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Overview of Uncertainty Modeling

* Random variables and their characteristics
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Overview of Uncertainty Modeling

* Random variables and their characteristics

Design of r'call galleries _ e PE |

[ :nelln
| :mu



ing

<><><><>§§<><><>0
VAVAVAVSS
‘ »0»0«»4,»4»\\‘404«0

A — AV.V\V,
<¢4aﬂ74>§»>«w»<
><><>§ﬂnr4><>§<><o
VWANINIIAAAAS o
<><><><>4><><><><><><00 m

NANNAAAAAR

<><><><><><><><><0
<><><><><><><><0
A
<><><><><o

Energy

1000

Detachment model

(e,v)

1000
G
f
EV
8 E-03
4 E-03
[

231.936

. 95 % Confidence interval
Rockfall / yr ; lognormal
100

37.206

—— Exceedance frequency
---- Range

10
detached volumen

3721

0264

Fall modeling

Overview of Uncertainty Modeling

Random variables and their characteristics
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Tools in Uncertainty Modeling

* Engineering problems - also those involving uncertainty are
very often specific - unique !

Being able to solve such problems requires

- basic tools (physical, mathematical, natural sciences,
human sciences, engineering, ...)

- innovation (being able to identify ways of solving problems)
- training !
Training is important because it provides experience.

By training we start to recognize patterns !
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Tools in Uncertainty Modeling

* Pattern recognition helps to
identify:

the usefulness of solution
strategies from previous problems

the potential of the available
tools in a given context
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Tools in Uncertainty Modeling

* Random variables and their characteristics

c]=c

cX | = cE[X]

a+bX]=a+bE[X]
9,(X)+9,(X)]=E[g,(X)]+E[g,(X)]

The expectation operator

m m m m

The variance operator Var[c]=0
Var[cX | = c?*Var[X ]
Var|a +bX |=b*Var[X]

Jointly distributed random variables

F(X)=P(X, <xNX, <xN..NX, <x,)
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Tools in Uncertainty Modeling

* Random variables and their characteristics
Functions of random variables

- sum of two random variables
Y =X, +X,

f(y)= [ Fx (Y =% (X )dx,

- non-linear function of random variables

Y =9g(X)
OX
f, =|— f,
(Y) o (X)
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Tools in Uncertainty Modeling

Random variables and their characteristics

Functions of random variables
Y =(,,Y,,..Y, )T

Yi=0i(X), X;=T1(Y)

X
Y,
fy ) =[] 1) J=|
OX,
|,
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Contents of Todays Lecture

* Random variables
- The Central Limit Theorem

- The Normal distribution
- The Log-Normal distribution

Stochastic Processes and Extremes

- Random sequences (Bernoulli trials)
- Binomial distribution
- Geometric distribution
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Random Variables

The Central Limit Theorem states:

The probability distribution function of a sum of a number of
random variables approaches the Normal (Gaussian)
distribution as the number becomes large

Y=X+X,+..+X_ T

1 RIS
f(x) == 2ﬂexp[ 1 j]
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Random Variables

* The Central Limit Theorem

Conditions for the validity of the theorem:
Y=X+X,+..+X,

The sum should not be dominated by one or a few components

The statistical dependency between components should not be
strong

No requirements to the type of distribution of the
components

If the components have skew distributions the number
increases
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Random Variables

Illustration:

A structural member is measured using a ruler.
- The ruler has limited length (2 m).
- The smallest unit on the ruler is 1 mm.

All measurements are rounded to the closest unit on the ruler.

Each measurement is subject to a measurement uncertainty
uniformly distributed in the range of +/- 0.5 mm.

We now consider the accumulated error associated with
measurements over lengths

-upto2m (one measurement)
- between 2 and 4 m (two measurements)
- between 6 and 8 m (four measurements)

- between 14 and 16 m  (eight measurements)
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Random Variables

* Tllustration:
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Random Variables

The Normal distribution

The analytical form of the Normal distribution may be
derived by repeated use of the result regarding the
probability density function for the sum of two random
variables

The Normal distribution is very frequently applied in
engineering modeling when a random quantity can be assumed
to be composed as a sum of a number of individual
contributions: X.,i=12,.,n

A linear combinatign S of 7 Normal distributed random
variables ~ S=a+)aX is thus also a Normal distributed
random variable "~
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Random Variables

The Normal distribution

The Normal distribution also results from
other considerations

The distribution of energy in an isolated
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Random Variables

* The Normal distribution

The accumulation of random movements
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Random Variables

* The Normal distribution:

In the case where the mean value is equal to zero and the
standard deviation is equal to 1 the random variable is said
to be standardized.

— > . Standardized random variable

A

Standard Normal
-

-

Normal

>
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Random Variables

The Normal distribution:

In the case where the mean value is equal to zero and the
standard deviation is equal to 1 the random variable is said

to be standardized.
Y — X - /U X

Oy

Standardized random variable

| 1, )
f, (Y)=o(y) :EGXP(_E y j

R ()=0y)= 7 exp(—%xzjdx
—© _
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Random Variables

When the logarithm of a random variable Xi.e.

y: /”(X), y ; N(/ino'y)

is Normal distributed the random variable X is said to be
Log-Normal distributed

X : LN(A,C)
1 1(me-aY B %
1:X (X) — Xg’«/ﬂvxp[ 2( é, ] j Hy _CX[{X-F?]
F, (X) = (D(ln(xg)— /1) Oy = CXp[/l +%2j\/exp(§2) —1
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Random Variables

Where the Normal distribution follows from the sum of
random variables - Central Limit Theorem

the Log-Normal distribution follows from the product of
random variables

In(X,- X,---X,)= ln(ﬁXi) = iln(xi)
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Random Variables

The Log-Normal distribution has the useful property that if
n

P=] [V
i1

and all Y; are independent Log-Normal distributed random
variables with parameters ¢;, 4 and & =0 then P is
also Log-Normal with parameters

n e (i)
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Random Variables

The Log-Normal distribution is often used to model

- uncertain parameters which cannot have negative
realizations

- fatigue lifes
- steel and concrete resistance

- daily river flows

- whenever a random variable results as a product of several
random variables
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Random Variables

2
Uy =ex] /1+%

2
o, =exq] /1+§— JexpC?)—1
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° Distribution type Parameters | Moments
Random Variables RS o
fx(x):ﬁ Z bia
There exist a large ke ]
number of different i
of e . Normal
probability density and — .
o . . o fx ()= exp| ——| 24 o> o
cumulative distribution 2 p[ i n "
funCTlonS: F (X)= . 127[:[0 exp[—;(t;’uj Jdt
. Shifted Lognormal, X > ¢ )
Ur"for-m 1 ey 2 ﬂ=£+exp{ﬁ+i]
Normal RN exp[_Z( 3 j 0 ) )
Log-normal Fon-of =022 ‘ o1 [
Exponen.rial Shifted Exponential, X > ¢ - l
BCTG £, (X) = Aexp(~A(X— &) & S
Gamma Fy (X)=1—exp(—/l(x—8)) 40 O':%
Gamma, x>0
by p>0 'U_E
f (X)= %exp(—bx)x’H b0 \/7
SoP
_I(bx.p) °
Fy (X) = T(p)
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Small Example 1

We remember the convolution integral
which we used for establishing the
probability density function for the sum
of two random variables:

Y =X, +X,

o (9)= [ F (Y=%) (X)X

Let us see how easily this works
for two uniformly distributed random
variables:
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Small Example 1 )

Assuming that the two random variables

are independent we can write the T a
convolution integral as: ‘)

f (V)= [ f, (Y= %) fy, (x)dlx,

e a)(d C)jﬂ(y X, € [c;d])dx,

1 min(d,y-b)

:(b_a)(d—C)[ 1]max(0,y_a)9 a+CSy£b+d

o o
> (@]

0.3 0.3
0.25 a=4, b=8 0.25 | a:2’ b=
0.2 1 = = 0.2 | — —
0.15 - c=2,0=6 0.15 - c=2, d=
0.1 0.1
0.05 A 0.05 A
0 ‘ ‘ 0
0 5 10 15 0 5
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Stochastic Processes and Extremes

* Random quantities may be “time variant” in the sense that
they take new values at different times or at new trials.

- If the new realizations occur at discrete times and have
discrete values the random quantity is called a random
sequence

failure events, traffic congestions, ...

- If the new realizations occur continuously in time and take
continues values the random quantity is called a random
process or stochastic process

wind velocity, wave heights, ...
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Stochastic Processes and Extremes

* Random sequences

- A sequence of experiments with only two possible and
mutually exclusive outcomes is called a Bernoulli trial

- Typically the outcomes of Bernoulli trials are denoted
successes or failures

If the probability of success in one trial is constant and
equal to p the probability density of ¥ successes in » trials,

i.e. p,(y) is given by:

i (nj: n!
pY(y){yjpy(l—p)”, y=0,12..n y) yl(n-y)!

T

Binomial probability Binomial operator
density function
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Stochastic Processes and Extremes

* Random sequences

- A sequence of experiments with only two possible and
mutually exclusive outcomes is called a Bernoulli trial

The Binomial cumulative distribution function then follows as:

1=0

Py(y)=Zy‘, (yjp‘(l— P", y=0l12,.n
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Stochastic Processes and Extremes

* Random sequences

- A sequence of experiments with only two possible and
mutually exclusive outcomes is called a Bernoulli trial

Illustration:

Binomial probability density function for n=5 and p=0.15 and
p:05 mp=0.15 @ p=0.50
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Small Example 2

We remember that we can establish the probability
density function of a function of a random variable
through:

Y =9(X)

OX
f, =|— f,
(y) 5 (X)
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Small Example 2

Let us see how easily this works:

Y = X2
U
X =Y

fY(Y):

o
oy

fx (X)

fY(Y):

1 s
2y 2
2)’

f (JY)
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Stochastic Processes and Extremes

* Random sequences

The expected value and the variance of a binomially
distributed random variable Y is given by:

E[Y|=np

Var[Y]=np(1- p)
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Stochastic Processes and Extremes

* Random sequences

The probability density function for the number of
(independent) trials before the first success can be given as:

D, (N)=pl—p)"" Geometric probability density

and the corresponding cumulative distribution function is thus
Po(n)=2_ p(1-p)~" =1-(1-p)’
i=1

N

Geometric cumulative distribution
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Small Example 3

We remember that we could establish the probability
density function of a vector of random variables ¥ which
were given as functions of a vector of random variables X

Y = (Yl,Yz,..Yn)T
X=(X), X5, X,)'" Y =0;(X) X; = f,(Y)
f, () =|J] f(X) " ox, ox ]
T .
J=| : .
OX,, OX,,
D .
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Small Example 3

Let us see how easily this approach can be applied for the

following problem:
Y1=X1+X2 )(1=Y1—Y2
Yz — Xz Xz :Yz

1 -1
J:{o 1} det(J)=1x1-0x1=1=|J|=1

‘ v (Y, ¥2) = T (Y — Yo yz)‘
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Stochastic Processes and Extremes

The median of the geometric distribution provides
information in regard to how “long” we need to play a
game with probability p of winning per time unit.

Time units might be

- tosses (dices)

- years (earthquakes)

The median is defined through
P,(nN)=0.5=1-(1-p)"

All we need to determine is n as a function of p
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Stochastic Processes and Extremes

The median of the geometric distribution provides
information in regard to how "long” we need to play a game
with probability p of winning per time unit.

Pi(M=05=1-(1-p)"
We take the natural logarithm on both sides and get:

In(0.5) =nIn(1- p)
U
0.7=-nIn(1- p)

Now we use Tha'r ’rhe natural Iogar'lfhm of

ln(l—p)——p+ p’ ——p +.. Z( e
0.7

U 0.7~np=>n=—
In(l-p)=—p forsmallp
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Stochastic Processes and Extremes

We can now apply this result:

50% chance of getting a 6 requires (n tosses):
n=0.7x6 =4 tosses

50% chance of getting two 6 (with 2 dices) requires:
n=0.7 x 36 = 25 tosses

50% chance experiencing an earthquake with an annual
probability of 0.001 requires (n years):

n=0.7 x 1000 = 700 years
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Stochastic Processes and Extremes

* Random sequences

The expected value and the variance of a random variable
with a Geometrically distributed random variable are given

by:
|

E[N]:B If p is the annual probability of e.g. an
extreme earthquake E/N] is the return
varN]= 1—2p period of such earthquakes
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