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Contents of Todays Lecture

• Overview of Uncertainty Modeling

• Random Variables
- properties of the expectation operator
- random vectors and joint moments
- conditional distributions and conditional moments
- the probability distribution for the sum of two random 

variables
- the probability distribution for functions of random variables
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Overview of Uncertainty Modeling

• Random variables and their characteristics

Uncertain phenomenon

Data/observations

Model

x,y p(x,y)
1,10 0.033
1,20 0.067
1,30 0.033
1,40 0.033
2,10 0.067
2,20 0.100
2,30 0.067
2,40 0.033
3,10 0.067
3,20 0.133
3,30 0.100
3,40 0.067
4,10 0.033
4,20 0.067
4,30 0.067
4,40 0.033

Real world

Random
variables
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Random Variables

• Properties of the expectation operator

The expectation operator facilitates that we can assess the 
expected value and the variance of a random variable

By understanding how the expectation operator works we will 
be able to assess the expected value and the variance of 
functions of random variables

This is useful if we want to analyze engineering models 
involving one or more random variables in regard to their 
expected values and their variances

E.g.: Duration of a construction process as a function of the 
duration of its individual processes
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Random Variables

• Properties of the expectation operator

The expectation operator possesses the following properties:
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Random Variables

• Properties of the expectation operator

The variance can thus be written as:
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Random Variables

• Properties of the expectation operator

Furthermore there is 
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Random Variables

• Properties of the expectation operator

From the result

it is seen that there in general is

for convex functions - Jensen‘s inequality !

[ ] 2 2 2 2 2( ) 2X X X XVar X E X E X X E Xμ μ μ μ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − = + − = −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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Equality only for linear functions
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Random Variables

• Random vectors and joint moments

Often we are dealing with models involving not only one
random variable but several random variables

These random variables can be collected in a vector

In general the components of the vector are dependent

E.g. Rainfall and water level

It is thus necessary that we establish probabilistic models
which include this dependency – we can do this through the
joint cumulative distributions and the joint moments. 
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Random Variables

• Random vectors and joint moments

Now we consider not just one continuous random variable but
a vector of continuous random variables

The joint cumulative distribution function is given by

and the joint probability density function is given by
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Random Variables

Consider the two
dimensional discrete
probability density function:
x,y p(x,y)
1,10 0.033
1,20 0.067
1,30 0.033
1,40 0.033
2,10 0.067
2,20 0.100
2,30 0.067
2,40 0.033
3,10 0.067
3,20 0.133
3,30 0.100
3,40 0.067
4,10 0.033
4,20 0.067
4,30 0.067
4,40 0.033

• Random vectors and joint moments
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Random Variables

• Random vectors and joint moments

The marginal probability density function of a random
variable Xi is defined by

( ) ( ) 1 1 1( 1  fold) .. ..
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Random Variables

Consider the two
dimensional discrete
probability density function:
x,y p(x,y)
1,10 0.033
1,20 0.067
1,30 0.033
1,40 0.033
2,10 0.067
2,20 0.100
2,30 0.067
2,40 0.033
3,10 0.067
3,20 0.133
3,30 0.100
3,40 0.067
4,10 0.033
4,20 0.067
4,30 0.067
4,40 0.033
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Discrete joint density

Marginal density for x

• Random vectors and joint moments
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Random Variables

• Random vectors and joint moments

The covariance between the i‘th and the j‘th component of 
the random vector of continuous random variables is defined
as the joint central moment i.e. by

From where we see that for i = j we get the variance for Xi
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Random Variables

• Random vectors and joint moments

The expected value and the variance of a linear function

are given by
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Random Variables

• Conditional distributions and conditional moments

Some times it is useful to be able to assess the probability
of an event given that we know something about one of the
random variables which are used to define the event

E.g. assume we want to calculate the probability that a 
project will be delayed under the condition that one of the
processes will exceed its planned duration by 50%.
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Random Variables

• Conditional distributions and conditional moments

The conditional probability density function for the random
variable X1 given the outcome of the random variable X2 is
given by

where if X1 and X2 are independent 

The conditional cumulative distribution function is obtained by
integration as 
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Random Variables

• Conditional distributions and conditional moments

The un-conditional cumulative distribution function for the
random variable X1 can be derived from the conditional
comulative distribution function by use of the total 
probability theorem

The conditional expected value is defined by
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Random Variables

• In many cases we are interested in assessing the probabilites
of functions of random variables

The functions are useful for describing the events we are
interested in – they are our engineering models.

A simple case is the sum of two random variables – it is
useful to derive the cumulative distribution function for such 
a sum.

A more general case concerns monotonic functions of random
variables – we will also derive the cumulative distribution for
this case.
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Random Variables

• The cumulative distribution function for the sum of two
random variables

Consider the sum

and assume that we have

First we derive the density function for

assuming that X1 is given i.e.

and we get
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Random Variables

• The cumulative distribution function for the sum of two
random variables

The marginal probability density function for Y is now
achieved by integrating out over X1, i.e. 

For the case where X1 and X2 are independent we get the
so-called convolution integral
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Random Variables

• The cumulative distribution function for functions of random
variables

Consider the more general problem of deriving the cumulative
distribution function for a function of a random variables i.e. 

where the probability distribution function of X
is given as

If is monotonically increasing and represents a one-to-one
mapping, a realization of Y is only smaller than y0
if the realization of X is smaller than x0 where

The cumulative distribution function for Y is then given by

( )Y g X=
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Random Variables

• The cumulative distribution function for functions of random
variables

starting now with

we have
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Random Variables

• The cumulative distribution function for functions of random
variables

In case the function is monotonically decreasing, a 
realization of Y is only smaller than y0 if the realization of X
is larger than x0 , and in this case we have to change the
sign i.e.

yielding

In the general case – for monotonically increasing or
decreasing functions there is thus
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Random Variables

• The cumulative distribution function for functions of random
variables

For the case where the components of a random vector
can be given as one-to-one mappings of monotonically increasing
or decreasing functions of the components of a 
random vector

in the form:

there is

with being the absolute value
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