ruler.
- The ruler has limited length (2 m).
- The smallest unit on the ruler is 1 mm.

All measurements are rounded to the closest unit on the ruler.

Each measurement is subject to a measurement uncertainty
uniformly distributed in the range of +/- 0.5 mm.

We now consider the accumulated error associated with
measurements over lengths

-upto2m (one measurement)
- between 2 and 4 m (two measurements)
- between 6 and 8 m (four measurements)

- between 14 and 16 m (eight measurements)

E'H Swiss Federal Institute of Technology



Random Variables

Illustration:
N=1

Frequency
=
()
o

N T TS I TP L

Error
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Random Variables

The Normal distribution

The analytical form of the Normal distribution may be
derived by repeated use of the result regarding the
probability density function for the sum of two random
variables

The Normal distribution is very frequently applied in
engineering modeling when a random quantity can be assumed
to be composed as a sum of a number of individual
contributions: X.,i=12,.,n

A linear combinatign S of 7 Normal distributed random
variables  S=a+)aX is thus also a Normal distributed
random variable "~

E"H Swiss Federal Institute of Technology



Random Variables

The Normal distribution

The Normal distribution also results from
other considerations

The distribution of energy in an isolated
system

If the particles represent gas molecules at normal temperatures
inside a closed container, which of the illustrated configurations

came first?
[ X ]
[ ] [ ] LR X ]
. Time's |eee
. L arow
- <
[ ]
L ]
[ ]

If you tossed bricks off a truck, which kind of pile of bricks
would you more likely produca?

Disorder is
maore probable
than order.

Swiss Federal Institute of Technology
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Random Variables

* The Normal distribution

The accumulation of random movements

E'H Swiss Federal Institute of Technology



Random Variables

The Normal distribution:

In the case where the mean value is equal to zero and the
standard deviation is equal to 1 the random variable is said
to be standardized.

Standardized random variable

A

Standard Normal
_

-

Normal
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Random Variables

The Normal distribution:

In the case where the mean value is equal to zero and the
standard deviation is equal to 1 the random variable is said

to be standardized.

Y: X_IUX
O-X

Standardized random variable

\
fY(y>=¢<y>=ﬁexp(—%y2j

FY(y>=<I><y>=ﬁ | exp(—%xzjdx

-

E"H Swiss Federal Institute of Technology
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Random Variables

When the logarithm of a random variable Xi.e.

y= /”(X), y 2 N([ly,o-y)

is Normal distributed the random variable X is said to be
Log-Normal distributed

X : LN(LY)
1 [ 1(m-2Y B %
f (X)= X{ﬂvxp( 2( ; j J Ly —exp(ﬁ+7j
F, (X) :(ID(IH()?_/I) Oy =eXp[/1+%2j\/eXp(§'2)—l
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Random Variables

Where the Normal distribution follows from the sum of
random variables - Central Limit Theorem

the Log-Normal distribution follows from the product of
random variables

In(X, - X,---X,) = ln(ﬁ X.)= Zn:m(xi )

E"H Swiss Federal Institute of Technology



Random Variables

The Log-Normal distribution has the useful property that if
n

p-ITv
i=1

and all Y; are independent Log-Normal distributed random
variables with parameters 49 A and £=0 thenPis
also Log-Normal with parameters

n Ca ot [(mp-4Y
zpzizzl:aiﬂf, §p=§ai§i fp(p)_pgpm p( 2( S ]]

E"H Swiss Federal Institute of Technology



Random Variables

The Log-Normal distribution is often used to model

- uncertain parameters which cannot have negative
realizations

- fatigue lives
- steel and concrete resistance

- daily river flows

- whenever a random variable results as a product of several
random variables

m Swiss Federal Institute of Technology



Random Variables

2
. Uy =eX[ /1+£
Concrete compression strength 2
2
Oy =eX[] /1+§— JexpC*)—1
Probability of value 2
lower than 25 MPa U
TV, =2 = fexp@) 1= 0122 £ =012, 1= 348
1 24,4 " 3267
2 27.6
3 27.8
4 279 0.12
5 285
In(25)—3.48 0d "
1'1 - . 5 c
P (25):(1)( 0.12 j:o,mg o33 o
10 32.8 %
11 33.3 é 0.06 ~
12 B5 >
13 34.1| = o004
14 346 2
5[ 358 5,4
16 359
17 36.8
18 37.1 0 ‘ ‘ ‘ ‘ ‘
19 392 0 10 20 30 40 50 60
20 30.7 Concrete compression strength
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Random Variables

There exist a large
number of different
probability density and

cumulative distribution
functions:

Uniform
Normal
Log-normal
Exponential
Beta
Gamma

Distribution type Parameters | Moments
Uniform, a<Xx<b a+b
H=—-
1 a 2
o (X)=——
0= ) .
o=——
E X—a \/ﬁ
X) =
=22
Normal
u
1 1(x-uY
fX(X)_o'\/EeXp[_Z( o ) ] o>0
F (x)—Lf ex —I(H‘T dt
AN R I
Shifted Lognormal, X> ¢ %
2 y=e+exp(ﬂ+2j
£.(%) 1 exp I(III(X—S)—/IJ2 £ 0
= - >
X (x—e)\2m 2 4 %
£ o=exp| A+2— |exp({7) -1
In(x—¢€)—1 2
F(X)=0| —————
¢
Shifted Exponential, X> & 1
H=E+—
f, () = Aexp(~A(x—£)) £ A
A>0 1
Fo () =1-exp(-A(x—¢)) o=7
Gamma, x>0 p
bP p>0 #:B
f (X)= exp(—bx)x""!
I'(p) b>0
-
I'(bx, p
Fe(X) = ( )

I'(p)
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Small Example 1

We remember the convolution integral
which we used for establishing the
probability density function for the sum
of two random variables:

V=X +X,
¢ fy, (%)

fo(y) = [ fi (=% ) i ()b, ,‘
Let us see how easily this works . ?
x, (%

for two uniformly distributed random
variables:

m Swiss Federal Institute of Technology



Small Example 1

Assuming that the two random variables
are independent we can write the
convolution integral as:

f(y)= [ iy, (Y =%) fy ()0

fy, (%)

fy, (%)

1 b
" (b—a)(d—o) Iﬂ (y-x€[c;d]ydx
= 1 min(d,y-b)
- (b—a)(d —C)[ ]max(c’y_a) ’ a+cCc< yS b_|_d
0.3 a=4 03 -
c=2 =2

0.25 | . b=8 0.25 |

021 ,d=6 /\ 0.2

0.15 1 0.15

0.1 0.1 |

0.05 | 0.05 |
0 | |

0

0 o,
B ——
> (@)

ol ey

0 5 10 15 0
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Stochastic Processes and Extremes

* Random quantities may be “time variant” in the sense that
they take new values at different times or at new trials.

- If the new realizations occur at discrete times and have
discrete values the random quantity is called a random
sequence

failure events, traffic congestions, ...

- If the new realizations occur continuously in time and take
continues values the random quantity is called a random
process or stochastic process

wind velocity, wave heights, ...
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Stochastic Processes and Extremes

* Random sequences

- A sequence of experiments with only two possible and
mutually exclusive outcomes is called a Bernoulli trial

- Typically the outcomes of Bernoulli trials are denoted
successes or failures

If the probability of success in one trial is constant and
equal to p the probability density of ¥ successes in # trials,

i.e. p/(y) is given by:

(nj n!
n —
py(y)=[y]py(l— P, y=0]l2..n y) yl(n-y)

Binomial probability Binomial operator
density function

E"H Swiss Federal Institute of Technology



Stochastic Processes and Extremes

* Random sequences

- A sequence of experiments with only two possible and
mutually exclusive outcomes is called a Bernoulli trial

The Binomial cumulative distribution function then follows as:

1=0

R(y)=> mpi(l— D™, y=0]2,.n

E"H Swiss Federal Institute of Technology



Stochastic Processes and Extremes

* Random sequences

- A sequence of experiments with only two possible and
mutually exclusive outcomes is called a Bernoulli trial

Illustration:

Binomial probability density function for #=5 and p=0.15 and
p:05 mp=0.15 @ p=0.50

0.50 0.35
0.40] ] 0.30
0.25
0.20
0.15 - -
_ 0.10

0.05
o O 11 0

0.30

0.20

0.101

0

w

=1
w
o
—_
)
w
~
w
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Small Example 2
We remember that we can establish the probability
density function of a function of a random variable

through:

Y =9(X)

£ (Y) =[] £ (X
y

m Swiss Federal Institute of Technology



Small Example 2

Let us see how easily this works:

Y = X?

U

X =Y

f, (9 =2 1, (%) ox _ 9y _
dy dy oy
1 1

(V)= f,(JY)
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Stochastic Processes and Extremes

* Random sequences

The expected value and the variance of a binomially
distributed random variable Y is given by:

ElY|=np

Var [Y]=np(1- p)

E"H Swiss Federal Institute of Technology



Stochastic Processes and Extremes

Random sequences

The probability density function for the number of
(independent) trials before the first success can be given as:

b, (N =pl-p" Geometric probability density

and the corresponding cumulative distribution function is thus
R =2 K1-p)~ =1-(1-p)’
i=1

N

Geometric cumulative distribution

E"H Swiss Federal Institute of Technology



Small Example 3

We remember that we could establish the probability
density function of a vector of random variables ¥ which
were given as functions of a vector of random variables X

Y=(,Y,,.Y)'
X=(X},X,,. %) Y =g(X) X =1 (Y)
fy (1) =] f, (X) o ox]
y .
J= .
%
y .
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Small Example 3

Let us see how easily this approach can be applied for the

following problem:
Y, =X, + X,
Y, =X, X, =Y,

1 -1
J:{o 1} det(J) =1x1-0x1=1=|J|=1

‘ fY(yp yz): fx(y1 — Y yz)‘

E"H Swiss Federal Institute of Technology




Stochastic Processes and Extremes

The median of the geometric distribution provides
information in regard to how “long” we need to play a
game with probability p of winning per time unit.

Time units might be

- tosses (dices)

- years (earthquakes)

The median is defined through
P (N)=05=1—(1-p)"

All we need to determine is 7 as a function of p

E"H Swiss Federal Institute of Technology



Stochastic Processes and Extremes

The median of the geometric distribution provides
information in regard to how “long” we need to play a game
with probability p of winning per time unit.

Pi(N)=0.5=1-(1-p)"
We take the natural logarithm on both sides and get:
In(0.5) =nIn(1- p)

U
0.7=-nIn(1- p)

Now we use 'I'ha1' ’rhe natural Iogarl’rhm of

ln(l—p)——p+ p’ ——p +.. —Z( D2
0.7

U 0.7=nNp=>nN=—-
In(1-p)=—p forsmall p
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Stochastic Processes and Extremes

We can now apply this result:

50% chance of getting a 6 requires (n tosses):
n=0.7x6 =4 tosses

50% chance of getting two 6 (with 2 dices) requires:
n=0.7x 36 =25 tosses

50% chance experiencing an earthquake with an annual
probability of 0.001 requires (# years):

n=0.7 x 1000 = 700 years

E'H Swiss Federal Institute of Technology



Stochastic Processes and Extremes

* Random sequences

The expected value and the variance of a random variable
with a Geometrically distributed random variable are given

by:

E[N]=— If p is the annual probability of e.g. an
extreme earthquake E/N] is the return
VarN]= 1—2p period of such earthquakes
P

E"H Swiss Federal Institute of Technology
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Contents of Todays Lecture

Presentation on the result of the classroom assessment
What is a random variable?

The decision context!

What are we doing today?

Details will follow ©
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What is a random variable?

® |et us consider a very simple structural engineering
problem!

® \We want to design a steel beam — and assume — based on
experience that the design controlling load effect is the
midspan bending moment M
- the design variable being the moment of resistance W of
the cross section
- the load p and the yield stress s, of the beam are

associated with uncertainty b
p !
h
/7 /\ ; | | Mid span
~ d Cross-section
1
W = =bh?
E"H Swiss Federal Institute of Technology 6



What i1s a random variable?

® The moment capacity of the cross-section R, and the mid
span moment M are calculated as:

Ry =Wo,
R,, moment capacity of cross section

W moment of resistance
o, Yyield stress of the steel

1
M == pl
2P

M mid span moment
p load
| length of beam
W= Lpn?

6 «b>

T
pl T

A .

~ d Ccross-section

m Swiss Federal Institute of Technology



What i1s a random variable?

We can now establish a design equation as:

R, (b,h)-M =0 The engineer must now select W,
U or rather b and h such that the
1 design equation isfulfilled
W(b,h)o, 2 Pl >0

U But asp and o, are associated with
uncertainty — she/he must takethis
1 thUy 1 Pl >0 uncertainty into account !
p l b
77717 /7%7 i
) | ’; R
Mid span
Cross-section

E'" Swiss Federal Institute of Technology



What is a random variable?

® The uncertainty is accounted for by representing p and s,,

in the design equation as two random variables.P
.<—b->.__

. . !
P: Norma distributed: N(u,,0,) 777 7 L]

L % .
Mid span

x,: Normal distributed: N(z; .0y ) cross ection

The random variable P represents the random variability of
the load p during a period of one year

The random variable S, represents the random variability

of the steel yield stress s, - produced by an unknown steel
producer.

E"H Swiss Federal Institute of Technology



What is a random variable?

® As the load and yield stress are uncertain the design
equation cannot be fulfilled with certainty — independent
on the choice of b and h.

® However, it can be fulfilled with probability !

® The beam can be designed such that the probability of
failure is less or equal to a given number — the requirement
to safety.

E'H Swiss Federal Institute of Technology



What is a random variable?

® |Let us assume that the load and yield stress are given as:
P: N(io,0,)= N(L00kN, 20kN)
) N(y)Ey ,azy) = N(370mPa,15mPa)

we can now write the event of failure as:

\
1bhzzy—l Pl <0
6 4 3
U > [S=Z -——=PI<0 This is called a
3 2bh safety margin!
X, ——PI<0
2bh _

let us further assume that I=5000mm and b=50mm

® |et us now determine h such that the annual probability of
failure is equal to 10-3

E"H Swiss Federal Institute of Technology



What i1s a random variable?

® \We have already learned that a linear combination of
Normal distributed random variables is also Normal

distributed

The expected value of S is equal to:

3 05
2.0.05-h?""
3

Mg = /uzy -

2.005-h2""

=370 11, -5=370—

150000

h2

The variance of S is equal to:

2 2 2

3 2
O. =0, + (02
ST (2-0.05-h2j "

30

h?

2
=15° +( j . 20000% = 225+

3.6-10"

h4

The probability of failure is
now easily determined from
the standard Normal
cumulative distribution
function

P, (h) = cb(";#gf)h’)
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What is a random variable?

® Calculating the probability of failure as a function of h we
get: _ 4/ 0—#s(h)
P (h), P =0 o)
0.1 -
0.01 -
0.001
0.0001 -
0.00001 -
0.000001 -

0.0000001 ‘ ‘ | | | | —— | h
0 10 20 30 40 50 60 70 80 90 100

The height of the beam must thus be equal to 73mm!
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The decision context!

® Why uncertainty modeling?

Uncertain phenomenorn

[Data) =5

Random variables <:>
Random processes

Model estimation

f--l

Probabilistic model

L
Probabilities of events Consequences of eve@

e

Decision Making !
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What are we doing today?

We have already introduced random variables as a means
of representing uncertainties which we may quantify based
on observations — related to time frames from which we
have experience and observations!

INn many real problems of decision making we need to take
iInto account what might happen in the far future —
exceeding the time frames for which we have experience!
- 475 year design earthquake!

- 100 year storm/flood

- 100 year maximum truck load

- etc.. Thus we need to develop models which

can support us in the modeling of extremes
of uncertain/random phenomena !

E'H Swiss Federal Institute of Technology



What are we doing today?

® \We have already introduced random variables as a means
of representing uncertainties which we may quantify based
on observations.

® Often we use random variables to represent uncertainties
which do not vary in time:

- Model uncertainties (lack of knowledge)
- Statistical uncertainties (lack of data).

® Or we use such random variables to represent the random
variations which can be observed within a given reference
period.

E’H Swiss Federal Institute of Technology



What are we doing today?

Discrete event of flood

® In many engineering problems we need
to be able to describe the random
variations in time more specifically:

The occurrences of events at random

discrete points in time (rock-fall,

earthquakes, accidents, queues,

failures, etc.)

- Poisson process, exponential and
Gamma distribution

Continuous stress

The random values of events occurring variations due to waves

continuously in time (wind pressures,

wave loads, temperatures, etc.)

- Continuous random processes (Normal
process)

E"H Swiss Federal Institute of Technology



What are we doing today?

Extreme water level

® However, we are also interested In
modeling extreme events such as:

the maximum value of an uncertain
guantity within a given reference
period

- extreme value distributions

the expected value of the time till
the occurrence of an event

exceeding a certain severity Maximum wave load
- return period

E"H Swiss Federal Institute of Technology



What are we doing today?

® In summary we will look at:

- Random sequences (Poisson process)

- Waiting time between events (Exponential and Gamma
distributions)

- Continuous random processes (the Normal process)

- Criteria for extrapolation of extremes (stationarity and
ergodicity)

- The maximum value within a reference period (extreme
value distributions)

- Expected value of the time till the occurrence of an event
exceeding a certain severity (return period)

m Swiss Federal Institute of Technology



Random Seqguences

® The Poisson counting process is one of the most commonly
applied families of probability distributions applied in
reliability theory

The process N(t) denoting the number of events in a (time)
interval (t,t+At] is called a Poisson process if the following
conditions are fulfilled:

1) the probability of one event in the interval (t,t+At] is
asymptotically proportional to At.

2) the probability of more than one event in the interval
(t,t+At[ is a function of higher order of At for At—O0.

3) events in disjoint intervals are mutually independent.

E"H Swiss Federal Institute of Technology



Random Seqguences

® The Poisson process can be described completely by its
intensity n(t)

.1 .
v(t)=li ms P(oneevettin [t,t+At])

If Nn(t) = constant, the Poisson process is said to be
homogeneous, otherwise it is inhomogeneous.

The probability of n events in the time interval (O,t] is:

[jv(f)dT] t pt"
P () =~— exp{-] V(f)df) () =ree=n)
& 0 Homogeneous case !
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Random Seqguences

®* The mean value and variance of the random variable
describing the number of events in a given time interval
(O,t[ are given as:

E[N()]=Var[N()]=[v(z)dz  |nhomogeneous case!

E[N(t)|=Var[N(t)|=vt Homogeneous case !

m Swiss Federal Institute of Technology



Random Seqguences

The Exponential distribution

The probability of no events in a given time interval (O,t[
Is often of special interest in engineering problems

Nno severe storms in 10 years
no failure of a structure in 100 years
Nno earthquake next year

This probability is directly achieved as:

[Jt.v(r)dz'] t
P (t)=~" exp[—jv(r)dr)

o P (t) = exp(-11)

- epo V(T)df] Homogeneous case !

Swiss Federal Institute of Technology



Random Seqguences

® The probability distribution function of the (waiting) time
till the first event T, is now easily derived recognizing
that the probability of T, >t is equal to P,(t) we get:

Homogeneous case !
FTl (t) =1-R(t) FT1 () =1-exp(-11)
t
=1—exp(— j v(7)dr) I
0

Exponential cumulative distribution

Exponential probability density

l

i, () =vexp(-vt)
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Random Seqguences

The Exponential probability density and cumulative

distribution functions

Il
N

V
fT (t) 2.5 T

2

1.5 -

1 -

0.5

E"H Swiss Federal Institute of Technology
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Random Seqguences

The exponential distribution is frequently applied in the
modeling of waiting times

- time till failure f _
- time till next earthquake T (tl) =V exp(_Vt)

- time till traffic accident

The expected value and variance of an exponentially
distributed random variable T, are:

E[T,]= Nar[T,] =1/v

E"H Swiss Federal Institute of Technology



Random Seqguences

Sometimes also the time T till the n’th event is of interest in
engineering modeling:

- repair events
- flood events
- arrival of cars at a roadway crossing

IfT,, 1=1,2,..n are independent exponentially distributed
waiting times, then the sum T i1.e.:

T=T+TL+..+T _+T
follows a Gamma distribution:

(n-1)
f(t) = v(vt)"™ exp(=vt) This follows from repeated use
T (n=1)! of the result of the distribution
of the sum of two random variables

E"H Swiss Federal Institute of Technology



Random Seqguences

The Gamma probability density function

Il
N

| %4
fT (t) 2.5 n=1

2

1.5 _
Xponential

1

0.5 Gamma

0 I I I I I I I I I t
0 05 1 15 2 25 3 35 4 45 5
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Random Processes

® Continuous random processes

A continuous random process iIs a random process which
has realizations continuously over time and for which the
realizations belong to a continuous sample space.

30

29 Variations of;

28

7 water levels
wind speed

o \
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Al \// WA VWA Y rain fa
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22
21
20

Water level

0O 10 20 30 40 50 60 70 80 90 100
Time (days)

Realization of continuous scalar valued random process
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Random Processes

® Continuous random processes

The mean value of the possible realizations of a random
process is given as:

1 O =E[XO] = [ X f(x:0K
r —oo

Function of time !

The correlation between realizations at any two points in
time is given as:

R (tut,) = E[X(t) X (t,)] = j J X % (%3, t,) b

Auto-correlation function — refers to a scalar valued random process

m Swiss Federal Institute of Technology



Random Processes

Continuous random processes

The auto-covariance function is defined as:

Co () = E[(X () 25, (0NX() 4 1)
= [ [ 06— (0) O~ (6) Tt ek

for t,=t,=t the auto-covariance function becomes the
covariance function:

05 (1) = Cuu(t,) = R (1,8) — 25 (1)

oy (t) Standard deviation function

m Swiss Federal Institute of Technology



Random Processes

® Continuous random processes

A vector valued random process is a random process
with two or more components:

X(t) = (X4 (1), X, ()., X, (1)

with covariance functions:

Cxin (t,t) = | = J auto-covariance functions
E[(Xi (tl) — Hy (tl))(xj (tz)_luxj (tz))] | # J cross-covariance functions
The correlation coefficient function is defined as:

Cxixj (tl’tZ)
O, (tl) ' O-xj (tz)

pl X () X, (t,) ] =

m Swiss Federal Institute of Technology



Random Processes

e Normal or Gauss process

A random process X(t) is said to be Normal if:

For any set; X(t), X(tp),....X(L)
the joint probability distributions of X(t,), X(t,),...,X(t;)

iIs the Normal distribution.

E"H Swiss Federal Institute of Technology



Random Processes

e Stationarity and ergodicity

A random process is said to be strictly stationary if all its
moments are invariant to a shift in time.

A random process is said to be weakly stationary if the

first two moments i.e. the mean value function and the
auto-correlation function are invariant to a shift in time

Uy () =cst )

R (Lt)=f(,_t) - 'Weakly stationary

E"H Swiss Federal Institute of Technology



Random Processes

Stationarity and ergodicity

- A random process is said to be strictly ergodic if it is
strictly stationary and in addition all its moments may
be determined on the basis of one realization of the process.
- A random process is said to be weakly ergodic if it is weakly
stationary and in addition its first two moments may be
determined on the basis of one realization of the process.

The assumptions in regard to stationarity and ergodicity are
often very useful in engineering applications.

- If a random process is ergodic we can extrapolate

probabilistic models of extreme events within short reference
periods to any longer reference period.

E'H Swiss Federal Institute of Technology



Extreme Value Distributions

INn engineering we are often interested in extreme values
I.e. the smallest or the largest value of a certain quantity
within a certain time interval e.qg.:

The largest earthquake in 1 year
The highest wave in a winter season

The largest rainfall in 100 years

E’H Swiss Federal Institute of Technology



Extreme Value Distributions

We could also be interested in the smallest or the largest
value of a certain quantity within a certain volume or area
unit e.g.:

The largest concentration of pesticides in a volume of
soil

The weakest link in a chain

The smallest thickness of concrete cover

E’H Swiss Federal Institute of Technology



Extreme Value Distributions
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Extreme Value Distributions

If the extremes within the period T of an ergodic random
process X(t) are independent and follow the distribution:

xr (9

Then the extremes of the same process within the period:

Fra)
n-T

will follow the distribution:

R () =(Fr () .

E"H Swiss Federal Institute of Technology
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Extreme Value Distributions

Extreme Type | — Gumbel Max

When the upper tail of the probability density function falls
off exponentially (exponential, Normal and Gamma
distribution) then the maximum in the time interval T is
said to be Type | extreme distributed

fxr (X) =rexplo(x—u) —expta(x—u)))

FT (X) = exp-expea(xX—u)))

i —usd ., 0577216
X o o

c =_r_
X e 0(\/6

For increasing time
intervals the variance
IS constant but mean
value increases as:

— 6 I
Hygrex = My +;0'>qnax n(n)
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Extreme Value Distributions

Extreme Type Il — Frechet Max

When a probability density function is downwards limited
at zero and upwards falls off in the form

F, (=1 ﬁ(;l()k

then the maximum in the time interval T is said to be Type
1l extreme distributed

U K Mean value and
F)Z“;ﬁx(x) :exp(_(_j ) standard deviation
: X 1
k1 k o = uri—-)
o~ k(U u ' K
fyr (X)=—(—j exp({—j ) 2. .. 1
ul x X O e =UZ[F(1—E)—F (1—E)}
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Extreme Value Distributions

Extreme Type Il — Weibull Min

When a probability density function is downwards limited
at € and the lower tail falls off towards € in the form

F(X) =c(x—&)

then the maximum in the time interval T is said to be Type
11l extreme distributed

K
m'” (x) 1-exp| — X~ & Mean value and
u—¢& standard deviation

Hyrin = E+ (U= @+ %)

min k (x-e\" x—g\"
fyr (X) = ( ) exp[—(j j 5 1
U-&\u-¢ U-¢ 02y = (U—¢) [r(1+E)—r2(1+E)}
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Return Period

The return period for extreme events T; may be defined as:

Example:

Let us assume that - according to the cumulative
probability distribution of the annual maximum traffic load
- the annual probability that a truck load is larger than 100
ton is equal to 0.02 — then the return period of such heavy

truck events is:

T=1 since we speak for annual probability of the
extreme load event

E,H Swiss Federal Institute of Technology
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Contents of Today‘s Lecture

Presentation on the result of the classroom assessment

Catching up with the lecture from last time
- Continuous random processes
- Extremes of random processes

Overview of Estimation and Model Building
Probability Distribution Functions in Statistics

Estimators for Sample Descriptors — Sample Statistics
- statistical characteristics of the sample average

- statistical characteristics of the sample variance

- confidence intervals on estimators
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Random Processes

® Continuous random processes

A continuous random process iIs a random process which
has realizations continuously over time and for which the
realizations belong to a continuous sample space.
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Realization of continuous scalar valued random process
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Random Processes

® Continuous random processes

The mean value of the possible realizations of a random
process is given as:

1 O =E[XO] = [ X f(x:0K
r —oo

Function of time !

The correlation between realizations at any two points in
time is given as:

R (tut,) = E[X(t) X (t,)] = j J X % (%3, t,) b

Auto-correlation function — refers to a scalar valued random process
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Random Processes

Continuous random processes

The auto-covariance function is defined as:

Co () = E[(X () 25, (0NX() 4 1)
= [ [ 06— (0) O~ (6) Tt ek

for t,=t,=t the auto-covariance function becomes the
covariance function:

05 (1) = Cuu(t,) = R (1,8) — 25 (1)

oy (t) Standard deviation function
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Random Processes

® Continuous random processes

A vector valued random process is a random process
with two or more components:

X(t) = (X4 (1), X, ()., X, (1)

with covariance functions:

Cxin (t,t) = | = J auto-covariance functions
E[(Xi (tl) — Hy (tl))(xj (tz)_fuxj (tz))] | # J cross-covariance functions
The correlation coefficient function is defined as:

Cxixj (tl’tz)
O, (’[1)'0-xj (tz)

pl X () X, (t,) ] =
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Random Processes

e Normal or Gauss process

A random process X(t) is said to be Normal if:

for any set; X(t), X(t),....X(L)
the joint probability distribution of X(t,), X(t,),...,X(t;)

iIs the Normal distribution.

E"H Swiss Federal Institute of Technology 7/ 40



Random Processes

e Stationarity and ergodicity

A random process is said to be strictly stationary if all its
moments are invariant to a shift in time.

A random process is said to be weakly stationary if the

first two moments i.e. the mean value function and the
auto-correlation function are invariant to a shift in time

Uy () =cst )

R (Lt)=f(,_t) - 'Weakly stationary

E"H Swiss Federal Institute of Technology 8 / 40



Random Processes

Stationarity and ergodicity

- A random process is said to be strictly ergodic if it is
strictly stationary and in addition all its moments may
be determined on the basis of one realization of the process.
- A random process is said to be weakly ergodic if it is weakly
stationary and in addition its first two moments may be
determined on the basis of one realization of the process.

The assumptions in regard to stationarity and ergodicity are
often very useful in engineering applications.

- If a random process is ergodic we can extrapolate

probabilistic models of extreme events within short reference
periods to any longer reference period.

E"H Swiss Federal Institute of Technology 9/ 40



Extreme Value Distributions

INn engineering we are often interested in extreme values
I.e. the smallest or the largest value of a certain quantity
within a certain time interval e.qg.:

The largest earthquake in 1 year
The highest wave in a winter season

The largest rainfall in 100 years

E'H Swiss Federal Institute of Technology 10/ 40



Extreme Value Distributions

We could also be interested in the smallest or the largest
value of a certain quantity within a certain volume or area
unit e.g.:

The largest concentration of pesticides in a volume of
soil

The weakest link in a chain

The smallest thickness of concrete cover

E'H Swiss Federal Institute of Technology 11 / 40



Extreme Value Distributions
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Extreme Value Distributions

If the extremes within the period T of an ergodic random
process X(t) are independent and follow the distribution:

max
xT (X)
Then the extremes of the same process within the period:
FLx)
n-T

will follow the distribution:

R () =(Fr () .

E"H Swiss Federal Institute of Technology 13 / 40



Extreme Value Distributions

Extreme Type | — Gumbel Max

When the upper tail of the probability density function falls
off exponentially (exponential, Normal and Gamma
distribution) then the maximum in the time interval T is
said to be Type | extreme distributed

fxr (X) =rexplo(x—u) —expta(x—u)))
Fer (X) =expl-expa(x-u)))

% 0.577216 For increasing tir_ne
U o =U+—==U+ intervals the variance
T o 04 iIs constant but the mean
value increases as:
O e = T 6
X max - _ vV
™ a6 Hges = s+~ Oy In(n)
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Extreme Value Distributions

Extreme Type Il — Frechet Max

When a probability density function is downwards limited
at zero and upwards falls off in the form

F, (=1 ﬁ(;l()k

then the maximum in the time interval T is said to be Type
1l extreme distributed

U K Mean value and
F)Z“;ﬁx(x) :exp(_(_j ) standard deviation
: X 1
k1 k o = uri—-)
o~ k(U u ' K
fyr (X)=—(—j exp({—j ) 2. .. 1
ul x X O e =UZ[F(1—E)—F (1—E)}
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Extreme Value Distributions

Extreme Type Il — Weibull Min

When a probability density function is downwards limited
at € and the lower tail falls off towards €in the form

F(X) =c(x—&)

then the minimum in the time interval T is said to be Type
11l extreme distributed

K
m'” (x) 1-exp| — X~ & Mean value and
u—¢& standard deviation

Hyrin = E+ (U= @+ %)

min k (x-e\" x—g\"
fyr (X) = ( ) exp[—(j j 5 1
U-&\u-¢ U-¢ 02y = (U—¢) [r(1+E)—r2(1+E)}

E"H Swiss Federal Institute of Technology
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Return Period

The return period for extreme events T, may be defined as:

o1
(1= Fr ()

Example:

Let us assume that - according to the cumulative
distribution function of the annual maximum traffic load -
the annual probability that a truck load larger than 100 ton
Is equal to 0.02 — then the return period of such heavy
truck events is:

1 nzi:SOyeers

=nNT=—=>=
0.02 1.0.02
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Overview of Estimation and Model Building

® How do engineers establish knowledge

b/l

Real world 1z E &g
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Overview of Estimation and Model Building

Different types of information is used when
developing engineering models

- subjective information
- frequentististic information

Subjective

- Physical understanding
- Experience

- Judgement

\ 4

Frequentistic
- Data

Distribution family

Distribution
parameters

E"H Swiss Federal Institute of Technology
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Overview of Estimation and Model Building

Model building may be seen to consist of five steps

1) Assessment and statistical guantification of the
available data

2) Selection of distribution function
3) Estimation of distribution parameters
4) Model verification

5) Model updating

E'H Swiss Federal Institute of Technology 20 / 40



Probability Distribution Functions in Statistics

In the classical statistical theory a number of
probability distribution functions which may all be
derived from the normal distribution function are
repeatedly used for assessment and testing
purposes.

These derived probability distribution functions are
the :

» Chi-square distribution
> Chi-distribution

» t-distribution

» F-distribution

E"H Swiss Federal Institute of Technology 21/ 40



Probability Distribution Functions in Statistics

The Chi-square (%) distribution
When X.,i=12..n

are standard Normal distributed and independent
random variables then the sum of the squares of
the random variables i.e.

Y, :Zn:XiZ
i=1

Is said to be Chi-square distributed

It is seen that the Chi square distribution is
regenerative i.e. sums of Chi-square distributed
random variables are also Chi-square distributed

m Swiss Federal Institute of Technology 22 / 40



Probability Distribution Functions in Statistics

The Chi-square (r°) distribution

Consider the simplest case with n=1, i.e. 1 Y = X2

Then we can write
R, (Y) =P(Y, <y) =P(X*<y) =P~y < X <+ly)
=F (Jy)-F (~/y) =F (/) -~ F (Jy))=

=2F, (\/y)-1
and we get
_dR(Y) _d@R(y)-D - 1 1
fi (y)= - Y f ()= ﬁyexp( )

m Swiss Federal Institute of Technology 23/ 40



Probability Distribution Functions in Statistics

The Chi-square probability density function is given as

(n/2-1)
f =—" ex /2), =0
Y, (yn) 2n/21_,(n/ 2) peyn ) y
The mean value is t, =N < Degr ees of freedom
The variance O'?n =2n
I(X) =je_ttx_1dt is the complete Gamma function
0

for large n the Chi-square distribution converges to a
Normal distribution — Central Limit Theorem

E"H Swiss Federal Institute of Technology 24 / 40



Probability Distribution Functions in Statistics

The Chi-square probability density function

Chi-square probability density function

probability density
o
S

0.02

0 20 40 60 80 100 120 140 160

X
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Probability Distribution Functions in Statistics

The Chi () distribution

When a random variable £ is given as the square

root of a Chi-square distribtted random variable
l.e.

2%,

It is said to be Chi-distributed witn n degrees of
freedom

E"H Swiss Federal Institute of Technology 26 / 40



Probability Distribution Functions in Statistics

The Chi (X)) distribution

Assume that Y, is Chi-square distributed with n

degrees of freedom

If Z=,/Y then we can write
F,(9=P(Z<2=P(Y, <9 =P(Y,<Z)=F, (Z)

and we get

dr, (2 dR (Z) , Z
f(D)=—HL=—T =27f (Z°) =
2(2) dz dz w(Z) 2"/ 2)

m Swiss Federal Institute of Technology 27 / 40
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Probability Distribution Functions in Statistics

The Chi probability density function is given as

(n-1)

f (2= expz°/2), z>0
. I((n+1)/2)
=2
The mean value is y7a n/2)
. ((n+1)/2)
The variance o’=n-2
i I*(n/?2)

E"H Swiss Federal Institute of Technology 28 / 40



Probability Distribution Functions in Statistics

The Chi probability density function

Chi probability density function

probability density
o
w
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Probability Distribution Functions in Statistics

The (Student‘s) t distribution

When a random variable S is given as standard Normal
distributed, devided by a Chi distributed random
variable i.e.

o X _ X _X_nX

S 202

n
It is said to be t-distributed witn n degrees of freedom

For large n the t-distribution converges to a Normal
distribution.

m Swiss Federal Institute of Technology 30 / 40



Probability Distribution Functions in Statistics

The (Student‘s) t probability density function is
given as

o(n+D/2) (, )
f = — oo <S< oo
s(9 Tz T2 (1+ nj , <s<

The mean value is zero

The variance  o0i=——

E"H Swiss Federal Institute of Technology 31 / 40



Probability Distribution Functions in Statistics

The (Student‘s) t probability density function

t-distribution

0O-AL
U.aJ

probability density

6 -4 -2 0 2 4 6
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Probability Distribution Functions in Statistics

The F distribution

When a random variable Q is given as the ratio
between two Chi-square distributed random
variables i.e.

Y

_n
Ynz

Q

It Is said to be F-distributed witn parameters n,, n,

E"H Swiss Federal Institute of Technology 33/ 40



Probability Distribution Functions in Statistics

The F probability density function is given as

T((n, +n,)/ 2)q" 2" (L4 )"

(= r(n/2)T(n,/2)

The mean value is l;= —t
, —

The variance o2 = 2n,(n +n,—2)

° nn,-2*n,-4’

m Swiss Federal Institute of Technology
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Probability Distribution Functions in Statistics

The F probability density function

F-distribution
1.6
—n1=15, n2=20
c 141 ——n1=5,n2=10
(@)
3 1.2 - ——n1=3, n2=5
5
y— 1 |
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Probability Distribution Functions in Statistics

Summary of derived probability density functions:

Distribution Type When

» Chi-square distribution sum of squared N(O;1)

> Chi-distribution square root of Chi-square
» t-distribution ratio of N(O;1) to Chi/n
» F-distribution ratio of two Chi-square
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Probability Distribution Functions in Statistics

Example Chi distribution

In the field measurements have been performed of
a and b with the purpose to assess c

b

E"H Swiss Federal Institute of Technology 37 / 40



Probability Distribution Functions in Statistics

Example Chi distribution

b
It Is assumed that the measurements of a and b are

performed with the same absolute error e which is
assumed to N(O; o, ) i.e. Normal distributed,
unbiased and with standard deviation o,.

Determine the statistical characteristics of the
error in ¢ when this is assessed using the
measurements of a and b.
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Probability Distribution Functions in Statistics

c

Example Chi distribution

b
Knowing that the error propagates according to

8C=\/8§+8,§

we realize that

2 2
&_&a) (&
O, \/Gg O,

Is Chi distributed with 2 degrees of freedom
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Probability Distribution Functi

a

Example Chi distribution

E
The probability density function of Z=—

E
can thus be determined from

f,(2) = zexp0.57°), z>0

yielding  f.(e)="0exp05?/0?), & 20
¢ (o)

€ 1

dg

oy T (97(Y)

where it was used that for Y=9(X) we have f (y)=

E"H Swiss Federal Institute of Technology 40 / 40



Estimators for Sample Descriptors

The first step when new data are achieved is to
assess the data

n Xn Fx(Xn)
1 24.4] 0.047619048
2 s Mean value Any function of
o) 3 27.8] 0.142857143 sqmples:
oo 7 27.9] 0.19047619
"6 5 285] 0.238095238
6 30.1] 0.285714286 .
> 7 30.3 0333333333 w Variance Sqmple
o 8 317 0.380952381] L.
0 9 32.2] 0.428571429 characteristics
-8 10 32.8]_0.476190476 %
11 33.3] 0523809524 .
(o 12 33.5] 0571428571 Median
~ 13 34.1] 0.619047619 or
(] 14 34.6|_0.666666667)
- 15 35.8] 0714285714  *
] 16 35.9[ 0.761904762]  * ..
fa 17 36.8| 0.80952381 Sample statistics
18 37.1] 0.857142857
19 39.2| 0.904761905
20 30.7| 0.952380952

etfc
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Estimators for Sample Descriptors

We want to have a look at the statistical characteristics
of such sample statistics — in order to better
understand the information they contain

Assume we have a yet unknown sample of experiment
outcomes

X, 1=12.n
generated by the cumulative distribution functions

Fy (X,0) =Fy(x,p),i=12.n

then we can write the sample statistics for the

—_ 1<
sample mean X:EZXi
i=1
sample variance Szzéi(xi Ry
N3
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Estimators for Sample Descriptors

The sample statistics are random variables because
the experiment outcomes have not yet been realized
— however we can evaluate the expected value and
the variance of the sample statistics, i.e. for the
sample mean we get :

E[X]:Eﬁi;x} ZE[X —n Uy =y

Var| X|=V { Zx} {Zx} iZ:l:Var[Xi]

1

:FEE[(Xi —Hy) ]:Ho'i
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Estimators for Sample Descriptors

The probability density function for the sample
average can be assumed to be a Normal distribution
— Central Limit Theorem
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Estimators for Sample Descriptors

For the sample variance we get:

The expected value of the
sample variance is thus
different from the
variance — biased !
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Estimators for Sample Descriptors

We can however easily identify an unbiased
estimator for the variance as:

Not n as in the sample variance !
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Estimators for Sample Descriptors

The goodness of an estimator cannot be judged upon
whether it is biased or not alone — other properties are
Important such as

- efficiency least mean square error E[(s?-s2)]

- invariance h(@) =h(6)

- consistent converge to the true values

- sufficiency make maximum use of the data

- robustness sensitivity to omission of individual
data

we will not consider these in detail — just remember that
these considerations may also be important
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Confidence Intervals on Estimators

In the previous we have seen that estimators of e.g.
the mean value are associated with uncertainty and we
have established expressions to determine their mean
value and variance —

Based on this information we are also able to
determine so called confidence intervals on the

estimators.

For the case where it is assumed that the variance is
known and only the mean value is uncertain the so-
called double sided and symmetrical confidence

interval on the mean value is given by

1

P _ka/Z <ﬂ<

O-Xﬁ

ka/ 2

= P|: alzo-x \/* <X- —Hy < /2O-x %} =l-o
n
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Confidence Intervals on Estimators

INn words the confidence interval defines an interval

within which e.g. the true mean value will lie with a
probability l-

1
F{ aIZO-X \/* <X- —Hy < /2O-x \/ﬁ}: —

For the case where a= 0.05, n = 16 and ¢ = 20 we
get

k :@{1—%:@{ _o_o5j 196
2 2

Pl-98< X —u, <9.8/=095
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Confidence Intervals on Estimators

If we then observe that the sample mean is equal to
e.g. 400 we know that with a probability equal to 0.95
the true mean will lie within the interval

P| 98<X-u, <98|=0%

Typically confidence intervals are considered for mean
values, variances and characteristic values — e.g. lower
percentile values.

Confidence intervals represent/describe the
(statistical) uncertainty due to lack of data.
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Confidence Intervals on Estimators

The number of available data has a significant
Importance for the confidence interval - using the
same example as in the previous the confidence
interval depends on n as shown below

50

40 -

30 1 i —- Lower bound
20 | : ‘ Upper F)ound

10 -

0 -
-10 -

=
- - ___:_—-
— m w— m -
- —
- —

Confidence interval

-20 - -
-30 - .
2077

-50

1 2 3 4 5 6 7 8 9 10
Number of experiments
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Contents of Todays Lecture

Overview of Estimation and Model Building
A short Summary of the Previous Lecture
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Overview of Estimation and Model Building

Different types of information is used
when developing engineering models

- subjective information
- frequentistic information

Subjective

- Physical understanding
- Experience

- Judgement

\ 4

Frequentistic
- Data

Distribution family

Distribution parameters

E"H Swiss Federal Institute of Technology
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A Short Summary of the Previous Lecture

® Continuous random processes

A continuous random process iIs a random process which
has realizations continuously over time and for which the
realizations belong to a continuous sample space.

30

29 Variations of;

28

7 water levels
wind speed

o \

AN A e A A M |
Al \// WA VWA Y rain fa
23 v W v ' V
22
21
20

Water level

0O 10 20 30 40 50 60 70 80 90 100
Time (days)

Realization of continuous scalar valued random process
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A Short Summary of the Previous Lecture

If the extremes within the period T of an ergodic random
process X(t) are independent and follow the distribution:

Fo 7 (X) = P(mTax X <X)
then the extremes of the same process within the period:

N - T will follow the distribution:

FI™ (X) = P({m{:\x X < x}ﬂ{mT?x X < x}...ﬂ{mT?x X < XD

- P yfmaex <]

P(max X <L x)
i=1 T

( Fy7 (X))n

E"H Swiss Federal Institute of Technology



A Short Summary of the Previous Lecture

If the extremes within the period T of an ergodic random
process X(t) are independent and follow the distribution:

Fo 7 (X) = P(mTax X <X)
then the extremes of the same process within the period:

N - T will follow the distribution:

FI™ (X) = P({mT?x X < x}ﬂ{mT?x X < x}...ﬂ{mT?x X < XD

Fx)

= P[i(j{mﬁx X < X}J o

P(maxX Sx)
i=1 T

( F7 (X) )n b

E"H Swiss Federal Institute of Technology 5
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A Short Summary of the Previous Lecture

Based on independent Normal distributed random
variables we could derive the following distributions:

Distribution Type When

» Chi-square distribution sum of squared N(O;1)

» Chi-distribution square root of Chi-square
> t-distribution ratio of N(O;1) to Chi/n
» F-distribution ratio of two Chi-square

E"H Swiss Federal Institute of Technology 7



Probability Distribution Functions in Statistics

Example Chi distribution

In the field, measurements have been performed of
a and b with the purpose to assess c

b

E"H Swiss Federal Institute of Technology



Probability Distribution Functions in Statistics

Example Chi distribution

b
It Is assumed that the measurements of a and b are

performed with the same absolute error € which is
assumed to N(O; o, ) i.e. Normal distributed,
unbiased and with standard deviation o..

Determine the statistical characteristics of the
error in ¢ when this is assessed using the
measurements of a and b.

E"H Swiss Federal Institute of Technology



Probability Distribution Functions in Statistics

c

Example Chi distribution

b
Knowing that the error propagates according to

8C=\/8§+8,§

we realize that

2 2
&_&a) (&
O, \/Gg O,

Is Chi distributed with 2 degrees of freedom

E"H Swiss Federal Institute of Technology 10



Probability Distribution Functions in Statistics

C

Example Chi distribution

g P

The probability density function of Z=—
o)

E
can thus be determined from

f,(2) = zexp(-0.5z°), z>0

yielding f,. (&) =iexpeO.ng/aj), £.20
Cc Gg

m Swiss Federal Institute of Technology
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Estimators for Sample Descriptors

The first step when new data are achieved is to
assess the data

n Xn Fx(Xn)
1 24.4] 0.047619048
2 s Mean value Any function of
o) 3 27.8] 0.142857143 sqmples:
oo 7 27.9] 0.19047619
"6 5 285] 0.238095238
6 30.1] 0.285714286 .
> 7 30.3 0333333333 w Variance Sqmple
o 8 317 0.380952381] L.
0 9 32.2] 0.428571429 characteristics
-8 10 32.8]_0.476190476 %
11 33.3] 0523809524 .
(o 12 33.5] 0571428571 Median
~ 13 34.1] 0.619047619 or
(] 14 34.6|_0.666666667)
- 15 35.8] 0714285714  *
] 16 35.9[ 0.761904762]  * ..
fa 17 36.8| 0.80952381 Sample statistics
18 37.1] 0.857142857
19 39.2| 0.904761905
20 30.7| 0.952380952

etfc

E'" Swiss Federal Institute of Technology 12



Estimators for Sample Descriptors

We want to have a look at the statistical characteristics
of such sample statistics — in order to better
understand the information they contain

Assume we have a yet unknown sample of experiment

outcomes X., 1=12,..n

generated by the cumulative distribution functions

Fy. (%,P) = Fy (x,p),i=12,.n

then we can write the sample statistics for the

sample mean sample variance
- 1 1L —
X==>X S =% —X)?
N i=1 n i=1

m Swiss Federal Institute of Technology 13



Estimators for Sample Descriptors

The sample statistics are random variables,

because the experiment outcomes have not yet been
realized —

however we can evaluate the expected value and the

variance of the sample statistics, 1.e. for the sample
mean we get :

E"H Swiss Federal Institute of Technology 14



Estimators for Sample Descriptors

The probability density function for the sample
average can be assumed to be a Normal distribution
— Central Limit Theorem

m Swiss Federal Institute of Technology
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Estimators for Sample Descriptors

For the sample variance we get:

E'H Swiss Federal Institute of Technology



Estimators for Sample Descriptors

We can however easily identify an unbiased
estimator for the variance as:

e _ N
Sjnblased n—l

n (1 —. 5
:E(Eg(xi —X) j

1 & S\
:Eé(xi - X)

E"H Swiss Federal Institute of Technology
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Confidence Intervals on Estimators

INn the previous we have seen that estimators of e.g.
the mean value are associated with uncertainty and we
have established expressions to determine their mean
value and variance.

Based on this information we are also able to
determine so called confidence intervals on the
estimators.

Confidence intervals may be understood as intervals
within which e.g. the mean value can be found

Confidence is expressed Iin terms of probability

E"H Swiss Federal Institute of Technology 18



Confidence Intervals on Estimators

We may e.g. establish a confidence interval for the
mean value.

For the case where it Is assumed that the mean value iIs
uncertain and the variance is known the so-called

double sided and symmetrical confidence interval on
the mean value is given by

Sample aver age
P 9 True mean

X—-u 1
ol 2 1 ol 2 |: /2™ X / X /2 X /n:|

Known std. dev. Sample size

Significance level
E"H Swiss Federal Institute of Technology 19



Confidence Intervals on Estimators

In words: the confidence interval defines an interval

within which the sample average will be located with
a probability 1-«o

'{ y"Xﬁ/X “X\ "ﬂ -

Known std. dev. True mean Samplesize
Sample average

The confidence interval may be determined using the
assumption that the mean value is Normal
distributed whereby there is:

k =c1>—1(1—3‘j=q>-1( —O—Oﬂ 1.96
2 2

E"H Swiss Federal Institute of Technology 20



Confidence Intervals on Estimators

For the case where o= 0.05, n = 16 and g = 20 we
get

Pl _1.96< 2% .196|=1-0.05

Jn

P|-9.8< X -1, <9.8|=0.95

m Swiss Federal Institute of Technology 21



Confidence Intervals on Estimators

® |If we then observe that the sample mean is equal to
e.g. 400 we know that with a probability equal to 0.95
the true mean will lie within the interval

P| -9.8<X -1, <98|=095

® Typically confidence intervals are considered for mean
values, variances and characteristic values — e.g. lower
percentile values.

® Confidence intervals represent/describe the
(statistical) uncertainty due to lack of data.

E’H Swiss Federal Institute of Technology 22



Confidence Intervals on Estimators

The number of available data has a significant
Importance for the confidence interval - using the
same example as in the previous the confidence
interval depends on n as shown below

50

40 -

30 1 i —- Lower bound
20 | : ‘ Upper F)ound

10 -

0 -
-10 -

=
- - ___:_—-
— m w— m -
- —
- —

Confidence interval

-20 - -
-30 - .
2077

-50

1 2 3 4 5 6 7 8 9 10
Number of experiments
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Short Summary of Previous Lecture

In the previous lecture we looked at:

Estimators for Sample Descriptors

Confidence Intervals on Estimators

Fx(%n)

24.4

0.047619048,

27.6

0.095238095)

27.8

0.142857143

27.9

0.19047619

28.5

0.238095238,

30.1

0.285714286

30.3

0.333333333,

317

0.380952381

32.2

0.428571429

32.8

0.476190476)

33.3

0.523809524

33.5

0.571428571]

34.1

0.619047619

34.6

0.666666667|

35.8

0.714285714

35.9

0.761904762,

Data/observations

36.8

0.80952381

37.1

0.857142857|

39.2

0.904761905)

8|6[5[N|5|5|RIGIR[E[S|o|o|~|o|als |w|n]|

39.7

0.952380952,

m Swiss Federal Institute of Technology

\

i Mean value

etfc

>~

Any function of
samples:

Sample
characteristics

or

Sample statistics



Short Summary of Previous Lecture

Sample descriptors are simply e.g.
The sample mean value

The sample variance

What did we learn?

The sample descriptors are associated with uncertainty
due to statistical uncertainty (epistemical uncertainty)

E"H Swiss Federal Institute of Technology



Short Summary of Previous Lecture

The sample mean value is an unbiased descriptor

—E
—_——
- - -4

— - -5

n

v ]| o |- xSl
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Short Summary of Previous Lecture

The sample variance is biased !

E'H Swiss Federal Institute of Technology



Short Summary of Previous Lecture

® Due to the uncertainty associated with the descriptors
(e.g. sample mean) we dont know their exact value

® \We can however determine intervals where we can find
them with a given probability

These intervals we call confidence intervals!

Sample averai;e/ True mean
P _ka/2< /'lx <k —P|: a/2O-X \/*<X My < /2O-x %}: -
n
Oy f
Known std. dev. vQplesize

Significance level
E"H Swiss Federal Institute of Technology



Short Summary of Previous Lecture

The number of available data has a significant
Importance for the confidence interval - using the
same example as in the previous the confidence
interval depends on n as shown below

— -‘ - Lower bound

Upper bound

- o - ol = —— s
o -

Confidence interval

2

1 2 3 4 5 6 7 8 9 10
Number of experiments
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Overview of Estimation and Model Building

Different types of information is used
when developing engineering models

- subjektive information
- frequentististic information

Subjektive
- Physical understanding

- Experience
- Judgement

—

\ 4

- Data

Frequentistic \

v

Distribution family

Distribution
parameters

Probabilistic model

E"H Swiss Federal Institute of Technology




Testing for Statistical Significance

Engineering dilemma :

Draw simple conclusions based on limited data with a high
degree of variability —

E.g.: Make a few ,,on site* tests to verify a calculation
model of the soil strength characteristics

Use observations of traffic crossing a bridge to
check if design traffic volume assumptions are

valid

Collect ground water ,,samples* to verify that the
water is of drinking quality

E’H Swiss Federal Institute of Technology 10



Testing for Statistical Significance

It is important that such conclusions are drawn on a basis
which is consistent and transparent — i.e. the conclusions
should reflect the evidence (data) and a given formalism in
regard to what evidence triggers which conclusions

One highly utilized and useful formalism for supporting
such conclusions is to

1 Formulate hypothesis

2 Test hypothesis

We shall have a look into this approach is some detail In
the following

E'H Swiss Federal Institute of Technology
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Testing for Statistical Significance

1 The first step is to formulate a null-hypothesis - H, e.g.
postulating that a sample statistic (e.g. sample mean) is
equal to a given value

2 The next step is to formulate an operating rule on the basis
of which the null-hypothesis can either be accepted or
rejected — given the evidence (test results) — such an
operating rule is often defined by an interval D within
which the observed sample statistic has to be in — for the
null-hypothesis to be accepted - rejecting the null-
hypothesis Hy corresponds to accepting the alternate H,
hypothesis

3 Select a significance level a for conducting the test — where
a is the probability that the hypothesis will be rejected
even though it is true (Type I error) — in this way a also
influences the probability that the null-hypothesis is
accepted even though it is false (Type 1l error)

E’H Swiss Federal Institute of Technology 12



Testing for Statistical Significance

4 Calculate the value of D corresponding to a — calculate also
If relevant the probability of performing a Type 1l error

5 Perform the planned tests and evaluate the observed
sample statistic — check if the null-hypothesis should be
rejected or accepted

6 Given that the null-hypothesis is not supported by the
evidence (data) the null-hypothesis is rejected at
significance level a — otherwise it is accepted.

E'H Swiss Federal Institute of Technology
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Testing for Statistical Significance

The hypothesis testing procedure may be visualized as

follows

Postulate
Null-Hypothesis

Formulate
operating rule

Select
significance

/)

level

Perform test and

Assess
acceptance
criteria

check for

acceptance

/)

m Swiss Federal Institute of Technology

Conclude at
choosen
significance
level
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Testing for Statistical Significance

Typical Tests in Engineering

Testing of the mean — with known variance

Testing of the mean — with unknown variance

Testing of the variance

- Test of two or more data sets

E"H Swiss Federal Institute of Technology
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Testing for Statistical Significance

Example — chloride induced corrosion of concrete
structures 8 T

Consider an example where we want to verify whether the
chloride concentration on the surface of a concrete structure
IS in compliance with our design assumptions

E'H Swiss Federal Institute of Technology
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Testing for Statistical Significance
Null-hypothesis

Testing of the mean — with known vanian

The design assumptfons: mean surface chloride
concentration is 0.3%0

we assume that we know the std. dev. of the surface
chloride concentration — equal to 0.04%0

The operating rule is formulated as:
Accept the Null-hypothesis at the a-level if

03-A<X<03+A

m Swiss Federal Institute of Technology 17



Testing for Statistical Significance

Testing of the mean — with known variance

The acceptance criteria may be determined for given ¢ by

P03-A<X <03+A)=1-a

Choosing ¢ = 0.1, n= 10 experiments and assuming that
the sample average is normal distributed we get

ool

x(x)
B3

30

(03+4)-03 | | (03-4)-03] ~ :
00 o 00 )=09 =  A=00208 -

10
\Y V ol ]
0.25 0.26 027 0.28 0. 03 031 0.34 0.
X

m Swiss Federal Institute of Technology
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Testing for Statistical Significance

Testing of the mean — with known variance

If the sample average lies in the interval [0,283 )‘(30,32]
the Null-hypothesis H, should be accepted

Assume that 10 experiments are carried out and the
following results are obtained

x=(0.330.32,0.25,0.31,0.280.27,0.29,0.3,0.27,0.28)"

with sample average 4 = 0.29 - it is concluded that the
Null-hypothesis should be accepted at the 0.1 level.

E"H Swiss Federal Institute of Technology
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Testing for Statistical Significance
Testing of the mean — with unknown variance

If now It is assumed that the variance is unknown the
following sample statistic must be considered

T= XA

Slnbi ased

Jn

which may be realized to be t-distributed with n-1 degree
of freedom

The operating rule is then: accept H, if |[EASISA
The critical value can be calculated from: P(-A<T <A)=1-¢

from which A = 1.83 is determined using the t-distribution
with 9 degrees of freedom

E’H Swiss Federal Institute of Technology 20



Testing for Statistical Significance

Testing of the mean — with unknown variance

Assuming the same experiment outcomes as before we get
the same sample average but now the variance is given by

I &
%nbiased—\/ﬁ Zl (X —X)" =0.025
(029-0.3W10

and the t-statistic becomes t= =—127
0.025

which is within the interval given by = A (= + 1.83)

Thus the Null-hypothesis should not be rejected

m Swiss Federal Institute of Technology 21



Testing for Statistical Significance

Testing of the variance

Consider as an example the case where the variance of the
fatigue lifes of welded joints is attempted reduced by
means of weld surface treatment.

e

As experiments are very expensive only a few data are
available to verify the effect of the weld surface treatment.

m Swiss Federal Institute of Technology 22



Testing for Statistical Significance

Testing of the variance

We may as Null-hypothesis postulate that the variance of
the fatigue lifes with the surface treatment is smaller that
the variance before the surface treatment i.e. :

> >
Oran < Ogq

new —

The operating rule is then to accept the Null hypothesis if

where A is determined from _

and it is used that S2 is Chi-square distributed with n
degrees of freedom

E’H Swiss Federal Institute of Technology
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Testing for Statistical Significance

Testing of more than one data set

Typically we are in a situation where we have two or more
data sets each not very large — and we would like to know
how the data compare in terms of :

-  mean values Test for equal mean values
- variances Test for equal variances
- correlation Test for zero correlation

m Swiss Federal Institute of Technology
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Testing for Statistical Significance
Testing for equal mean values

Here we assume that we have two data sets

X:()gaxza"axk)-r y:<y1’y2""y| )T

being realizations of the random variables X and Y
both assumed to be normal distributed with mean
values u,, @4, and variances gy, o,

the statistic T=X-Y

is Normal distributed with mean value Hg ¢ =Ux —Hy

2 2

: Oy O

and variance o2 =X 4Y
X=Y k I

E"H Swiss Federal Institute of Technology 25



Testing for Statistical Significance

Testing for equal mean values

For ¢ equal to 0.1 A can be calculated as

2 2
AX-Y<A)=l—a0 = A=1.2x\/0kx +‘TY

E"H Swiss Federal Institute of Technology
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Testing for Statistical Significance

Testing for equal variances

A test for equal variances can be performed by considering
the following statistic

Y
. S(,unbiased
T= 2
Sv(,unbiased
which iIs seen to be the ratio between two Chi-square

distributed random variables — and T is thus F-distributed
with parameters k and |.

The Null-hypothesis H, would be that O’>2< =O’2Y
and the operating rule to accept Hg if T<A
where A is determined from PT<A)=1-«

m Swiss Federal Institute of Technology 27



Testing for Statistical Significance
Some considerations regarding testing for significance

Test for statistical significance can be formulated for a
variety of different types of problems

we must be very careful not to ,,over estimate* the value of
the significnace tests because the hypothesis can be
formulated in different ways and using different
significance levels a -

consequently it is in principle possible to prove anything —

the different choises have direct effect on the probability of
performing Type | and Type Il errors — which may be
related to significant economical consequences

the formulation of hypothesis and the choise of significance

levels should be treated as a decision problem - which will
be treated later.

E’H Swiss Federal Institute of Technology
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Overview of Estimation and Model

Building

Different types of information is used
when developing engineering models

- subjektive information
- frequentististic information

Subjektive
- Physical understanding
- Experience
- Judgement

\ 4

Frequentistic
- Data

Distribution family

Distribution
parameters

Probabilistic model

E"H Swiss Federal Institute of Technology
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Estimation and Model Building

Selection of probability distribution function

INn general the distribution function for a given
random variable or random process must be chosen
on the basis of

Frequentistic information: Data
Physical arguments: Engineering understanding

A formalized classical approach is to

1 postulate a hypothesis for the probability
distribution family

2 estimate the parameters of the postulated
probability distribution

3 Perform a statistical test to reject/verity the
hypothesis

E"H Swiss Federal Institute of Technology 30



Estimation and Model Building

Selection of probability distribution function

INn engineering application it is often the case that
the available data is too sparse

to be able to support/reject the hypothesis of a given
probability distribution — with a reasonable significance

Therefore it is necessary to use common sence i.e. :

First to consider physical reasons for selecting a given
distribution

Thereafter to check if the available data are in gross
contradiction with the selected distribution

E'H Swiss Federal Institute of Technology
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Estimation and Model Building

Model selection by use of probability paper

Probability paper is constructed such that when a
given probability distribution is plotted on the paper
it will have the shape of a straight line

E"H Swiss Federal Institute of Technology
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Estimation and Model Building

Model selection by use of probability paper

Example — probability paper for
the normal probability distribution
function

Fy <x>=<1><x;“X>

X= (I)_l(Fx (X)) Oy +Hy

Fy(x)  O'(Fy(x)

0999 & 39
The y-axis scale is non-linear ‘;988 T 20
84 —+— 10
05 4 00
016 1 -1.0
002 —+ -20
0.001 + 30
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Estimation and Model Building

Model selection by use of probability paper
— graphical approach

Normal probability distribution A




Estimation and Model Building

Model selection by use of probability paper

The sample probability distribution
function may be established from
the ordered sample as

|
FX(Xi):m

Example — concrete
compression strength

Normal probability
paper

m Swiss Federal Institute of Technology

i X Fu(%) @ (F(x))
1 24.4] 0.047619) -1.668391
2 27.6| 0.095238|-1.309172
3 27.8| 0.142857] -1.067571
4 27.9| 0.190476| -0.876143
5 28.5| 0.238095| -0.712443
6 30.1| 0.285714|-0.565949
7 30.3| 0.333333|-0.430727
8 31.7| 0.380952|-0.302981
9 32.2| 0.428571|-0.180012
10 32.8] 0.47619-0.059717
11 333| 0.52381| 0.059717
12 33.5] 0.571429| 0.180012
13 34.1| 0.619048| 0.302981
14 34.6| 0.666667| 0.430727
15 35.8| 0.714286| 0.565949
16 35.9] 0.761905| 0.712443
17 36.8| 0.809524| 0.876143
18 37.1| 0.857143| 1.067571
19 39.2| 0.904762| 1.309172
20 39.7| 0.952381| 1.668391
35



Estimation and Model Building

Model selection by use of probability paper
Plotting the sample probability distribution function in
the probability paper yields

O™ (Fy (X)) F, (¥) .

fffffffffffffffffffffffffffffff T s

0.50

0.15

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

0.02

20
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Contents of Todays Lecture

The Results of the Assessment of the Lecture
Short Summary of the Previous Lecture
Overview of Estimation and Model Building

Estimation of Distribution Parameters

- The method of moments
- The method of maximum likelihood
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What did we Learn in the Previous Lecture

® In the previous lecture we introduced the concept of
hypothesis testing
- testing of the mean
- testing of the variance
- testing of more data sets
and we also introduced the concept of

probability paper

- supporting the choice of a given probabilistic model
based on data/observations

E"H Swiss Federal Institute of Technology



What did we Learn in the Previous Lecture

® hypothesis testing — which are the steps!

Postulate
Null-Hypothesis

Formulate
operating rule

Select

significance

level Assess
acceptance

Perform test and criteria

check for

acceptance \ Conclude at
choosen
significance
level

E'" Swiss Federal Institute of Technology



What did we Learn in the Previous Lecture

The design assumption:
The mean surface chloride concentration is 0.3%0

Knowledge:
Standard deviation of the surface chloride
concentration — equal to 0.04%0

Hypothesis (Ho hypothesis):
Design assumption is correct!

Operating rule/testing approach

Given that we know the standard deviation we know that the
uncertain mean is normal distributed — we thus have a normal
distributed test statistic T

03-A<T<03+A

E"H Swiss Federal Institute of Technology 4



What did we Learn in the Previous Lecture

The test acceptance criteria:
The operating rule must be fulfilled with a
probability of 1-¢. x

P(03-A<T<03+A)=1-0 1/

Assessing acceptance criteria:
The interval for the operating rule is
determined as:

X4 (X% M) | 03+4)-03| | (03-A)-03| ~
CD(—G j CD(—O_ j_(D oo O o |F09 = A=00208 C—> [028<t<032]

J10 J10

Perform test and check for acceptance
Collect samples and calculte the mean value

x=(0.33,0.32,0.25,0.31,0.28,0.27,0.29,0.3,0.27,0.28)" =t=0.29

Conclusion
The validity of design assumtions cannot be rejected at the 0.1
significance level

E"H Swiss Federal Institute of Technology 5



What did we Learn in the Previous Lecture

® Probability paper — what is the idea!

Fundamentally what we want to do is to check whether
data/Zobservations follow a given cumulative distribution function

If they do we have support for assuming that the uncertain
phenomenon which generated the data can be modelled by the given
cumulative distribution function

The concept of probability paper provides us a standardized manner
to perform this check

E'" Swiss Federal Institute of Technology



What did we Learn in the Previous Lecture

® Probability paper — what is the idea!

We construct probability paper for a given family of cumulative
distribution functions such that a plot of the cumulative distribution
follows a straight line in the paper

In order to do that we perform an non-linear transformation of the
y-axis of the usual CDF plot

Fx(X)=‘D(X;_A) = X=® (F (X)) 0y + iy

F@E  o'E6)

09 0.999 3.0
08
o 0.98 2.0
06 0.84 1.0
iy 05 0.0
4
03 0.16 -1.0
02
0.02 -2.0
01
3 2 1 4 1 2 3 4 0.001 -3.0

Analytically

Graphically

m Swiss Federal Institute of Technology



What did we Learn in the Previous Lecture

® Probability paper — what is the idea!

When we have the paper (we can construct it our selves or buy it in

the book store © we can plot observed values as a quantile-plot

into the paper

Fx(xi):l_

N+1

i % Fdx) @7 (F(x))
1 24.4] 0.047619] -1.66839
2 27.6] 0.095238] -1.309172)
3 27.8| 0.142857] -1.067571]
4 27.9| 0.190476] -0.876143
5 28.5| 0.238095] -0.712443
6 30.1] 0.285714] -0.565949
7 30.3| 0.333333] -0.430727]
8 31.7| 0.380952] -0.302981]
9 32.2| 0.428571] -0.180012
10 32.8] 0.47619] -0.059717]
11 33.3] 0.52381] 0.059717]
12 33.5] 0.571429| 0.180012
13 34.1] 0.619048| 0.302981]
14 34.6| 0.666667| 0.430727]
15 35.8] 0.714286| 0.565949
16 35.9| 0.761905| 0.712443
17 36.8| 0.809524| 0.876143
18 37.1] 0.857143| 1.067571]
19 39.2| 0.904762| 1.309172
20 39.7| 0.952381] 1.668391

D(Fy () Fy (%)
O 3
y N /
/&/
/o/
20 25 30 y2 35 40 X

0.97

0.84

0.50

0.15

0.02

If the g-plot is close to straight in the important regions we have

support for our model!

E'" Swiss Federal Institute of Technology



Overview of Estimation and Model Building

Different types of information is used when
developing engineering models

- subjective information
- frequentististic information

Subjective

- Physical understanding
- Experience

- Judgement

Frequentistic
- Data

\ 4

Distribution family

~

N
Distribution parameters\

_/

E"H Swiss Federal Institute of Technology
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Estimation of Distribution Parameters

We assume that we have identified a plausible family
of probability distribution functions — as an example :

Normal Distribution Weibull distribution
2 k-1 B
i~ I ‘{UJ
oN2rx 2\ (9 @5 U—g e

and thus now need to determine — estimate - its
parameters

0=06,.6,,.6,)'

E"H Swiss Federal Institute of Technology



Estimation of Distribution Parameters

There are several methods for estimating the
parameters of probability distribution functions,
hereunder the so-called

-  Point estimators

- Interval estimators

however, in the following we shall restrict ourselves
to consider the

Method of moments

Method of maximum likelihood

E"H Swiss Federal Institute of Technology 11



Estimation of Distribution Parameters

® The method of moments (MoM)

To start with we assume that we have

data on the basis of which we can estimate

the distribution parameters

X=(R,%, %)

The idea behind the method of moments is to
determine the distribution parameters such that
the sample moments (from the data) and the
analytical moments (from the assumed
distribution) are identical.

18, <
m =ﬁ§>¢ 4 =2(6,6,..,6) = [ X - T, (x|0)cx

Sample moments Analytical moments

m Swiss Federal Institute of Technology 12



Estimation of Distribution Parameters

® The method of moments (MoM)

If we assume that the considered probability
distribution function has n parameters that we
must estimate we thus need n equations, i.e:

m =4,00),j=12,.,n
U
1
n:*

5

x)|= Txi : fx(xe)dxi j=12,.,n

=1

| Sample moment I

I Analytical moment |

m Swiss Federal Institute of Technology 13



Estimation of Distribution Parameters

® The method of moments (MoM)

Consider as an example the data regarding the
concrete compressive strength —

Again we assume that the concrete compressive
strength is normal distributed — ,,the normal
distribution family*

The normal distribution family has two
parameters — we need thus to establish two

eguations 1 0o
mzﬁzx /11:_“)( -fx(>4,u,o')dx
i=1 —oo

1 n R )
n@=ﬁg>€ 2o = [% £, (4. 0)clx

m Swiss Federal Institute of Technology 14



Estimation of Distribution Parameters

® The method of moments (MoM)

The sample moments are easily calculated as

1 & 1 <
—— N'% =3267 =— ) % =1083.36
m 2();& m, 20§>9

The analytical moments can be established as
function of the parameters

A=[x

—oco

1 (X—
exp0.5
o2 pt o’

w’ T (X=p)’
)dx A, —J;X o exp0.5 pe

E"H Swiss Federal Institute of Technology
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Estimation of Distribution Parameters
® The method of moments (MoM)
By formulating the following object function
9(1,0)=(4(1,0)—m)" +(4,(1,0)—m)’
The parameters estimation problem can be

solved numerically using Excel Solver finding the
parameters minimizing the object function

Let's have a look !

E"H Swiss Federal Institute of Technology
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Estimation of Distribution Parameters

® The Maximum Likelihood Method (MLM)

The idea behind the method of maximum
likelihood is that

The parameters are determined such that the
likelihood of the observations is maximized

The likelihood can be understood as the
probability of occurence of the observed data
conditional on the model

The Maximum Likelihood Method may seem more

complicated that the MoM but has a number of
attractive properties which we shall see later

m Swiss Federal Institute of Technology 17



Estimation of Distribution Parameters

® The Maximum Likelihood Method (MLM)
Let us assume that we know that outcomes of

experiments are generated according to the
normal distribution, i.e.:

_ L o JL(x=n)
f(x)=— Mexr{ G jj

Then the likelihood L of one experiment outcome X is calculated as:

] 1(j=uY
L= exp ——( ‘uj
O~N27 2\ o

m Swiss Federal Institute of Technology 18



Estimation of Distribution Parameters

® The Maximum Likelihood Method (MLM)

Let us assume that we know that outcomes of

experiments are generated according to the
normal distribution, i.e.:

_ L o JL(x=n)
f(x)=— Mexr{ G jj

If we have n experiment outcomes ¥=(x,%5...,x )" the likelihood L
becomes:

L(B]%) = H 6\/1% exp(—%(—‘ ;”j ]

m Swiss Federal Institute of Technology



Estimation of Distribution Parameters

® The Maximum Likelihood Method (MLM)

The parameters 0 are estimated as those
maximizing the likelihood function or

equivalently minimizes the — likelihood function
l.e.:
mgn (—L(0]x))

It is avantageous to consider the log-likelihood
function (%) :

109 = log(f, (% [0)

E"H Swiss Federal Institute of Technology
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Estimation of Distribution Parameters

® The Maximum Likelihood Method (MLM)

If the parameters 0 are estimated as those
minimizing the — log likelihood function i.e.:

X))

mein (—1(0

It can be shown that the estimated parameters are
normal distributed with

mean values p,=(.6;,..6))"

covariance matrix Cg,,=H" -

not just point estimates — full distribution information!

E’H Swiss Federal Institute of Technology 21



Estimation of Distribution Parameters

® The Maximum Likelihood Method (MLM)

Let us consider the concrete compressive strength
example

The log-likelihood function can be written as

y=n l{rej“zl%

the minimum of which may be found by the solution
of the following equations

ﬂ:_ﬂ ii(A ~6,) =0 Z(X—Qz)z
S Gy S B
A _13(5-6) =0 6,13

892 ‘912i=1 i Z_HE

E"H Swiss Federal Institute of Technology 22



Estimation of Distribution Parameters

® The Maximum Likelihood Method (MLM)

Putting numbers into the solution we get:

Z(X ) )2 Mean value of
P = ? 367.19 4 the standard
) = = [ =405 >
n 20 deviation
<. 6533 Mean value of
0, zﬁ X = =32.67 the mean value
i1

m Swiss Federal Institute of Technology
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Estimation of Distribution Parameters

® The Maximum Likelihood Method (MLM)

As mentioned we may also determine the
covariance matrix:

N 32()9_‘92)2 ZZ(Xi_ez)
=l i=I
H = 6, ] 914 913
2y (x -6.) i
i=I o
6; 6;

c - [9836] 0 ) Variance of the
o0 /6 0.165)— | mean value

Variance of the
standard deviation

m Swiss Federal Institute of Technology



Estimation of Distribution Parameters

® The Maximum Likelihood Method (MLM)

We may also estimate the parameters
completely numerically using Excel

L ets take a look !

E"H Swiss Federal Institute of Technology
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Estimation of Distribution Parameters

® Summary

Given that we have selected a model for the
distribution i.e. a distrift%XL)Jtion family
(%) *

A

A

1o

we have to estimate the distribution parameters

- Method of Moments
- Maximum Likelihood Method

E"H Swiss Federal Institute of Technology
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Estimation of Distribution Parameters

® Summary

Method of Moments provide point estimates of
the parameters

- No information about the uncertainty with

which the parameter estimates are associated.

Maximum Likelihood Method provide point
estimates of the estimated parameters

- Full distribution information — normal

distributed parameters, mean values and
covariance matrix.

E"H Swiss Federal Institute of Technology
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Contents of Todays Lecture

® Short Summary of the Previous Lecture
® Overview of Estimation and Model Building

® Model Evaluation by Statistical Testing
- The y? goodness of fit test
-  The Kolmogorov-Smirnov goodness of fit test

-  Model comparison

E'H Swiss Federal Institute of Technology



Short Summary of the Previous Lecture

® We considered the problem of assessing the
parameters of distributions based on
observations/data
What did we learn?
We learned that parameters can be estimated using
the

- Method of Moments

- Method of Maximum Likelihood

E"H Swiss Federal Institute of Technology



Short Summary of the Previous Lecture

® The Method of Moments (MoM) — point estimates

The principle behind the MoM is that we estimate the
parameters such that the moments we can calculate

based on the analytical expressions become equal to
the sample moments.

1 n R oo
m=ﬁ§>ﬁ /?1=_[OX -fx()4,u,0')dx

1 n R )
m, =HZ_1]>¢ A= IXZ- f (4, 0)ax

This leads to n equations which have to be solved simultaneously
where n is the number of parameters

E"H Swiss Federal Institute of Technology



Short Summary of the Previous Lecture

® The Method of Maximum Likelihood (MLM) —

full distribution estimates

The principle behind the MLM is that we estimate the
parameters such that the likelihood of the
observations (data) is maximized)

1.11[ o2z e}q{_(xaﬂl ) :

1(0) X 10)

> -

P

B u’@ :(01*,02*,..,0:)1-

C,,=H"

-

The MLM provides an extremely strong statistical tool!

E"H Swiss Federal Institute of Technology



Overview of Estimation and Model Building

Different types of information is used when
developing engineering models

- subjective iInformation
- frequentististic information

Subjective

- Physical understanding Probability paper

- Experience
- Judgement — Y T‘
Distribution

— — family (
FrDequentlstlc \ / | Probabilistic
- bata — model
\C /: Distribution
arameters
Sample statistics k &

- confidence interval Method of Moments
Statistical Significance Maximum Likelihood Meghod

m Swiss Federal Institute of Technology 6



Model Evaluation by Statistical Testing

Let us assume that we have selected a
distribution function as a model to describe an

uncertain quantity
Concrete Compressive

fx(X) Strength
A

Distribution family

Data + Physics Q

Data
F » X

Distribution parameters e O

Now we want to validate our model selection —
by means of statistical tests

E"H Swiss Federal Institute of Technology



Model Evaluation by Statistical Testing

Two different cases are considered — namely

verification of

1: Discrete distribution
functions

CHI-Square (y?) test

2: Continuous distribution
functions

Kolmogorov Smirnov test

E"H Swiss Federal Institute of Technology
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Model Evaluation by Statistical Testing

The CHI-square goodness of fit test

The idea behind the CHI-Square goodness of fit
test is that the difference between predicted and
observed/sample histograms should be small

-
o
!

O Obsened histogram
m Predicted histogram

Number of values
o - N w N ()] ()] ~ (o] ©

0-25 2530 30-35 358

Concrete compression strength

m Swiss Federal Institute of Technology



Model Evaluation by Statistical Testing

The CHI-square goodness of fit test

We remember that a discrete cumulative
distribution is given by:

i1
POX) =2 p(X), 1<k
j=1
P(¥) B(X) A
A B A
1 ]
| I I | > X » X
Probability density function Cumulative distribution function

m Swiss Federal Institute of Technology 10



Model Evaluation by Statistical Testing

The CHI-square goodness of fit test

Assuming that we sample a discrete random variable X
n times the number of realizations of X=x; i.e. N, Is a
binomial distributed random variable with expected
value and variance given as:

E[ N ] =np(X) ngeifl/iec;c]e\flall‘\uuem ber of occurences at
Var [N ] =np(x (1= p(%)) = Ny (1= p(%)

If the postulated model is correct and n large enough —
Central Limit Theorem - the difference ¢,

e = ;No,i l I\Ip,i

— Observed number of
\/Np" L p()g ) occurences at a given
will be standard Normal distributed value

E"H Swiss Federal Institute of Technology 11



Model Evaluation by Statistical Testing

The CHI-square goodness of fit test

By summing up the squared differences between the
observed and the predicted histograms we get:

k k ~N _)2
g = Z a . £,
i=1 i=1 Np|(1 p(X)) 9 —c /
8 3
2 : (NO,i o Np,i )2 82 \i%% 00 Obsenved histogram
Em = Z > T T m Predicted histogram
=1 Np. E :
£ —
CHI-Square distributed '~ [T N N N |
k-1 degree of freedom 0% 5% NB B

Concrete compression strength

m Swiss Federal Institute of Technology 12



Model Evaluation by Statistical Testing

The CHI-square goodness of fit test

The idea is then to test — at a given significance level
— a— If the sum of observed squared differences is
plausible i.e.

Postulating the H, hypothesis that the assumed
distribution functlon IS not in gross contradiction
with the observed data and formulating the
operating rule such as the null hypothesis cannot be
accepted if 8 > A. The critical value A can be
estimated such as:

YN

The alternate hypothesis H, iIs far less informative
because it considers all other distribution functions
than the assumed.

E"H Swiss Federal Institute of Technology
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Model Evaluation by Statistical Testing

The CHI-square goodness of fit test

Consider as an example that we assume a
Normal distribution with parameters not
estimated from the available data

Mean: 33 Mpa
Standard deviation: 5 Mpa

The Normal distribution is a continuous
probability density function but can easily be
discretized

E"H Swiss Federal Institute of Technology 14



Model Evaluation by Statistical Testing

The CHI-square goodness of fit test

The postulated probability density function is
discretized:

Predicted histogram
0.09

0.08 4

0.07 4

d ty
o o
& 8

o
®

B Predicted histogram

Probability dens

o

8
Number of values

o
Q
(]

o
o
=

o
L

o =~ N W H» O O N © ©
T T T T T R

o

10 20 30 40 50 60
Concrete compression strength 2530 30-35
- Concrete compression strength
Total number of experimen

\ o
0-25: 20 [@(25 25733 gy 533)}20-0.055

m Swiss Federal Institute of Technology 15




Number of values

Model Evaluation by Statistical Testing

The CHI-square goodness of fit test

The observed and the predicted histograms may
be compared

0 Obsenved histogram
W Predicted histogram

0 Obsened histogram
W Predicted histogram

Numbe@of values

358

Concrete compression strength

Due to a low number of samples in the lower interval
the two lower intervals are ,,lumped*

m Swiss Federal Institute of Technology
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Model Evaluation by Statistical Testing

The CHI-square goodness of fit test

The following calculation sheet may
be produced

Number of Predicted Eaijti)cé[fgf Sta;p;?(!e

o statistic
Interval - x, \?Zﬁggeﬂ pg(c:(b?blllty observations | | Equation

0.j J N, ; =20p(X)

0-30 5 0.296671 5.933415 0.14034
30-35 9 0.381169 7.65443 0.236537
35-c 6 0.344578 6.412466—__0,026492

Sum 0.40987 |

At the 5%6 significanc vel the CHI-Square distribution with

3-A=2 degree eédom yieldsA = 5.99
AS\0.40987 is s ller than 5.99 the H, hypothesis

cannot be rejected !

m Swiss Federal Institute of Technology 17



Model Evaluation by Statistical Testing

The CHI-square goodness of fit test

If one or more (m) of the parameters of the
postulated distribution function had been
assessed using the same data as used for the
testing we must reduce the number of degrees

of freedom accordingly i.e. n=k-1-m

Assuming that we had estimated the variance
from the data but not the mean value we would

have n=3-1-1=1

E'H Swiss Federal Institute of Technology 18



Model Evaluation by Statistical Testing

The CHI-square goodness of fit test

Assuming a postulated Normal distribution with

33.00
4.05
We get the following calculation sheet
Number of | Predicted Eﬂfggfgf Sta?ﬁ!e
i statstic
Interval - x; 3;?;2:33 pg(c:(b?blllty observations | Equation
o j N, =20p(x;) | (5.26)
0-30 5 0.274253 5.485061 0.04289
30-35 9 0.381169 7.623373 0.248591
35-c0 6 0.344578 5894666 0445342
Sum 0.406829

At the 5% significance |

freéedom yield\ = 3.84
er than 3.84 the H, hypothesis

m Swiss Federal Institute of Technology

ution with
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Model Evaluation by Statistical Testing

The Kolmogorov-Smirnov goodness of fit test

The idea behind the Kolmogorov-Smirnov test iIs
that

If the postulated cumulative distribution
function is in accordance with the observed data
then the maximal difference between the
observed and the predicted cumulative
distribution functions should be small

E"H Swiss Federal Institute of Technology
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Model Evaluation by Statistical Testing
The Kolmogorov-Smirnov goodness of fit test

The observed cumulative distribution function
may be calculated from

Fo(>§)='—n

The following statistic has been proposed

LR
n

max

£ _maxﬂF (%)= F, ()| = max{

|

E"H Swiss Federal Institute of Technology
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Model Evaluation by Statistical Testing

The Kolmogorov-Smirnov goodness of fit test

The Kolmogorov-Smirnov statistic may be

assessed from

@(F(x))

2

F(X)
0.98

1.5 -
1,
0.5 -
0,
-0.5 -
4 K
*

-1.5 - L7

-2 T

0.84

0.50

0.15

0.02

20 25

m Swiss Federal Institute of Technology

X

35

40

45

Fxo(Xi) Fxp(Xi) &
1 24.4 0.05| 0.042716| 0.007284
2 27.6 0.1] 0.140071] 0.040071
3 27.8 0.15[ 0.14917] 0.00083
4 27.9 0.2] 0.153864] 0.046136)
5 28.5 0.25[ 0.18406] 0.06594
6 30.1 0.3] 0.280957] 0.019043
7 30.3 0.35[ 0.294598| 0.055402
8 31.7 0.4] 0.397432] 0.002568,
9 32.2 0.45[ 0.436441| 0.013559
10 32.8 0.5] 0.484047] 0.015953
11 33.3 0.55] 0.523922| 0.026078
12 33.5 0.6] 0.539828] 0.060172]
13 34.1 0.65[ 0.587064| 0.062936
14 34.6 0.7] 0.625516] 0.074484]
15 35.8 0.75[ 0.71226] 0.03774
16 35.9 0.8 0.719043] 0.080957
17 36.8 0.85] 0.776378=0:0%362/
18] 371 0.9 0.7938%20.106108|
19 39.2 0.95[ 0.892512| 0.057488
20 39.7 1] 0.909877| 0.090123
22



Model Evaluation by Statistical Testing

The Kolmogorov-Smirnov goodness of fit test

The Kolmogorov-Smirnov statistic is tabulated

10

15

25

30

40

50

60 70 80

0.01

0.9950

0.6686

0.4889

0.4042

0.3166

0.2899

0.2521

0.2260

0.2067 | 0.1917 | 0.1795

0.05

0.9750

0.5633

0.4093

0.3376

| 0.2640

0.2417

0.2101

0.1884

0.1723 | 0.1598 | 0.1496

0.1

0.9500

0.5095

0.3687

0.3040

0.2377

0.2176

0.1891

0.1696

0.1551 | 0.1438 | 0.1347

0.2

0.9000

0.4470

0.3226

0.2659

For n = 20 and a = 5% we ge

0.1357 | 0.1258 | 0.1179

compared to observed statisic 0.1061

m Swiss Federal Institute of Technology

The H, hypothesis
cannot be rejected
at the 5%
significance level.
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Model Evaluation by Statistical Testing

Model comparison

Model verification by significance testing can be
used to quantify the plausibility of a given model
relative to given data (evidence)

Two cases have to be considered

1 itis shown that a model hypothesis cannot be
rejected

2 1t is shown that a model hypothesis can be
rejected

What information is actually contained in these two
cases ?

E"H Swiss Federal Institute of Technology
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Model Evaluation by Statistical Testing

Model comparison

Given that the significance test shows that a
model hypothesis cannot be rejected:

we must remember that other models could also
be postulated — in fact it is often the case that
several model hypothesis may pass testing !

Given that the significance test shows that a
model hypothesis should be rejected:

it does not mean that the model necessary is bad
— It may just say that the evidence is not strong
enough to show it with significance — too little
data !

m Swiss Federal Institute of Technology
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Model Evaluation by Statistical Testing
Model comparison

If testing of two different model hypothesis both
fall out positive i.e. both models are plausible we
can compare the goodness of fit of the two
models either by

- comparing the sample statistics directly

could be misleading/inconclusive due to
different number of degrees of freedom

- comparing the sample likelihoods

E"H Swiss Federal Institute of Technology
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Model Evaluation by Statistical Testing
Model comparison

Consider the example with two different models

Model 1: N(33;5) Parameters estimated not using
data
n=3-1=2

CHI-Square sample statistic = 0.40987

Sample likelihood

Model 2: N(33;4.05)Parameters estimated
n=3-1-1=1

g data

CHI-Square sample statistic = 0.40683
Sample likelihood = 0.5236

m Swiss Federal Institute of Technology 27



Model Evaluation by Statistical Testing

Summary

The selection of appropriate probabilistic models
may be supported by significance testing of the
model hypothesis

The CHI-Square test is desighed especially for
discrete distribution functions

The Kolmogorov-Smirnov test is designed
especially for continuous distribution functions

The goodness of fit of different model

alternatives may be compared by comparing
sample likelihood

E'H Swiss Federal Institute of Technology
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Contents of Todays Lecture

® Basics of Reliability Analysis
- Short summary of previous lecture
- The course at a glance
- Failure events and basic random variables

- Linear limit state functions and Normal distributed
variables

- Error propagation
- Non-linear limit state functions

- Monte-Carlo simulation
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Summary of Previous Lecture

Testing for goodness of fit
- The x2 goodness of fit test

- The Kolmogorov-Smirnov goodness of fit test

Model comparison

E"H Swiss Federal Institute of Technology



Summary of Previous Lecture

The CHI-square goodness of fit test

We test a ststistic constructed from the squared

differences between the observed and the predicted

histograms:

2 < 2 . (No,i _Np,i)2
T2 LN @Rty

2 K (No,i o |\Ip,i)z 82
£ =§ .

E
CHI-Square distributed

k-1 degree of freedom

10

€4

o] ~ (o] ©
I I I

Number of yalues
N w N

]

\

I |

e

O Obsened histogram
W Predicted histogram

0-25

m Swiss Federal Institute of Technology
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Summary of Previous Lecture

The Kolmogorov-Smirnov goodness of fit test

The observed cumulative
distribution function may

be calculated from:

LX) =

The following statistic is applied (tabularized):

E

max

2

154
14
0.5 4
0
-0.5
14
-1.541

2

= max|F, (x) - F, (x)||= max{

E"H Swiss Federal Institute of Technology

@ (F(x))

F(x)
0.98

0.84

0.50

0.15

0.02
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Summary of Previous Lecture

Model comparison

If testing of two different model hypothesis both
fall out positive i.e. both models are plausible we
can compare the goodness of fit of the two
models either by

- comparing the sample statistics directly

could be misleading/inconclusive due to
different number of degrees of freedom

- comparing the sample likelihoods

E"H Swiss Federal Institute of Technology



The Course at a Glance

Mo ule A

Engineering decisions under uncartainty

Module B - Basic probability theory

>

Module C - Descriptive statistics

b ..

Wi of
Arerawhon

F

e

Maodule D - Uncertainty modeling

hE I B B B R B

T kA i

:Er_“ = ..- T
S

Module F - Methods of structural reliability

e—

Module G - Bayesian decision analysis

Fatubow
Coasiaban
T Ly | g

Frasble Ariirvry
vt ¢ prierares
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Basics of Reliability Analysis

® Failure events and basic random variables
By a failure event we associate in principle an event
of special interest e.q. :
- Loss of functionality
- Costs
- Loss of lives

- Damage to the environment

E"H Swiss Federal Institute of Technology



Basics of Reliability Analysis

® Failure events and basic random variables

A failure event may conveniently be described in
terms of a functional relationship

F =1{g(x) <0}

Such a functional relationship is denoted a limit state
function

9(x)
T

Realizations of basic
random variables

E"H Swiss Federal Institute of Technology



Basics of Reliability Analysis

® The probability of an event

The probability of an event e.g. a failure event can be
calculated by the following integral

Joint probability density function of the

/ - -
basic random variables X
P, = [ fy(x)dx
g(x)<0 P Joint probatility
dendty function

g(x)=r-s

r : Resistance
s: Load

9(x)=0
E"H Swiss Federal Institute of Technology 10



Basics of Reliability Analysis

® The probability of an event

The probability integral is in general non-trivial — can
be multi-dimensional and can have a complicated
Integration domain

P, = [ fy(x)dx

9(x)<0

Classical nummerical integration techniqgues such as
e.g. Simpson, Gauss or Schebyschev integration are
not computationally efficient for dimensions larger
than 5-6. Other apporaches are needed — which we
will study further -

E"H Swiss Federal Institute of Technology 11



Basics of Reliability Analysis

® Linear limit state functions and normal distributed
basic variables

First we consider the case where the limit state
function is linear in the random variables and the
random variables are normally distributed

9(X)=ao+ia>ﬁ

For the case where the random variables X are
normal distributed the safety margin M is also normal
distributed .

:a0+zailtlxi

n M
M =3, _I_Za X i /Correlation coefficient

Zafaz +Z Z/),Jaa Oy, Oy

=l j=1j#
E"H Swiss Federal Institute of Techno/ogy 12



Basics of Reliability Analysis

® Linear limit state functions and normal distributed
basic variables

The probability of failure is then determined as
P. =P(g(X)<0)=P(M <0)

Which reduces to the determination of the standard
normal probability distribution function

P :(D(O—_,UM) =D(—/) with B= Hw
oy /‘ Oy
Reliability or safety index

E"H Swiss Federal Institute of Technology 13



Basics of Reliability Analysis

® Linear limit state functions and normal distributed
basic variables

f (M)
< Falure A SHfe >

My

The safety margin

m Swiss Federal Institute of Technology 14



Basics of Reliability Analysis

® Linear limit state functions and normal distributed
basic variables

The reliability index f has a geometrical
iInterpretation

X3 -2
“ @ Z g(u)=0

N D

Xi _ﬂxi
U. -
Smallest distance between the origin and |
the limit state function in standardized Zel_’O mean and
normal distributed space unit variance

m Swiss Federal Institute of Technology 15



Basics of Reliability Analysis

® Linear limit state functions and normal distributed
basic variables

Example : Reliability of steel rod under tension
loading

The resistance R and the max
annual loading S are both r
assumed to be normal distributed

Uy, =350,0,=35 S
Us =200,05 =40

E"H Swiss Federal Institute of Technology 16



Basics of Reliability Analysis

® Linear limit state functions and normal distributed
basic variables

Example : Reliability of steel rod under tension
loading

The safety margin is thus normal
distributed with parameters r

14, =350-200=150

— \/35% + 402 =53.15
150

The reliability index g becomes —
Y p p= 5315

P. =®(-2.84)=24-10"°
E"H Swiss Federal Institute of Technology 17



Basics of Reliability Analysis

The error accumulation law

INn many engineering applications the accumulation
of errors is a central question

Examples are :

- errors due to fabrication tolerances of building
components

- errors in connection with surveying
- errors in connection with measurements performed

In the laboratory

E"H Swiss Federal Institute of Technology
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Basics of Reliability Analysis

® The error propagation law

Assume that the error £ can be written as a
differentiable function of random variables i.e. :

c=h(x X =(X,X,,.., X )T +—— Vector of realization of
( ) (Xl XZ X") basic random variables

with parameters

— T —
ux—(ﬂxl,ﬂxz,--,ﬂxn) Colei’XjJ_pijo-Xio-Xj
Correlation co/e'fficier\
The idea is to linearize f(x) Standard deviation

e=h(x,)+ (5 %) o

First order partial derivative
ax taken in X=X,
X=Xg

m Swiss Federal Institute of Technology 19



Basics of Reliability Analysis

® The error propagation law

If we linearize the error function around the mean

value of the random variables its expected value and
variance becomes :

_ -,y In(x)
£ =h(llx)+izzll(>§ Hy.) x|
E[g]:h(ux)
& ah(x) T o o (oh oh(x)
Var[e]—izi a)§ XHXJ OX"‘; J%:;ti[ a)g Xllx] 8xj . IOijO-XiO-XJ

The mean value and the variance depends on
the linearization point

E"H Swiss Federal Institute of Technology
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Basics of Reliability Analysis

® Example : Error propagation in measurements

In order to estimate the length c i.e. the distance
between the two points A and B the lengths a and b

are measured B
¢ a
C

A b

due to measurement uncertainty in assessing a and b
also the length of c will be associated with
uncertainty and it is of interest to know the
probability that the length of c will exceed 13.5

E"H Swiss Federal Institute of Technology
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Basics of Reliability Analysis

® Example : Error propagation in measurements

It is assumed that a and b can be modeled as normal
distributed random variables with parameters

1,=122 14 =51 B
0,=04 0,=03 ¢ a
Using that c can be given as

A 5 C

the statistical characteristics of c may be estimated
through the error propagation law

E"H Swiss Federal Institute of Technology 22



Basics of Reliability Analysis

® Example : Error propagation in measurements

E'H Swiss Federal Institute of Technology
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Basics of Reliability Analysis

® Non-linear limit state functions
Limit state functions are often non-linear
As seen from the error propagation law it is
possible to linearize such limit state functions but

the results will depend on the linearization point
and on the formulation of the limit state function

E'H Swiss Federal Institute of Technology
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Basics of Reliability Analysis

® Non-linear limit state functions

Limit state functions are often non-linear

Hasofer and Lind suggested to linearize in the point
where the limit state function is zero and closest to
the origin in normal distributed space

m Swiss Federal Institute of Technology
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Basics of Reliability Analysis

® Non-linear limit state functions

The identification of the
reliability index may be
performed by solving an
optimization problem

A= min 2 u’
ue{g(u)=0} | i=1

E"H Swiss Federal Institute of Technology
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Basics of Reliability Analysis
® Non-linear limit state functions

The optimization problem may be
solved using the following iteration

scheme

0
-2 (Bo)

{iag(ﬁa)ﬂ B

=1 aui

g(ﬁayﬂaz,...ﬁan) =0

Provided that the limit state function
is differentiable !

E"H Swiss Federal Institute of Technology
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Basics of Reliability Analysis

INn summary the iteration follows
the following steps

1 ) the linearization point is
chosenasu™ = f «

2) the Normal vector to the
limit state function is
determined in
the linearization point

3) the reliability index fis
calculated from

4) the new linearization point
IS

5) continue with step 2) until
convergence in S

E"H Swiss Federal Institute of Technology

s N =,
j%\g(u)o
-9 (u)
o = | —, 1=12,.n
- dg 2
ey

9(foey, fos,,..-fe;,) =0

U = (B, fety,..per,)’
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Basics of Reliability Analysis

Non-linear safety margins

o Transformation ¥;
sl o
2| -3
= — Z
g- r
o o

9(2): linear

Mz Mz € R

05,05, € R

m Swiss Federal Institute of Technology

29



R-S

t state

IMmi

&
function”

g(U)

“L

.—fd
L
L
SERARRA
3 ¥ L
ﬁm_.ﬂ_..nnﬂg.a.
T L e
AR
W

Basics of Reliability Analysis

® Non-linear safety margins
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Basics of Reliability Analysis

Start point X!

31

E’H Swiss Federal Institute of Technology



Basics of Reliability Analysis
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Basics of Reliability Analysis

Calculation of a new
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Basics of Reliability Analysis

1mi

Linearization of |

state function in X2
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Basics of Reliability Analysis
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Basics of Reliability Analysis

1mi

Inearization of |
state function in X3
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Basics of Reliability Analysis

e Example : Reliability of steel rod / r

Limit state function
Yield stress

l

g(x)=r-a—Ss «— Load

\

Cross sectional area

It is assumed that R, S and A are normal distributed
random variables

R— _ A-
U =Roke  y _SThs oy, At 1, =3500, =35
Og O Oa

11 =1500,0 =300

ETH s.. - s =100, =2
Swiss Federal Institute of Technology 38



Basics of Reliability Analysis

® Example : Reliability of steel rod

We can now write the limit state
function in terms of u-variables

I a S

g(u) — (URO-R + ﬂR)(uAGA + ,UA) — (uso-s + ﬂs)

= (35u, +350)(u, +10) — (300u, +1500)
= 350u, +350u, —300ug + 35uu, + 2000

m Swiss Federal Institute of Technology
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Basics of Reliability Analysis

® Example : Reliability of steel rod

The reliability index g may be found
by iteration

1

: =
aA:—E(350+35ﬁ05R) k=& +ai+0t
., 300
s =——

k
IB— _‘Z(XX)

3500, + 3500, —3000, + 35604,

Iteration JStart 1 2 3 4 5
B 3.0000f 3.6719| 3.7399| 3.7444| 3.7448| 3.7448
OR -0.5800[ -0.5701| -0.5612| -0.5611| -0.5610| -0.5610
Oy -0.5800[ -0.5701| -0.5612| -0.5611| -0.5610| -0.5610
Og 0.5800f 05916/ 0.6084| 0.6086| 0.6087| 0.6087

m Swiss Federal Institute of Technology
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Basics of Reliability Analysis

® Monte Carlo Simulation

The probability integration
problem may be solved by
Monte Carlo simulation

_U
Il

j f, (x)dx

Q¢ ={g(x)=0}

: : Fy, (%)
1) m realizations of the vector

X are produced

2) for every realization the
limit state function is
calculated

3) the realizations for which
the limit state function iIs

»
»

—

».

X, > %

Z is a random number
uniformly distributed

S Random number
N

equal to or less than zero are between O and 1
counted

4) The probability of failureis -t

estimated as m

E"H Swiss Federal Institute of Technology 41



Basics of Reliability Analysis

® Monte Carlo Simulation

m random realizations of R
and S are generated and the
number of realizations n;
occuring in the failure space
are counted n;

The probability of failure p;is

then
nf

pf:H

m Swiss Federal Institute of Technology
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A Summary of the Lecture

Graphical/numerical

) ) i3 Verification and e
interpretation of data "/ dllflia s testing of models
Q -
Basic probability ( B @ _ ) i o
theory Bayesian modeling
EUE
() - - I . ()=
° Basic reliability FN
Distribution functions analysis ﬂ§ < L
A gu=0
moments and extremes ) i
1
Modeling and g Basic decision
Description of data A A analysis

m Swiss Federal Institute of Technology 2



Decision Analysis In Engineering

® Introduction to Decision Theory

- The problem

- The decision tree

- Prior decision analysis
- Posterior decision analysis

- Pre-posterior decision analysis

E"H Swiss Federal Institute of Technology



Decision Analysis In Engineering

® The basic engineering problem

Solution B and F
‘:“I“ Veriiation island ot
Several solutions | e | T L R |
may be identified Solation A and € -
Crerst yantilalion ik _DIW
——— T f
! Ran;g Turined !Rﬁﬂlpﬂl
The available Sokution O
information / \
IS uncertain \/
Cioast sl
IR o111 I i S
I Fasrigs l» Appioach san | Bl & et | hppresach 4pei | Rartifs |
Sobution C

A decision must

be made
I

o

...:'_'--- ———————
] R
10 A g T

T I ] HHT

|, Ramp | Approach span | Mainspan | Appreech span | Ramp L
A t A e t A

E’H Swiss Federal Institute of Technology 4



Decision Analysis in Engineering

Approach

Formulation of the decision problem

= The decision maker and the preferences of the decision maker
must be identified

= Mapping of the decision process
= All the possible decision alternatives must be identified
= ldentification of the contributing uncertainties

- ldentification of potential consequences and their utility
(cost/benefit)

- Assessment of the probabilities of the consequences

-  Comparison of the different decision alternatives based on
their expected utilities

- Final decision making and reporting of the assumptions
underlying the selected alternative

E'H Swiss Federal Institute of Technology



Decision Analysis in Engineering
Rle

® The decision tree

Depth of rock bed
40ft or 50ft ?
Actiondternalives  Outcome Conssquence u(consequence)
depth=40 ft none 0
401t File _
gilice 400
cutting 100
S0ft Ale
depth=50 ft hone 0

E'" Swiss Federal Institute of Technology



Decision Analysis Iin Engineering

Assignment of utility

-  The assignment of utility must reflect the preferences of the
decision maker

- Utility functions may be defined as linear functions in
monetary unity

- Itis important to include all monetary consequences in the
utility function

u(@)=Y p,-u(k))

ua)... U tility (cost/bene fit) associated with action a,
P, -u(K;)... Expected utility associated with consequenc eK

P - Probabilit y of the occurence of the consequenc e K
u(k,)... Ut ility associated with the consequenc eK
Kj... A potential consequenc e associated with the action a,

m Swiss Federal Institute of Technology



Decision Analysis Iin Engineering

The different types of decision analysis

- Prior
- Posterior
- Pre-posterior

lllustrated on an example :
Question : What pile length should be applied ?

Alternatives : Ple
a, : Choose a 40 ft pile
a, - Choose a 50 ft pile

States of nature

(depth to rock bed)
O : Rock bed in 40 ft
1 : Rock bed at 50 ft

Depth of rock bed
40ft or 50ft ?

E"H Swiss Federal Institute of Technology 8




Decision Analysis in Engineering

Prior Analysis

P’[q,] = 0.70
P’[q,] = 0.30

p=0.70
1201 o

=0.30
do 1

u=0

u =400 (Pileis spliced)

p=0.70

u =100 (Fileiscut)

The expected utility is calculated to be equal to

e lul=rminfula, ] ula, )

=min{ P
PI

0|
0

xXu

xXu

0,
,90

a, |+ P'[6, ]xulga, |,
a1]+ = xu[H \al]}

= min{ 0.7x 0+ 0.3x400, 0.7x100 + 0.3x O}
= min{120,70} = 70 = Decision for a, (50ft Pile)

m Swiss Federal Institute of Technology



Decision Analysis in Engineering

u =400 (Pleis spliced)

u=100 (Pleiscut)

u=0

—> Choice of pile a, (50ft Pfahl)

E’H Swiss Federal Institute of Technology
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Decision Analysis in Engineering

Posterior Analysis

P[z'k
2P Plz, ‘9

J

(Posterior probability of & j (Normalizingj (Samplelikelihoo
— X

with given sample outcome constant givend

P (6)) =

l—-]
._95
]

E'" Swiss Federal Institute of Technology
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Decision Analysis in Engineering

Posterior Analysis

Li k@l 1hood

/

/

/

\
\

Prior

Posterior

Likelihood

Likelihood

Posterior

—

E'" Swiss Federal Institute of Technology




Decision Analysis in Engineering

()= PBl Pl

| | > Plzle, Ple]
Posterior Analysis J

Ultrasonic tests to determine the depth to bed rock

Irue state & O
Test result 40 ft — depth 50 ft — depth
%- 40 ftindicated | 0.6 0.1
z-50ftindicated | 0.1 0.7
2 -45ftindicated | 0.3 0.2

Likelihoods of the different indications/test results given the
various possible states of nature — ultrasonic test methods

Plz/a]

E’H Swiss Federal Institute of Technology 13



Decision Analysis in Engineering P[ZAH]P‘[H]
P"(6) = R .'i .
| | > Plzlo [Plo ]
Posterior Analysis J

It is assumed that a test gives a 45 ft indication

P"[6,]= Pl6,|z, ] P|z,|6, JPl6,]=0.3x0.7=0.21

P[6,]=Pl6]z, )< Plz,/6,JPl6,]=0.2x0.3=0.06

) 021

P [%‘22]20.21+0.O6 = 078
) 006

P [q‘zz]:o.zuo.oa = 022

E'" Swiss Federal Institute of Technology 14



Decision Analysis in Engineering

Posterior Analysis

Test result indicates 45ft to
rock bed

u=0

u=400 (Rleis liced)

u=100 (Rleiscu)

u=0  —> Choice of alternative a,
(50ft Pile)

m Swiss Federal Institute of Technology
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Decision Analysis in Engineering

88

Posterior Analysis u=400 (Plleis spliced)
p=0.18 u=100 (Fleiscut)
p=0.22

£ lufz.] = min(E"lu(@ )z}

=min{P"[6,]x0+ P"[6,]x 400, P"'|6,|x100+ P"[6,]x 0}
=min{0.78x 0+ 0.22x 400, 0.78x100+ 0.22x O}

=min{ 88, 78} =78

—> Choice of alternative a,
(50ft Pile)

m Swiss Federal Institute of Technology 16



Decision Analysis in Engineering

Pre-posterior Analysis

E{u] = ZP:Z:XE [uz]= ZP 2] xmin(E @)z b
(2]=Flz/a)<Pla]+ P[z\@]xp[@

PI

7] =
Pz,

Pz,

E’H Swiss Federal Institute of Technology

= Plz/g|x P[4 ]+ Pz|a|x P[4]=06x07+01x03=045

= Plz|a|x P[g]+ Flz|g|x P[g]=01x07+07x03=028
= P[Zz\ﬁo] x P g+ P[zz\q] x P'|g]=03x07+02x03=027
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Decision Analysis in Engineering

Pre-posterior Analysis

"z ]=mirE"lu(a)jz.} -

A q
—- Y - N
do nothing splicing cutting do nothing

min{P' |6z, Ix0+ P"(6]2,]x400 P (g7, Ix100+ P[] 2, Ix0)
mir{0.93x0+0.07x40Q 0.93x100+0.07x(} =

0.07x400+0.93x0=28

m Swiss Federal Institute of Technology 18



Decision Analysis in Engineering

Pre-posterior Analysis

E"fufz]=min(E"lua) )z} =

4 4
N A

" donothing splicng * © cutting do nothing

min{ P"|6,|z [0+ P62z, |x 400, P"|6,|2 [x100+ P[0z % O}
min{ 0.25x 0+ 0.75x 400, 0.25x100+ 0.75x 0} =

0.25x100+0.75x0=25

E'" Swiss Federal Institute of Technology



Decision Analysis in Engineering

Pre-posterior Analysis

The minimum expected costs based on pre-posterior
decision analysis
— not including costs of experiments

Eu=> Pz]x E"|uz|=28x045+25x 028+ 78x 027 = 4066
=1

Allowable costs for the experiment

E'lu] - E[u] = 7000-4066=29.34

E"H Swiss Federal Institute of Technology
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Decision Analysis in Engineering

P terior Analysi 20 28
re-posterior Analysis 40.66 -
Test - 29 =
Z2 23 g~ 88
- R
1
/8 6
keinTe .
% _~120
Allowable costs for 4 ()
experiments 70 0, 0

E'lul - E[u] = 7000-4066= 2934

m Swiss Federal Institute of Technology
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