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Contents of Todays Lecture

• Basics of Reliability Analysis

- Short summary of previous lecture

- The course at a glance

- Failure events and basic random variables

- Linear limit state functions and Normal distributed 
variables

- Error propagation

- Non-linear limit state functions

- Monte-Carlo simulation
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Summary of Previous Lecture

• Testing for goodness of fit

- The χ2 goodness of fit test

- The Kolmogorov-Smirnov goodness of fit test

• Model comparison
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CHI-Square distributed
k-1 degree of freedom

Summary of Previous Lecture

The CHI-square goodness of fit test
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We test a ststistic constructed from the squared
differences between the observed and the predicted
histograms:
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Summary of Previous Lecture

The Kolmogorov-Smirnov goodness of fit test

The observed cumulative
distribution function may
be calculated from:

The following statistic is applied (tabularized): 
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Summary of Previous Lecture

Model comparison

If testing of two different model hypothesis both
fall out positive i.e. both models are plausible we
can compare the goodness of fit of the two
models either by

- comparing the sample statistics directly
could be misleading/inconclusive due to 
different number of degrees of freedom

- comparing the sample likelihoods
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The Course at a Glance
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Basics of Reliability Analysis

• Failure events and basic random variables

By a failure event we associate in principle an event
of special interest e.g. :

- Loss of functionality

- Costs

- Loss of lives

- Damage to the environment
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Basics of Reliability Analysis

• Failure events and basic random variables

A failure event may conveniently be described in 
terms of a functional relationship

Such a functional relationship is denoted a limit state
function
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Realizations of basic
random variables
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Basics of Reliability Analysis

• The probability of an event

The probability of an event e.g. a failure event can be
calculated by the following integral 
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Basics of Reliability Analysis

• The probability of an event

The probability integral is in general non-trivial – can
be multi-dimensional and can have a complicated
integration domain

Classical nummerical integration techniques such as 
e.g. Simpson, Gauss or Schebyschev integration are
not computationally efficient for dimensions larger 
than 5-6. Other apporaches are needed – which we
will study further -
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Basics of Reliability Analysis

• Linear limit state functions and normal distributed
basic variables  

First we consider the case where the limit state
function is linear in the random variables and the
random variables are normally distributed

For the case where the random variables X are
normal distributed the safety margin M is also normal 
distributed
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Basics of Reliability Analysis

• Linear limit state functions and normal distributed
basic variables  

The probability of failure is then determined as

Which reduces to the determination of the standard
normal probability distribution function
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Basics of Reliability Analysis

• Linear limit state functions and normal distributed
basic variables
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Basics of Reliability Analysis

• Linear limit state functions and normal distributed
basic variables  

The reliability index β has a geometrical
interpretation
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Basics of Reliability Analysis

• Linear limit state functions and normal distributed
basic variables  

Example : Reliability of steel rod under tension
loading

s

r

350, 35R Rμ σ= =

40,200 == SS σμ

The resistance R and the max
annual loading S are both
assumed to be normal distributed
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Basics of Reliability Analysis

• Linear limit state functions and normal distributed
basic variables  

Example : Reliability of steel rod under tension
loading

s

r
The safety margin is thus normal 
distributed with parameters

150200350 =−=Mμ
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The reliability index β becomes 84.2
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Basics of Reliability Analysis

• The error accumulation law

In many engineering applications the accumulation 
of errors is a central question

Examples are : 

- errors due to fabrication tolerances of building 
components

- errors in connection with surveying

- errors in connection with measurements performed 
in the laboratory  
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Basics of Reliability Analysis

• The error propagation law

Assume that the error ε can be written as a 
differentiable function of random variables i.e. : 

with parameters

The idea is to linearize f(x)
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Basics of Reliability Analysis

• The error propagation law

If we linearize the error function around the mean
value of the random variables its expected value and 
variance becomes :
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Basics of Reliability Analysis

• Example : Error propagation in measurements

In order to estimate the length c i.e. the distance 
between the two points A and B the lengths a and b 
are measured 

due to measurement uncertainty in assessing a and b 
also the length of c will be associated with 
uncertainty and it is of interest to know the 
probability that the length of c will exceed 13.5 
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Basics of Reliability Analysis

• Example : Error propagation in measurements

It is assumed that a and b can be modeled as normal 
distributed random variables with parameters 

Using that c can be given as 

the statistical characteristics of c may be estimated 
through the error propagation law

A

B

C

a

b

c
2.12=aμ 1.5=bμ

4.0=aσ 3.0=bσ

22 bac +=
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Basics of Reliability Analysis

• Example : Error propagation in measurements
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Basics of Reliability Analysis

• Non-linear limit state functions

Limit state functions are often non-linear

As seen from the error propagation law it is
possible to linearize such limit state functions but
the results will depend on the linearization point 
and on the formulation of the limit state function
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Basics of Reliability Analysis

• Non-linear limit state functions

Limit state functions are often non-linear
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Hasofer and Lind suggested to linearize in the point 
where the limit state function is zero and closest to 
the origin in normal distributed space
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Basics of Reliability Analysis

• Non-linear limit state functions

The identification of the
reliability index may be
performed by solving an 
optimization problem
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Basics of Reliability Analysis

• Non-linear limit state functions

The optimization problem may be
solved using the following iteration
scheme
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Basics of Reliability Analysis

In summary the iteration follows 
the following steps

1 ) the linearization point is 
chosen as u* = β α

2) the Normal vector to the 
limit state function is 
determined in 
the linearization point

3) the reliability index β is 
calculated from

4) the new linearization point 
is 

5) continue with step 2) until 
convergence in β
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Basics of Reliability Analysis

Non-linear safety margins

Transformation

g(Z): linear g(U): non-linear

μZ1, μZ2 R μU1= μU2= 0

σZ1, σZ2 R σU1= σU2= 1

∈
∈
∈
∈
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Basics of Reliability Analysis

• Non-linear safety margins

“Limit state 
function”

g(U) = R-S
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Basics of Reliability Analysis

Start point X1
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Basics of Reliability Analysis

Linearization of limit
state function in X1
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Basics of Reliability Analysis

Calculation of a new
linearization point X2
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Basics of Reliability Analysis

Linearization of limit
state function in X2
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Basics of Reliability Analysis

Calculation of new
linearization point X3
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Basics of Reliability Analysis

Linearization of limit
state function in X3
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Basics of Reliability Analysis

β1=3.556

β2=3.607

β3=3.608

β4=3.608

Convergence criteria : εβββ ≤−=Δ + nn 1
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Basics of Reliability Analysis

• Example : Reliability of steel rod

it is assumed that R, S and A are normal distributed
random variables

s

r

sarg −⋅=)(x

Limit state function
Yield stress

Cross sectional area

Load

35,350 == RR σμ

300,1500 == SS σμ

2,10 == AA σμ
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Basics of Reliability Analysis

• Example : Reliability of steel rod

We can now write the limit state
function in terms of u-variables 
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Basics of Reliability Analysis

• Example : Reliability of steel rod

The reliability index β may be found
by iteration

200035300350350u          
)1500300()10)(35035(          

)())(()(

R ++−+=
+−++=

+−++=

ARSA

SAR

SSSAAARRR

uuuu
uuu

uuuug μσμσμσ

2000
350 350 300 35R A S R A

β
α α α βα α

−
=

+ − +

)35350(1
AR k

βαα +−=

)35350(1
RA k

βαα +−=

kS
300

=α

222
SARk ααα ++=

Iteration Start 1 2 3 4 5
β 3.0000 3.6719 3.7399 3.7444 3.7448 3.7448
αR -0.5800 -0.5701 -0.5612 -0.5611 -0.5610 -0.5610
αΑ -0.5800 -0.5701 -0.5612 -0.5611 -0.5610 -0.5610
αS 0.5800 0.5916 0.6084 0.6086 0.6087 0.6087
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Basics of Reliability Analysis

• Monte Carlo Simulation
The probability integration
problem may be solved by
Monte Carlo simulation

1) m realizations of the vector
X are produced
2) for every realization the
limit state function is
calculated
3) the realizations for which
the limit state function is
equal to or less than zero are
counted
4) The probability of failure is
estimated as
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between 0 and 1
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Basics of Reliability Analysis

• Monte Carlo Simulation
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m random realizations of R
and S are generated and the
number of realizations nf
occuring in the failure space
are counted nf

The probability of failure pf is
then
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