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Contents of Todays Lecture

• Overview of Estimation and Model Building

• A short Summary of the Previous Lecture

• Estimators for Sample Descriptors

• Testing for Statistical Significance
- The hypothesis testing procedure
- Testing of the mean with known variance
- Testing of the mean with unknown variance
- Testing of the variance
- Test of two or more data sets
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Overview of Estimation and Model Building

Different types of information is used
when developing engineering models

- subjective information
- frequentistic information

Frequentistic
- Data

Subjective
- Physical understanding
- Experience
- Judgement

Distribution family

Distribution parameters

Probabilistic model
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A Short Summary of the Previous Lecture

• Continuous random processes

A continuous random process is a random process which 
has realizations continuously over time and for which the 
realizations belong to a continuous sample space.
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A Short Summary of the Previous Lecture

If the extremes within the period T of an ergodic random
process X(t) are independent and follow the distribution: 

then the extremes of the same process within the period:

will follow the distribution:
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A Short Summary of the Previous Lecture

Based on independent Normal distributed random
variables we could derive the following distributions:

Distribution Type When

Chi-square distribution sum of squared N(0;1)
Chi-distribution square root of Chi-square
t-distribution ratio of N(0;1) to Chi/n
F-distribution ratio of two Chi-square



Swiss Federal Institute of Technology 8

Probability Distribution Functions in Statistics

Example Chi distribution

In the field, measurements have been performed of 
a and b with the purpose to assess c

a

b

c
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Probability Distribution Functions in Statistics

Example Chi distribution

It is assumed that the measurements of a and b are
performed with the same absolute error ε which is
assumed to N(0; σε ) i.e. Normal distributed, 
unbiased and with standard deviation σε.  

Determine the statistical characteristics of the
error in c when this is assessed using the
measurements of a and b.

a

b

c
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Probability Distribution Functions in Statistics

Example Chi distribution

Knowing that the error propagates according to

we realize that

is Chi distributed with 2 degrees of freedom
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Probability Distribution Functions in Statistics

Example Chi distribution

The probability density function of

can thus be determined from

yielding
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Estimators for Sample Descriptors

The first step when new data are achieved is to 
assess the data

n xn FX(xn)
1 24.4 0.047619048
2 27.6 0.095238095
3 27.8 0.142857143
4 27.9 0.19047619
5 28.5 0.238095238
6 30.1 0.285714286
7 30.3 0.333333333
8 31.7 0.380952381
9 32.2 0.428571429

10 32.8 0.476190476
11 33.3 0.523809524
12 33.5 0.571428571
13 34.1 0.619047619
14 34.6 0.666666667
15 35.8 0.714285714
16 35.9 0.761904762
17 36.8 0.80952381
18 37.1 0.857142857
19 39.2 0.904761905
20 39.7 0.952380952
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Estimators for Sample Descriptors

We want to have a look at the statistical characteristics
of such sample statistics – in order to better
understand the information they contain

Assume we have a yet unknown sample of experiment

outcomes

generated by the cumulative distribution functions

then we can write the sample statistics for the

sample mean sample variance
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Estimators for Sample Descriptors

The sample statistics are random variables, 
because the experiment outcomes have not yet been
realized –
however we can evaluate the expected value and the
variance of the sample statistics, i.e. for the sample
mean we get : 
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Estimators for Sample Descriptors

The probability density function for the sample
average can be assumed to be a Normal distribution
– Central Limit Theorem
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Estimators for Sample Descriptors

For the sample variance we get: 
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sample variance is thus
different from the
variance – biased !
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Estimators for Sample Descriptors

We can however easily identify an unbiased
estimator for the variance as:
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Confidence Intervals on Estimators

• In the previous we have seen that estimators of e.g. 
the mean value are associated with uncertainty and we 
have established expressions to determine their mean 
value and variance.

• Based on this information we are also able to 
determine so called confidence intervals on the 
estimators.

• Confidence intervals may be understood as intervals
within which e.g. the mean value can be found

• Confidence is expressed in terms of probability



Swiss Federal Institute of Technology 19

Confidence Intervals on Estimators

We may e.g. establish a confidence interval for the 
mean value.

For the case where it is assumed that the mean value is 
uncertain and the variance is known the so-called
double sided and symmetrical confidence interval on 
the mean value is given by
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In words: the confidence interval defines an interval
within which the sample average will be located with
a probability 1-α

The confidence interval may be determined using the
assumption that the mean value is Normal 
distributed whereby there is:

Confidence Intervals on Estimators
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For the case where α= 0.05, n = 16 and σX = 20 we
get

Confidence Intervals on Estimators
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• If we then observe that the sample mean is equal to 
e.g. 400 we know that with a probability equal to 0.95 
the true mean will lie within the interval

• Typically confidence intervals are considered for mean 
values, variances and characteristic values – e.g. lower 
percentile values.

• Confidence intervals represent/describe the 
(statistical) uncertainty due to lack of data.

Confidence Intervals on Estimators
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The number of available data has a significant 
importance for the confidence interval  - using the 
same example as in the previous the confidence 
interval depends on n as shown below

Confidence Intervals on Estimators
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