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Contents of Today‘s Lecture

• Presentation on the result of the classroom assessment 

• Catching up with the lecture from last time
- Continuous random processes
- Extremes of random processes

• Overview of Estimation and Model Building

• Probability Distribution Functions in Statistics

• Estimators for Sample Descriptors – Sample Statistics
- statistical characteristics of the sample average
- statistical characteristics of the sample variance
- confidence intervals on estimators
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Random Processes

• Continuous random processes

A continuous random process is a random process which 
has realizations continuously over time and for which the 
realizations belong to a continuous sample space.
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Random Processes

• Continuous random processes

The mean value of the possible realizations of a random 
process is given as:

The correlation between realizations at any two points in 
time is given as:
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Random Processes

• Continuous random processes

The auto-covariance function is defined as:

for t1=t2=t the auto-covariance function becomes the 
covariance function:

[ ]1 2 1 1 2 2

1 1 2 2 1 2 1 2 1 2

( , ) ( ( ) ( ))( ( ) ( ))

( ( )) ( ( )) ( , ; , )

XX X X

X X XX

C t t E X t t X t t

x t x t f x x t t dx dx

μ μ

μ μ
∞ ∞

−∞−∞

= − −

= − −∫ ∫

)t()t,t(R)t,t(C)t( XXXXXX
22 μσ −==

( )X tσ Standard deviation function



Swiss Federal Institute of Technology 6 / 40

Random Processes

• Continuous random processes

A vector valued random process is a random process 
with two or more components:

with covariance functions:

The correlation coefficient function is defined as:
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Random Processes

• Normal or Gauss process

A random process X(t) is said to be Normal if: 

for any set; X(t1), X(t2),…,X(tj) 

the joint probability distribution of X(t1), X(t2),…,X(tj)  

is the Normal distribution.
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Random Processes

• Stationarity and ergodicity

A random process is said to be strictly stationary if all its 
moments are invariant to a shift in time.

A random process is said to be weakly stationary if the 
first two moments i.e. the mean value function and the 
auto-correlation function are invariant to a shift in time  
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Random Processes

• Stationarity and ergodicity

- A random process is said to be strictly ergodic if it is 
strictly stationary and in addition all its moments may 
be determined on the basis of one realization of the process.

- A random process is said to be weakly ergodic if it is weakly 
stationary and in addition its first two moments may be 
determined on the basis of one realization of the process.  

• The assumptions in regard to stationarity and ergodicity are 
often very useful in engineering applications. 

- If a random process is ergodic we can extrapolate 
probabilistic models of extreme events within short reference 
periods to any longer reference period.
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Extreme Value Distributions

In engineering we are often interested in extreme values
i.e. the smallest or the largest value of a certain quantity
within a certain time interval e.g.:

The largest earthquake in 1 year

The highest wave in a winter season

The largest rainfall in 100 years
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Extreme Value Distributions

We could also be interested in the smallest or the largest 
value of a certain quantity within a certain volume or area
unit e.g.:

The largest concentration of pesticides in a volume of 
soil

The weakest link in a chain

The smallest thickness of concrete cover 
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Extreme Value Distributions
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Extreme Value Distributions

If the extremes within the period T of an ergodic random
process X(t) are independent and follow the distribution: 

Then the extremes of the same process within the period:

will follow the distribution:
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Extreme Value Distributions

Extreme Type I – Gumbel Max

When the upper tail of the probability density function falls 
off exponentially (exponential, Normal and Gamma 
distribution) then the maximum in the time interval T is
said to be Type I extreme distributed
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Extreme Value Distributions

Extreme Type II – Frechet Max

When a probability density function is downwards limited 
at zero and upwards falls off in the form 

then the maximum in the time interval T is said to be Type 
II extreme distributed  
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Extreme Value Distributions

Extreme Type III – Weibull Min

When a probability density function is downwards limited
at ε and the lower tail falls off towards ε in the form

then the minimum in the time interval T is said to be Type 
III extreme distributed

kxcxF )()( ε−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

−
−

−−=
k

TX u
xxF

ε
εexp1)(min

,

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

−
−

−⎟
⎠
⎞

⎜
⎝
⎛

−
−

−
=

− kk

TX u
x

u
x

u
kxf

ε
ε

ε
ε

ε
exp)(

1
min

,

⎥⎦
⎤

⎢⎣
⎡ +Γ−+Γ−=

+Γ−+=

)11()21()(

)11()(

222
min

min

kk
u

k
u

T

T

X

X

εσ

εεμ

Mean value and 
standard deviation



Swiss Federal Institute of Technology 17 / 40

Return Period

The return period for extreme events TR may be defined as:

Example:
Let us assume that - according to the cumulative 
distribution function of the annual maximum traffic load -
the annual probability that a truck load larger than 100 ton 
is equal to 0.02 – then the return period of such heavy 
truck events is: 
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Overview of Estimation and Model Building

• How do engineers establish knowledge

Models

ExperienceData

Real world



Swiss Federal Institute of Technology 19 / 40

Overview of Estimation and Model Building

Different types of information is used when 
developing engineering models

- subjective information 
- frequentististic information

Distribution family

Distribution 
parameters

Probabilistic model
Frequentistic
- Data

Subjective
- Physical understanding
- Experience
- Judgement
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Overview of Estimation and Model Building

Model building may be seen to consist of five steps

1) Assessment and statistical quantification of the  
available data

2) Selection of distribution function

3) Estimation of distribution parameters

4) Model verification

5) Model updating



Swiss Federal Institute of Technology 21 / 40

Probability Distribution Functions in Statistics

In the classical statistical theory a number of 
probability distribution functions which may all be 
derived from the normal distribution function are 
repeatedly used for assessment and testing 
purposes. 

These derived probability distribution functions are 
the :

Chi-square distribution
Chi-distribution
t-distribution
F-distribution
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Probability Distribution Functions in Statistics

The Chi-square (   ) distribution

When 

are standard Normal distributed and independent 
random variables then the sum of the squares of 
the random variables i.e.

is said to be Chi-square distributed

It is seen that the Chi square distribution is 
regenerative i.e. sums of Chi-square distributed 
random variables are also Chi-square distributed
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Probability Distribution Functions in Statistics

The Chi-square (   ) distribution

Consider the simplest case with n=1, i.e. :

Then we can write

and we get
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Probability Distribution Functions in Statistics

The Chi-square probability density function is given as

The mean value is

The variance

is the complete Gamma function

for large n the Chi-square distribution converges to a 
Normal distribution – Central Limit Theorem 
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Probability Distribution Functions in Statistics

The Chi-square probability density function
Chi-square probability density function

0

0.02

0.04

0.06

0.08

0.1

0.12

0 20 40 60 80 100 120 140 160

x

pr
ob

ab
ili

ty
 d

en
si

ty

n=100
n=50
n=25
n=10



Swiss Federal Institute of Technology 26 / 40

Probability Distribution Functions in Statistics

The Chi (   ) distribution

When a random variable     is given as the square
root of a Chi-square distributed random variable    
i.e.

it is said to be Chi-distributed witn n degrees of 
freedom

χ
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Probability Distribution Functions in Statistics

The Chi (   ) distribution

Assume that is Chi-square distributed with n

degrees of freedom

If then we can write

and we get
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Probability Distribution Functions in Statistics

The Chi probability density function is given as

The mean value is

The variance
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Probability Distribution Functions in Statistics

The Chi probability density function

Chi probability density function
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Probability Distribution Functions in Statistics

The (Student‘s) t distribution

When a random variable     is given as standard Normal 
distributed, devided by a Chi distributed random
variable i.e.

it is said to be t-distributed witn n degrees of freedom

For large n the t-distribution converges to a Normal 
distribution.
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Probability Distribution Functions in Statistics

The (Student‘s) t probability density function is
given as

The mean value is zero

The variance
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Probability Distribution Functions in Statistics

The (Student‘s) t probability density function
t-distribution
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Probability Distribution Functions in Statistics

The F distribution

When a random variable     is given as the ratio
between two Chi-square distributed random
variables i.e.

it is said to be F-distributed witn parameters n1, n2
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Probability Distribution Functions in Statistics

The F probability density function is given as

The mean value is

The variance
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Probability Distribution Functions in Statistics

The F probability density function
F-distribution 
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Probability Distribution Functions in Statistics

Summary of derived probability density functions:

Distribution Type When

Chi-square distribution sum of squared N(0;1)
Chi-distribution square root of Chi-square
t-distribution ratio of N(0;1) to Chi/n
F-distribution ratio of two Chi-square
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Probability Distribution Functions in Statistics

Example Chi distribution

In the field measurements have been performed of 
a and b with the purpose to assess c

a

b

c
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Probability Distribution Functions in Statistics

Example Chi distribution

It is assumed that the measurements of a and b are
performed with the same absolute error e which is
assumed to N(0; σe ) i.e. Normal distributed, 
unbiased and with standard deviation σe.  

Determine the statistical characteristics of the
error in c when this is assessed using the
measurements of a and b.

a

b

c
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Probability Distribution Functions in Statistics

Example Chi distribution

Knowing that the error propagates according to

we realize that

is Chi distributed with 2 degrees of freedom
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Probability Distribution Functions in Statistics

Example Chi distribution

The probability density function of

can thus be determined from

yielding

where it was used that for we have
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Estimators for Sample Descriptors

The first step when new data are achieved is to 
assess the data

n xn FX(xn)
1 24.4 0.047619048
2 27.6 0.095238095
3 27.8 0.142857143
4 27.9 0.19047619
5 28.5 0.238095238
6 30.1 0.285714286
7 30.3 0.333333333
8 31.7 0.380952381
9 32.2 0.428571429

10 32.8 0.476190476
11 33.3 0.523809524
12 33.5 0.571428571
13 34.1 0.619047619
14 34.6 0.666666667
15 35.8 0.714285714
16 35.9 0.761904762
17 36.8 0.80952381
18 37.1 0.857142857
19 39.2 0.904761905
20 39.7 0.952380952
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Estimators for Sample Descriptors

We want to have a look at the statistical characteristics
of such sample statistics – in order to better
understand the information they contain

Assume we have a yet unknown sample of experiment
outcomes

generated by the cumulative distribution functions

then we can write the sample statistics for the

sample mean

sample variance
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Estimators for Sample Descriptors

The sample statistics are random variables because
the experiment outcomes have not yet been realized
– however we can evaluate the expected value and 
the variance of the sample statistics, i.e. for the
sample mean we get : 
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Estimators for Sample Descriptors

The probability density function for the sample
average can be assumed to be a Normal distribution
– Central Limit Theorem
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Estimators for Sample Descriptors

For the sample variance we get: 
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Estimators for Sample Descriptors

We can however easily identify an unbiased
estimator for the variance as:
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Estimators for Sample Descriptors

The goodness of an estimator cannot be judged upon
whether it is biased or not alone – other properties are
important such as 

- efficiency least mean square error E[(s2-s2)] 
- invariance
- consistent converge to the true values
- sufficiency make maximum use of the data
- robustness sensitivity to omission of individual

data

we will not consider these in detail – just remember that
these considerations may also be important

)()( θθ hh =
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Confidence Intervals on Estimators

In the previous we have seen that estimators of e.g. 
the mean value are associated with uncertainty and we 
have established expressions to determine their mean 
value and variance –
Based on this information we are also able to 
determine so called confidence intervals on the 
estimators.
For the case where it is assumed that the variance is 
known and only the mean value is uncertain the so-
called double sided and symmetrical confidence 
interval on the mean value is given by
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In words the confidence interval defines an interval
within which e.g. the true mean value will lie with a 
probability 1-α

For the case where α= 0.05, n = 16 and σX = 20 we
get

Confidence Intervals on Estimators

ασμσ αα −=⎥⎦

⎤
⎢⎣

⎡ <−<− 111
2/2/ n

kX
n

kP XXX

[ ] 95.08.98.9 =<−<− XXP μ

96.1
2
05.01

2
1 11

2/ =⎟
⎠
⎞

⎜
⎝
⎛ −Φ=⎟

⎠
⎞

⎜
⎝
⎛ −Φ= −− α

αk



Swiss Federal Institute of Technology 50 / 40

If we then observe that the sample mean is equal to 
e.g. 400 we know that with a probability equal to 0.95 
the true mean will lie within the interval

Typically confidence intervals are considered for mean 
values, variances and characteristic values – e.g. lower 
percentile values.

Confidence intervals represent/describe the 
(statistical) uncertainty due to lack of data.

[ ] 95.08.4092.390

Confidence Intervals on Estimators
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The number of available data has a significant 
importance for the confidence interval  - using the 
same example as in the previous the confidence 
interval depends on n as shown below

Confidence Intervals on Estimators
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