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 1.1 

EXERCISE TUTORIAL 1- SOLUTION:     

Exercise 1.1 - Solution 

The probability remains the same because the probability is specified in the same way for the 
total period. 

Exercise 1.2 - Solution 

Based on the definition of risk it is: 

1 1 1 0.1 100 10R PC= = ⋅ =  

and in the same way  

2 5R =  and 3 20R =  

Therefore event 3 is associated with the higher risk. 

Exercise 1.3 - Solution 

 
Mean death risk 
Per year and per 100000 persons 
Overall 
110 
100 
300 
800 
2000 
5000 

25 years old 
35 years old 
45 years old 
55 years old 
65 years old 
75 years old 

Work risks  
100 
90 
50 
15 
10 
5 

Wood cutting, wood transport 
Forest enterprise 
Worker on a construction site 
Chemistry industry 
Mechanical factory 
Office work 

Miscellaneous risks 
400 
300 
150 
100 
20 
10 
10 
5 
3 
1 
1 
1 
0.2 
0.1 

20 cigarettes a day 
1 bottle of wine per day 
Motor bicycling 
Wing aircraft as a hobby 
Driving a car (20-24 years) 
Pedestrian, Houseworker 
10000 km by personal car 
Hiking 
10000 km on the highway 
Plane crash per flight 
Fire in a building 
10000 km by train 
Death due to earthquake 
Death due to lightning 

Table 1.3.1: Mean death risk (source: Sicherheit und Zuverlässigkeit im Bauwesen, Schneider J.). 
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Based on Table 1.1 the activity with the higher risk is: smoking 20 cigarettes a day. 

Exercise 1.4- Solution 

In the analysis of data, correlations can be determined by different measurements. However 
in the mentioned measurements there is no direct connection between the number of storks 
and the number of births.  

Exercise 1.5- Solution 

Events: 

 1E : A failure of the bridge at mid span under the action of an abnormal load 

 2E : A failure of the bridge under the action of an abnormal load 

Event 1E  is a subset of event 2E . Therefore a failure of the bridge is more probable as a 

result of the action of an abnormal load. 

Exercise 1.6- Solution 

The probability of an event occurring lies in general between 0 (event will not occur) and 1 
(event will definitely occur). Therefore it is not possible to speak about 1000% of safety.  

Exercise 1.7- Solution 

   no  Avalanche occurs   

   1  Avalanche occurs 

   2  Avalanches occur 

Probability of    

   …      to be found 
   … 

   25 Avalanches occur 

   +_____________________________________ 

    The sum of all probabilities is 1. 

Therefore the probabilities that no avalanche occurs and that only 1 avalanche occurs need to 
be determined and be subtracted from the sum of all probabilities. 

The probability of occurrence of an avalanche at one summit is: 

1
( )= =0.025

40jP avalanche ,where j=1,2,….n 

The probability that no avalanche occurs at one summit is: 
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1
(   )= 1- =0.975

40jP no avalanche , where j=1,2,….n 

The probability of an avalanche only at one summit and at no other summit is calculated as: 

24 24(     ) ( ) (1 ( )) 0.025 0.975 0.0136thP avalanceonly on j summit P avalanche P avalanche= ⋅ − = ⋅ =  

Then the probability that no avalanche occurs at any summit (event A) is calculated as: 

25
1 2 25( )  (1- ( ))  (1- ( )) (1- ( )) 0.975 0.531P A P avalanche P avalanche P avalanche= ⋅ ⋅ ⋅ ⋅ = =  

Therefore, the probability that only one avalanche occurs in 25 summits (event B) is  

25

1

( ) (     )  25 0.0136 0.340th

j

P B P avalanceonly on j summit
=

= = ⋅ =∑  

The probability that at least two avalanches occur (event C) can be calculated as: 

( ) 1 ( ) ( ) 1 0.531 0.340 0.129P C P A P B= − − = − − =  

Exercise 1.8 - Solution 

Let us assume that we have 1000 reinforcement bars (rebars). According to tests, 1% of these 
rebars are corroded; that is 10 of the rebars are corroded while 990 are not corroded. Also it 
is known that the test method will indicate all the corroded rebars. Therefore the test will 
definitely detect 10 corroded rebars. However there is a 10% probability that the test will 
indicate that the rebars are corroded although they are not, i.e. there may be an observation of 
99 corroded rebars while they are not actually corroded!  

 

Figure 1.8.1: Bar diagram. 

From the 1000 rebars, 99+10=109 are indicated as being corroded. However, only 10 rebars 
are really corroded. Therefore the probability that corrosion is present provided that the test 

indicates corrosion is: 
10

( ) 0.0917
10 99

P corrosion = =
+

 



 2.1 

EXERCISE TUTORIAL 2- SOLUTION:     

Exercise 2.1 - Solution 

a. i) and ii) are sensible, but iii) and iv) are not. Probabilities cannot be separated and 
 complementary events describe quantities and not the probability.  

b.  

i) Event A and/or B occur; mathematical: Quantity. 

ii) Event B does not occur and event C occurs; mathematical: Quantity. 

iii) The probability of event A to occur; mathematical: Number between 0 and 1. 

iv) The probability that events A and B and C will occur and/or the complementary 
 events will not occur; mathematical: Number between 0 and 1. 

v) An empty sample space; mathematical: Empty set. 
 
c. 
i)       ii) 

A  B 

 C 

 D 

 

 
 
iii) 

A  B 

 C 

 D 

 

 

Exercise 2.2 - Solution 

Case 1) It is: 

 {2,4,6},  {3,6},  {6}A B A B= = ∩ =  

A  B 

 C 

 D 
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1

( )
2

P A =  
1

( )
3

P B =  

 
1

( ) ( ) ( )
6

P A B P A P B∩ = = ⋅  Events A  and B  are independent. 

 

Case 2) It is: 

 {2,4,6},  {2,3,5},    {2}A B A B= = ∩ =  

 
1

( )
2

P A =  
1

( )
2

P C =  

 
1

( ) ( ) ( )
6

P A C P A P C∩ = ≠ ⋅  Events A  and C  are not independent. 

Exercise 2.3 - Solution 

The probability that a vehicle is moving in one direction is:  

Direction 1-Event A1:  1
1

1 2

n 50
( ) = 0.2

(n +n ) (50+200)
P A = =  

Direction 2-Event A2:  2
2

1 2

n 200
( ) = =0.8

(n +n ) (50+200)
P A =  

It can be seen that there is a higher probability of a vehicle moving in direction 2.  

The probability that a vehicle will turn to the secondary road is: 

Vehicles from direction 1 1
1

1

m 25
( | ) = =0.5

n 50
P B A =  

Vehicles from direction 2 2
2

2

m 40
( | ) = =0.2

n 200
P B A =  

The probability that a vehicle from either direction will turn to the secondary road is: 

1 1 2 2( ) ( ) ( | ) ( ) ( | ) 0.2 0.5 0.8 0.2 0.26P B P A P B A P A P B A= ⋅ + ⋅ = ⋅ + ⋅ =  

Exercise 2.4 - Solution 

A = Equipment of Institute A (IAC) 

B = Equipment of Institute B (IHW) 

D = Inaccurate equipment 

Probability that the device was provided from one or the other institute: 

( ) 0.2P A =   ( ) 0.8P B =  

Probability of using an inaccurate device: 
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( | ) 0.05P D A =  ( | ) 0.02P D B =  

Probability of measuring with a device from an institute given there are some inaccurate 
devices: 

( ) ( | ) 0.2 0.05
( | ) 0.385

( ) ( | ) ( ) ( | ) 0.2 0.05 0.8 0.02

P A P D A
P A D

P A P D A P B P D B

⋅ ⋅= = =
⋅ + ⋅ ⋅ + ⋅

 

Exercise 2.5 - Solution 

The following events are identified: 

K:   Reinforcement is corroded 

I: Indication of corrosion 

( ) 0.01P K =   ( ) 0.99P K =  

( | ) 1.00P I K =  ( | ) 0.00P I K =  

( | ) 0.10P I K =  ( | ) 0.90P I K =  

We can write this into a table: 

Indication 
True state 

K  K  

K  1.00 0 

K  0.10 0.90 

 

( | ) ( ) 1.00 0.01
( | ) 0.0917

( | ) ( ) ( | ) ( ) 1.00 0.01 0.10 0.99

P I K P K
P K I

P I K P K P I K P K

⋅ ⋅= = =
⋅ + ⋅ ⋅ + ⋅

 

Exercise 2.6 - Solution 

The annual failure probability is calculated as: 

1 2 1 2 1 2( ) ( ) ( ) ( ) 0.04 0.08 0.04 0.08 0.1168P F F P F P F P F F∪ = + − ∩ = + − × = . 
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EXERCISE TUTORIAL 3- SOLUTION:     

Exercise 3.1 – Solution 

In order to plot the required graphical representations the data ordered in ascending form are 
used (Table 3.1.1). Based on the rule suggested by Benjamin and Cornell (see lecture notes 
Equation C.8) the number of intervals to be used is 6. Table 3.1.2 shows the summary of the 
observed traffic flow data.  

The maximum observation in direction 2 is 35852 and the minimum observation is 24846. 
The length of the interval may be thus chosen as: 

35852 24846
1834 2000

6

− = ≈ . 

The intervals are chosen as: 

24500 26500,      Midpoint=25500

26500 28500,      Midpoint=27500

28500 30500,      Midpoint=29500

30500 32500,      Midpoint=31500

32500 34500,      Midpoint=33500

34500 36500,      Midpoint=35500

−
−
−
−
−
−

 

 

Interval  
(Number of 
cars *103) 

Interval 
Midpoint (Number of 

cars *103) 

Number of  
observations 

Frequency % Cumulative  
frequency 

D
ir

ec
ti

o
n

 1
 

24.5-26.5 
26.5-28.5 
28.5-30.5 
30.5-32.5 
32.5-34.5 
34.5-36.5 

25.5 
27.5 
29.5 
31.5 
33.5 
35.5 

3 
1 
3 
3 

16 
4 

10.000 
3.333 

10.000 
10.000 
53.333 
13.333 

0.100 
0.133 
0.233 
0.333 
0.867 
1.000 

Interval  
(Number of 
cars *103) 

Interval 
Midpoint (Number of 

cars *103) 

Number of 
observations 

Frequency % Cumulative 
frequency 

D
ir

ec
ti

o
n

 2
 

17.5-20.0 
20.0-22.5 
22.5-25.0 
25.0-27.5 
27.5-30.0 
30.0-32.5 

18.75 
21.25 
23.75 
26.25 
28.75 
31.25 

3 
2 
4 
2 
8 

11 

10.000 
6.667 

13.333 
6.667 

26.667 
36.667 

0.100 
0.167 
0.300 
0.367 
0.633 
1.000 

  
Table 3.1.2 Summary of the observed traffic flow. 

Figures 3.1.1 and 3.1.2 show the frequency distributions and cumulative distribution 
diagrams for the traffic flow data. Even though one could use the values of the cumulative 
frequency of Table 3.1.2 to make the cumulative frequency plots, the quantiles of the 
observations (Table 3.1.3) are instead used. That is, as mentioned in the script (section C.3) 
due to the fact that the observations are known. The cumulative frequencies in Table 3.1.2 
would be used if only the intervals of the observations where known. However try to plot the 
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cumulative frequencies as an exercise for yourself using the interval and the cumulative 
frequencies of Table 3.1.2. 

 

Direction 1 Direction 2 
Number (i) ordered Quantile =

1

i

n +
 ordered Quantile =

1

i

n +
 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

24846 

24862 

25365 

28252 

29224 

29976 

30035 

30613 

32158 

32472 

32618 

32962 

33091 

33197 

33198 

33245 

33380 

33406 

33788 

33888 

33937 

34007 

34013 

34076 

34425 

34455 

34576 

35237 

35843 

35852 

0.0323 

0.0645 

0.0968 

0.1290 

0.1613 

0.1935 

0.2258 

0.2581 

0.2903 

0.3226 

0.3548 

0.3871 

0.4194 

0.4516 

0.4839 

0.5161 

0.5484 

0.5806 

0.6129 

0.6452 

0.6774 

0.7097 

0.7419 

0.7742 

0.8065 

0.8387 

0.8710 

0.9032 

0.9355 

0.9677 

17805 

18123 

19735 

20903 

21145 

22762 

22828 

23141 

24609 

26525 

26846 

27746 

28117 

28858 

28877 

29080 

29586 

29965 

29994 

30263 

30313 

30366 

30629 

30680 

30788 

30958 

31074 

31405 

31994 

32384 

0.0323 

0.0645 

0.0968 

0.1290 

0.1613 

0.1935 

0.2258 

0.2581 

0.2903 

0.3226 

0.3548 

0.3871 

0.4194 

0.4516 

0.4839 

0.5161 

0.5484 

0.5806 

0.6129 

0.6452 

0.6774 

0.7097 

0.7419 

0.7742 

0.8065 

0.8387 

0.8710 

0.9032 

0.9355 

0.9677 

Table 3.1.3 Quantile values of the traffic flow observations. 
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Figure 3.1.1: Frequency distribution and cumulative distribution plot of the observed traffic flow in 

Rosengartenstrasse (direction 1). 
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Figure 3.1.2 Frequency distribution and cumulative distribution plot of the observed traffic flow in 

Rosengartenstrasse (direction 2). 

It can be seen from the frequency distributions that the traffic flow in direction 2 is lower 
than in direction 1. In direction 1 the highest frequency is observed within the range of 32500 
and 34500 cars per day while the highest frequency for direction 2 is observed in the range of 
30000 and 32500 cars per day. Additionally it is seen that both distributions are skewed to 
the left. 

Plotting the cumulative distributions in the same scale, Figure 3.1.3, we have a direct 
comparison of the two data sets. It can be seen that the cumulative distribution plot of 
direction 1 is shifted significantly to the right, thus the traffic flow in this direction is higher 
than in direction 2.  
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Figure 3.1.3: Cumulative distribution plot of the observed traffic flow in Rosengartenstrasse 

(direction 1 and 2). 

However it can be seen from the plotted histograms that much information is lost due to the 
chosen number of intervals. Following the solution is provided for another number of 
intervals. 

 
Interval  

(Number of 
cars *103) 

Interval 
Midpoint (Number of 

cars *103) 

Number of  
observations 

Frequency % Cumulative  
frequency 

D
ir

ec
ti

o
n

 1
 24.50-25.75 

25.75-27.00 
27.00-28.25 
28.25-29.50 
29.50-30.75 
30.75-32.00 
32.00-33.25 
33.25-34.50 
34.50-35.75 
35.75-37.00 

25.125 
26.375 
27.625 
28.875 
30.125 
31.375 
32.625 
33.875 
35.125 
36.25 

3 
0 
0 
2 
3 
0 
8 

10 
2 
2 

10.000 
0.000 
0.000 
6.667 

10.000 
0.000 

26.667 
33.333 
6.667 
6.667 

0.100 
0.100 
0.100 
0.167 
0.267 
0.267 
0.533 
0.867 
0.933 
1.000 

Interval  
(Number of 
cars *103) 

Interval 
Midpoint (Number of 

cars *103) 

Number of 
observations 

Frequency % Cumulative  
frequency 

D
ir

ec
ti

o
n

 2
 17.5-19.0 

19.0-20.5 
20.5-22.0 
22.0-23.5 
23.5-25.0 
25.0-26.5 
26.5-28.0 
28.0-29.5 
29.5-31.0 
31.0-32.5 

18.25 
19.75 
21.25 
22.75 
24.25 
25.75 
27.25 
28.75 
30.25 
31.75 

2 
1 
2 
3 
1 
0 
3 
4 

10 
4 

6.667 
3.333 
6.667 

10.000 
3.333 
0.000 

10.000 
13.333 
33.333 
13.333 

0.067 
0.100 
0.167 
0.267 
0.300 
0.300 
0.400 
0.533 
0.867 
1.000 

  
Table 3.1.3: Summary of the observed traffic flow. 
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Figure 3.1.4: Frequency distribution plots of the observed traffic flow in Rosengartenstrasse 

(direction 1 and 2). 

From Figures 3.1.4 it is seen that a larger number of intervals enables to view more clearly 
the features of the distributions.  

Exercise 3.2 - Solution 

In order to plot the Tukey box plot five main features are required as shown in Table C.8 in 
the lecture notes. These are: 

• the lower quartile 

• the lower adjacent value 

• the median 

• the upper adjacent value 

• the upper quartile 

Consider the data of traffic flow in direction 1. Based on Equation C.10 from the lecture 
notes a value ν  is required such that  

ν = +v vnQ Q  

Therefore for the lower quartile (i.e. the 0.25 quartile) it is: 

30 0.25 0.25 7.75ν = ⋅ + =  

ν  has a non integer value. The value is splitted to its integer part 7=k  and the fractional 
part 0.75=p .Therefore o

vx  is: 

7 7 1(1 ) (1 0.75) 30035 0.75 30613 30468.5 30469 cars+= − + = − ⋅ + ⋅ = ≈o o o
vx p x px  

In the same way for the upper quartile it is: 

30 0.75 0.75 23.25ν = ⋅ + =  

Thus with the help of Table 3.1.1 it is: 

23 23 1(1 ) (1 0.25) 34013 0.25 34076 34028.75 34029 carso o o
vx p x px += − + = − ⋅ + ⋅ = ≈  
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In order to calculate the median it is: 

30*0.5 0.5 15.5ν = + =  

15 15 1(1 ) (1 0.5)*33198 0.5*33245 33221.5 33222 carso
vx p x px += − + = − + = ≈  

To evaluate the adjacent values the interquartile range is required: 

0.75 0.25 34029 30469 3560= − = − =r Q Q  

The lower adjacent value is the smallest observation that is greater than or equal to the lower 
quartile minus 1.5r. It is: 

0.25 1.5 30469 1.5 3560 25129− = − ⋅ =Q r  

Thus from Table 3.1.1 the lower adjacent value is 25365.  

In the same way the upper adjacent value is found as: 

0.75 1.5 34029 1.5 3560 39369+ = + ⋅ =Q r  

Therefore form Table 3.1.1 the upper adjacent value is a value less than or equal to 39369, 
that is 35852 which actually coincides with the higher value of the data set. 

Table 3.2.1 summarizes the above features showing also the outside values of both data sets. 
It can be seen that in direction 2 there are no outside values. 
 

Statistic Direction 1 Direction 2 

Lower adjacent value 

Lower quartile 

Median 

Upper quartile 

Upper adjacent value 

25365 

30469 

33222 

34029 

35852 

17805 

23063 

28979 

30642 

32384 

Outside values 24846 

24862 

 

Table 3.2.1: Statistics for the Tukey box plot for the traffic flow data in Rosengartenstrasse 

(direction 1 and 2). 

Figure 3.2.1 shows the Tukey box plots for both directions. It can be seen that all main 
features of the distribution of the data set for direction 1 are much higher than the 
corresponding ones for direction 2. It can be also observed that the data are not symmetrical 
and the upper tales are shorter than the lower ones. The median is shifted to the upper part of 
the box plot in both directions and that shows that the distributions are skewed to the left. 
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Figure 3.2.1: Tukey box plots of the traffic flow data in Rosengartenstrasse (direction 1 and 2). 

Exercise 3.3 - Solution 

In order to make the Q-Q plot the first thing is to examine the number of observations in each 
data set. Examining the number of observations within the two data sets it is seen that both 
have 30 observations. Therefore the Q-Q plot is simply a plot of the observations of the one 
data set against the observations of the other data set, Figure 3.3.1. To plot the Tukey mean 
difference plot the information of Table 3.3.1 is required. 

 

Direction 2 Direction 1 yi-xi (yi+xi)/2 

17805 

18123 

19735 

20903 

21145 

22762 

22828 

23141 

24609 

26525 

26846 

27746 

28117 

28858 

28877 

29080 

29586 

29965 

29994 

24846 

24862 

25365 

28252 

29224 

29976 

30035 

30613 

32158 

32472 

32618 

32962 

33091 

33197 

33198 

33245 

33380 

33406 

33788 

7041 

6739 

5630 

7349 

8079 

7214 

7207 

7472 

7549 

5947 

5772 

5216 

4974 

4339 

4321 

4165 

3794 

3441 

3794 

21325.5 

21492.5 

22550.0 

24577.5 

25184.5 

26369.0 

26431.5 

26877.0 

28383.5 

29498.5 

29732.0 

30354.0 

30604.0 

31027.5 

31037.5 

31162.5 

31483.0 

31685.5 

31891.0 
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30263 

30313 

30366 

30629 

30680 

30788 

30958 

31074 

31405 

31994 

32384 

33888 

33937 

34007 

34013 

34076 

34425 

34455 

34576 

35237 

35843 

35852 

3625 

3624 

3641 

3384 

3396 

3637 

3497 

3502 

3832 

3849 

3468 

32075.5 

32125.0 

32186.5 

32321.0 

32378.0 

32606.5 

32706.5 

32825.0 

33321.0 

33918.5 

34118.0 

Table 3.3.1: Values for the Tukey mean-difference plot of the traffic flow data in Rosengartenstrasse. 
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Figure 3.3.1: Q-Q plot of the traffic flow data and Tukey mean-difference plot. 

It can be seen from Figure 3.3.1 that the data lie far from the symmetry line in the Q-Q plot 
and are concentrated on the side of direction 1. From the Tukey mean-difference plot it is 
seen that for a large part of the data sets the traffic flow in direction 1 is about 3500 cars per 
day higher than in direction 2.  

Exercise 3.5- Solution 

Mean of the number of the newcomers : x =2161 

Mean of the number of the total students: y =13147 

Standard deviation of the number of the newcomers: Xs =1337. 

Standard deviation of the number of the total students: Ys =8801. 

Total number of observations: n =6. 

Coefficient of correlation of the numbers of the newcomers and the total students: 

1

( )( )1 11604968
0.99

1337 8801

n
i i

XY
i X Y

x x y y
r

n s s=

− −= = =
⋅∑ . 
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 ix  iy  
ix x−  iy y−  2

i( x x )−  2( y y )−  i( x x )( y y )− −  

A 3970 24273 1868.83 11126.5 3492538 123799002 20793574 
B 732 5883 -1369.17 -7263.5 1874617 52758432 9944942 
C 499 2847 -1602.17 -10299.5 2566938 106079700 16501516 

D 1300 5358 -801.17 -7788.5 641868 60660732 6239887 

E 3463 23442 1361.83 10295.5 1854590 105997320 14020755 
F 2643 17076 541.83 3929.5 293583 15440970 2129134 

Σ  12607 78879 - - 10724135 464736158 69629808 

nΣ /  2161.17 13146.5 - - 1787356 77456026 11604968 

/ nΣ  - - - - 1336.92 8800.91 - 

Exercise 3.6- Solution 

The relationships between the height of the station and the maximum temperatures, and the 
height of the station and the minimum temperatures in May are obtained in Figure 3.6.1.  

Let ix , iy  and iz  ( 1,2,...,10=i ) represent the height of the ith station, maximum temperature 

and minimum temperature at the ith station respectively. Using the calculation sheet the 

following descriptive statistics are obtained: 

Mean values: 
10

1

1
1379

10 =
= =∑ i

i

x x ,  
10

1

1
13.7

10 =
= =∑ i

i

y y ,   
10

1

1
4.36

10 =
= =∑ i

i

z z  

Standard deviations: 

10
2

1

1
( ) 834

10 =

= − =∑x i
i

s x x , 
10

2

1

1
( ) 1.99

10 =

= − =∑y i
i

s y y , 
10

2

1

1
( ) 3.69

10 =

= − =∑z i
i

s z z  

Covariances: 

( ) ( )
10

1

1
1513

10 =
= − ⋅ − = −∑xy i i

i

s x x y y ,  ( ) ( )
10

1

1
2887

10 =
= − ⋅ − = −∑xz i i

i

s x x z z  

Correlation coefficients: 

0.91ρ
⋅

= = −xy

xy
x y

s

s s
,   0.94ρ

⋅
= = −xz

xz
x z

s

s s
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Figure 3.6.1: The relationship between height of station and maximum/minimum temperatures. 

 

ix  iy  −ix x  2( )−ix x  −iy y  2( )−iy y  ( )( )− −i ix x y y  

Height [m] Tmax [°C]      

1355 12.2 -24.1 580.81 -1.5 2.25 36.15 

890 14.6 -489.1 239218.81 0.9 0.81 -440.19 

1950 13.4 570.9 325926.81 -0.3 0.09 -171.27 

1040 14 -339.1 114988.81 0.3 0.09 -101.73 

1085 14.6 -294.1 86494.81 0.9 0.81 -264.69 

1055 13.4 -324.1 105040.81 -0.3 0.09 97.23 

574 16.4 -805.1 648186.01 2.7 7.29 -2173.77 

3572 9.2 2192.9 4808810.4 -4.5 20.25 -9868.05 

632 16.4 -747.1 558158.41 2.7 7.29 -2017.17 

1638 12.8 258.9 67029.21 -0.9 0.81 -233.01 

Table 3.6.2: Calculation sheet for Height – Tmax relation. 

 

ix  iz  −ix x  2( )−ix x  −iz z  2( )−iz z  ( )( )− −i ix x z z  

Height [m] Tmin [°C]      

1355 2.3 -24.1 580.81 -2.06 4.2436 49.646 

890 6.3 -489.1 239218.81 1.94 3.7636 -948.854 

1950 4.7 570.9 325926.81 0.34 0.1156 194.106 

1040 4.3 -339.1 114988.81 -0.06 0.0036 20.346 

1085 6.3 -294.1 86494.81 1.94 3.7636 -570.554 

1055 5.1 -324.1 105040.81 0.74 0.5476 -239.834 

574 8.3 -805.1 648186.01 3.94 15.5236 -3172.094 

3572 -5.3 2192.9 4808810.4 -9.66 93.3156 -21183.414 

632 8.1 -747.1 558158.41 3.74 13.9876 -2794.154 

1638 3.5 258.9 67029.21 -0.86 0.7396 -222.654 

Table 3.6.3: Calculation sheet for Height – Tmin relation. 
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Exercise 3.7: 

The relative and cumulative frequencies are obtained in Table 3.7.1. The histogram is shown 
in Figure 3.7.1 and 3.7.2. 
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Figure 3.7.1: Histogram. 

a. The probability that the tensile strength lies between 20 and 25 [N/mm2 ] is obtained 

from Table 3.7.2 as [ ] 9
0.06

151

kn
P A

n
= = =  

b. [ ]

5

1 (1 0 0 1 9) 11
0.062

151 151

i
i

n
P B

n
= + + + += = = =
∑

 

Upper Class Abs. Rel. Cumulative

limit center frequency frequency frequency

[N/mm2] [N/mm2]

5 2.5 1 0.007 0.007

10 7.5 0 0.000 0.007

15 12.5 0 0.000 0.007

20 17.5 1 0.007 0.013

25 22.5 9 0.060 0.073

30 27.5 10 0.066 0.139

35 32.5 22 0.146 0.285

40 37.5 30 0.199 0.483

45 42.5 33 0.219 0.702

50 47.5 27 0.179 0.881

55 52.5 9 0.060 0.940

60 57.5 5 0.033 0.974

65 62.5 0 0.000 0.974

70 67.5 3 0.020 0.993

75 72.5 1 0.007 1.000

in

 
Table 3.7.2: Relative and cumulative frequencies of wood tensile strength. 
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Exercise 3.8: 

   

Left skewed distribution    Symmetrical distribution 
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EXERCISE TUTORIAL 4- SOLUTION:     

Exercise 4.1 – Solution 

a. The integration of the probability density function over the entire support must be one. 
6060

2 3

00

15 1
( ) 1 (15 ) 1

4 2 12

1
(27000 18000) 1

9000

∞

−∞

⎡ ⎤= ⇒ ⋅ ⋅ − = ⋅ ⋅ − ⋅ =⎢ ⎥⎣ ⎦

⇒ ⋅ − = ⇒ =

∫ ∫X

x
f x dx c x dx c x x

c c

  

 

b. 

x
2 3 2 3

0-

1 15 1 1 15 1
(15 ) 

4 9000 2 12 9000 2 12∞

⎡ ⎤ ⎛ ⎞⋅ ⋅ − = ⋅ ⋅ − ⋅ = ⋅ ⋅ − ⋅⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠∫
x

y
c y dy y y x x  

 2 3

        0                                           x 0

1 15 1
( )          0 x 60

9000 2 12

        1                                      60  x

<⎧
⎪⎪ ⎛ ⎞= ⋅ ⋅ − ⋅ ≤ ≤⎨ ⎜ ⎟

⎝ ⎠⎪
⎪ <⎩

XF x x x  

 

c. Let a  be a number between 0 and 60, then: 

a
2 3

00

1 1 15 1
( ) (15 ) 0.9

9000 4 9000 2 12
⎡ ⎤≤ = ⋅ ⋅ − = ⋅ ⋅ − ⋅ =⎢ ⎥⎣ ⎦∫

a
x

P X a x dx x x  

3
2 3 2

3 2

1 15 1 15
0.9 8100 0

9000 2 12 12 2

90 97200 0 48.30

⎛ ⎞⋅ ⋅ − ⋅ ≡ ⇒ − ⋅ + =⎜ ⎟
⎝ ⎠

⇒ − ⋅ + = ⇒ =

a
a a a

a a a

 

So the values of 30.00 CHF and 40.00 CHF do not exceed the 90% quantile. 

 

d. Considering the symmetry of the probability density function of X , the mean value is 
obtained as: (0 60) / 2 30.+ =  Or, the mean value is obtained also as follows: 

6060
2 3 4

00

1 1 1
( ) ( ) (15 ) 5

9000 4 9000 16

1 270000
( ) (1080000 810000) 30

9000 9000

∞

−∞

⎡ ⎤= ⋅ = ⋅ ⋅ − = ⋅ ⋅ − ⋅ ⇒⎢ ⎥⎣ ⎦

= ⋅ − = =

∫ ∫X

x
E X x f x dx x dx x x

E X

 

Exercise 4.2 - Solution 

a. The probability density function is obtained as: 
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0

( )

( )

( )

( )

( )

0

<⎧
⎪
⎪
⎪ −⋅ ≤ <⎪ −⎪
⎪
⎪= ≤ <⎨
⎪
⎪

−⎪ ⋅ ≤ <⎪ −⎪
⎪
⎪ ≤⎩

X

x a

x a
h a x b

b a

f x h b x c

x d
h c x d

c d

d x

 

Integration of the probability density function gives the cumulative distribution function as 
follows: 

( ) ( )
∞

−∞

= ∫X XF x f x dx  

 

2

1

2

2

3

0

( )

2 ( )

( )

( )

2 ( )

0

<⎧
⎪
⎪
⎪ −⋅ + ≤ <⎪ ⋅ −⎪
⎪
⎪
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⎪
⎪
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⎪
⎪ ≤⎩

X

x a

x a
h C a x b

b a

F x h x C b x c

x d
h C c x d

c d

d x

 

Integration takes place over the continuing terms. 

By =x a  
2

1

( )
0

2 ( )

−= ⋅ +
⋅ −
a a

h C
b a

 ⇒ 1 0=C  

By =x b  
2

2

( )

2 ( )

−⋅ = ⋅ +
⋅ −
b a

h h b C
b a

⇒ 2

( )

2

+= − ⋅a b
C h  

By =x c  
2

3 2

( )

2 ( )

−⋅ + = ⋅ +
⋅ −
x d

h C h x C
c d

⇒
2

3

( ) ( )

2 ( ) 2

− +⋅ + = ⋅ − ⋅
⋅ −
c d a b

h C h c h
c d

 

  ⇒ 3

( ) ( )

2

+ − +⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠

c d a b
C h  

Finally the cumulative distribution function becomes: 
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b. The mode value is the value at which lies the maximum of the density function. In the 
existing case, no distinct maximum is available. Instead of a mode value, an area is 
indicated from b to c. 

 The parameter h may be estimated by evaluating the value of ( )XF x  at 6x = : 

 ( ) 1
∞

−∞

=∫ Xf x dx  e.g. area under the density function = 1   

Thus it is: 
( ) ( )

1
2

− + − ⋅ = ⇒
d a c b

h
(6 1) (3 2)

1
2

− + − ⋅ = ⇒h 3 1⋅ = ⇒h
1

3
=h  

 

c. For a =1, b=2, c=3, d=6 and h=1/3 the probability density function gets the following 
form:  
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The mean value is then calculated as follows 

]
2 3 6

1 2 3

( 1) ( 6)
( )

3 3 9
μ

∞

−∞

⋅ − − ⋅ −
⎡= = ⋅ ⋅ = + ⋅ +⎣ ∫ ∫ ∫ ∫x x

x x x x x
E x x f x dx dx dx dx  

2 3 63 2 2 3 2

1 2 3

28

9 6 6 27 3 9

x x x x x⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= − + − − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

c. Using the parameters a =1, b=2, c=3, d=6 and h=1/3 and by integration of the 
probability density function it is: 

2

2

0 1

( 1)
1 2

6

1
( ) 2 3

3 2

( 6)
1 3 6

18

0 6

<⎧
⎪
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X

x

x
x

x
F x x

x
x

x

 

It is easy to find that (3) 0.5XF = . Therefore, the median is 3. 

 

e. The median can be determined graphically through the illustration of the probability 
density function. It is that x  value, for which the area under the density function is 
half the total area, Figure 4.2.2. 

 Area  1

1 1 1
A =(2 -1)

3 2 6
⋅ ⋅ =  

 Area  2

1 1
A (3- 2)

3 3
= ⋅ =     

 Area    3

1 1 1
A (6 3)

3 2 2
= − ⋅ ⋅ =  

Since 1 2 3A +A =A  the median lies at x=3.  
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Figure 4.2.2: Determination of the median. 

The graphical interpretation of the mean value is the center of gravity of the shape of the 
probability density function. That means that moments are necessary for the estimation of the 
mean values. The mean value lies where moments of the corresponding areas are in 
equilibrium Figure 4.2.3. Therefore in a graphical solution the areas Ai and the associated 

lever arms di should be estimated to evaluate x. It is useful to know that: 
5

1

A 0
=

⋅ =∑ i i
i

d  
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x
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Figure 4.2.3: Estimation of the mean values. 
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EXERCISE TUTORIAL 5- SOLUTION:     

Exercise 5.1 – Solution 

a. The expected values of X and Y are: 

 
11

2

1 1

1 1
( ) ( ) 0

2 4XE X x f x dx xdx x
∞
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The expected value of 6 4 2X Y− +  is obtained as follows: 

 (6 4 2) 6 ( ) 4 ( ) 2 2E X Y E X E Y− + = − + = −  

 

b. The variances of X and Y are obtained as follows: 

 [ ]( )22( )Var X E X E X⎡ ⎤= −⎣ ⎦   [ ]( )22( )Var Y E Y E Y⎡ ⎤= −⎣ ⎦  
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1
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Var Y =  

So the covariance of (6 ;4 )Cov X Y  is then obtained as follows: 

 ,

1 1 1 1
( ; ) ( ) ( )

15 3 5 225X YCov X Y Var X Var Yρ= ⋅ ⋅ = ⋅ ⋅ =  

 
1 1
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c. 
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d. 

 
[ ]22 2 2 2 2

2

(6 4 ) 6 ( ) 4 ( ) 6 ( ) 4( ( ) ( ) )

1 1 14
6 4 ( 1 )

3 5 5

E X Y E X E Y E X Var Y E Y− = − = − + =

⋅ − ⋅ + = −
  



 5.2 

Exercise 5.2 - Solution 

a. [ ] 0.2910 0.3580 0.1135 0.0505 0.813U GP N N= = + + + = . 

b. The probability of interest is represented by a conditional probability: 

[ ( 2)]
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P N

∩ == =
=

. 

The conditional probabilities are obtained as: 
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EXERCISE TUTORIAL 6- SOLUTION:     

Exercise 6.1 – Solution 

a. For nS  it is: 
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And thus, based on the central limit theorem, 50S  is Normal distributed with: ( )50,200N  

 For nX  it is: 
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And thus 50X  is Normal distributed with: ( )1,0.08N . 

b. 1X  is Normal distributed with ( )21,2N . A new random variable Z  is introduced 

such as 1 1

2

XZ −=  with ( )0,1N . Then it is: 
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Exercise 6.2 – Solution 

Consider the following events: 

 Event H: overflow in a given year 

 Event K: no overflow in a given year  

 1

1

1
( ) 0.001

1000
( ) 1 0.001 0.999

P H p

P K p

= = =

= − = =
 

 n  in the following corresponds to the 10 year period. 

a. The event of overflow in a given year during a 10 year period may be described by a 
geometric distribution: 

 1 9
,1 1 1( ) ( ) (1 ) (0.001) (0.999) 0.000991n

overflowP H p p −= ⋅ − = ⋅ =  

b. According to the Binomial distribution it is (the frequency of occurrence implies no 
difference in the solution): 

 2 10 2 2 8
,2 1 1

10!
( ) ( ) ( ) 45 (0.001) (0.999) 0.000045

2! (10 2)!overflowP H p p −= ⋅ = ⋅ ⋅ =
⋅ −

 

 0 10 0 0 10
,0 1 1

10!
( ) ( ) ( ) (0.001) (0.999) 0.99004

0! (10 0)!overflowP H p p −= ⋅ = ⋅ =
⋅ −

 

c. The probabilities of the events of “no overflow” and “overflow once” need to be 
estimated: 

 1 10 1 1 9
.,1 1 1

10!
( ) ( ) ( ) 10 (0.001) (0.999) 0.00991

1! (10 1)!overflowP H p p −= ⋅ = ⋅ ⋅ =
⋅ −

 

 0 10 0 0 10
,0 1 1

10!
( ) ( ) ( ) (0.001) (0.999) 0.99004

0! (10 0)!overflowP H p p −= ⋅ = ⋅ =
⋅ −

 

 max,1 ,0 .,1( ) ( ) ( ) 0.99004 0.00991 0.99995overflow overflowP H P H P H= + = + =  

d. According to the Binomial distribution it is (the frequency of occurrence implies no 
difference in our solution): 

  10 100 10 17
,10 1 1

100!
( ) ( ) ( ) 1.6 10

10! (100 10)!overflowP H p p − −= ⋅ = ⋅
⋅ −

 

e. For the case that the number of the considered years is high (m=100) and the yearly 
probability of overflow is small ( 1p =0.001), the Poisson distribution can be used.  

 1 100 0.001 0.1y m pμ = ⋅ = ⋅ =   

 
10

0.1 17
,10

0.1
( ) 2.5 10

! 10!
y

y
y

overflowP H e e
y

μμ − − −= ⋅ = ⋅ = ⋅  

f. From the Poison distribution it is: 
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 max,10 ,0 ,1 .,10( ) ( ) ( ) ... ( )overflow overflow overflowP H P H P H P H= + + +  

 
0 0.1 1 0.1 10 0.10.1 0.1 0.1

... 0.999 1
0! 1! 10!

− − −⋅ ⋅ ⋅= + + + = ≅e e e
 

g. Using the Binomial distribution it is: 

 0 1000 0 0 1000
,0 1 1

1000!
( ) ( ) ( ) (0.001) (0.999) 0.368

0! (1000 0)!overflowP H p p −= ⋅ = ⋅ =
⋅ −

  

 And the required probability is the probability of the complementary event: 

 , 1( ) 1 0.368 0.632overflowP H ≥ = − =  

 Using the Poisson distribution instead it is: 

 1 1000 0.001 1y m pμ = ⋅ = ⋅ =  

 
0

1
, 1

1
( ) 1 0.632

0!overflowP H e−
≥ = − ⋅ =  

 



 7.1 

EXERCISE TUTORIAL 7 

Exercise 7.1 - Solution 

a.  The mean occurrence rate of a rainfall in the first 5 months of a year is obtained as: 

 
3 5

0 3

2
2 7

3
ν ⋅= + =∫ ∫

t
dt dt . 

Therefore the probability that 3 or more rainfalls occur in the first 5 month is: 

 [ ] [ ]
0 1 2

7 7 77 7 7
3 1 2 1 ( ) 0.97

0! 1! 2!
− − −≥ = − ≤ = − + ⋅ + ⋅ =P X P X e e e . 

 where X  is the number of rainfall in the first 5 months. 

b.  Let ,Y Z  be the numbers of occurrence of rainfall during the 8th, 9th and the 10th 

month and during the 11th, 12th and the 13th month respectively. The mean occurrence 
rates in each period are obtained as: 

 
10

7

1
(13 ) 4.5

3
ν = − =∫Y t dt  

 
13

10

1
(13 ) 1.5

3
ν = − =∫Z t dt . 

 The probability of interest is: 

 [ ]
0 1 0 1

4.5 4.5 1.5 1.54.5 4.5 1.5 1.5
1 and 1 ( ) ( ) 0.034

0! 1! 0! 1!
− − − −≤ ≤ = + ⋅ ⋅ + ⋅ =P Y Z e e e e . 

Exercise 7.2 - Solution 

a. Let A  represent the event which corresponds to a return period of 475 years. The 
probability that A  occurs in a year (1)AP  is: 

 
1

(1)
475

=AP . 

 The probability that A  occurs in 50 years (50)AP can be calculated as: 

 
50

50 1
(50) 1 (1 (1)) 1 1 0.1

475
⎛ ⎞= − − = − − =⎜ ⎟
⎝ ⎠

A AP P . 

b. The probability that A  occurs within the next 475 years, (475)AP  can be calculated 

as: 
475

475 1
(475) 1 (1 (1)) 1 1 0.633

475
⎛ ⎞= − − = − − =⎜ ⎟
⎝ ⎠

A AP P . 
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Exercise 7.3 – Solution 

a. 

( ) ( )

( ) ( )

15.000

44.2752 14 15.000 8649.81 2.715

4

4

[ max 15.000] 1 15.000 1

4.2752 10
6 3.000 6

0,57722 0,57722
10.000 8649,809

4.2752 10

1 15.000 1 1 1 0.9359 0.0641

ue
X

x

x

e e
X

P yearly F x e

u

F x e e

α

π πα
σ

μ
α

− −

−− − −

−

−

−

− −

≥ = − = = −

= = =

= − = − =

− = = − = − = − =

 

The probability that the annual maximum discharge will exceed 15.000 m3/s is 0.0641. 

 

b. 

. 
( ) ( ) ( )( ) ( ) ( )( )

( )( )
4

ln ln 0.991
1 0.99 ln ln 0.99

100

ln ln 0.99
8649.809 10760.08 8649.809 19409.889

4,2752 10

x ue
XF x e x u u x

x x x

α

α
α

− −−

−

−
− = = = ⇔ − = − − ⇔ + =

−
−

⇔ + = ⇔ + = ⇔ =
−

 

The discharge that corresponds to a return period T  of 100 years is 319410 m / s . 

c. 

( ) [ ] ( )

( ) ( )( )

( ) ( )20

20

20x u

x u

Y X

e
Y

e
Y

F y P Y y F x

F y e

F y e

α

α

− −

− −

−

−

= ≤ = ⎡ ⎤ =⎣ ⎦

=

=

 

d. 

( ) ( )

( )

420 4,2756 10 15000 8649,81 1,3241 15000 1 1 1 0,266

1 15000 0,734

e
Y

Y

F e e

F

−− −− −− = − = − = −

− =
 

The probability that the 20-year-maximum discharge will exceed 15.000 m3/s is 0.734. 
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EXERCISE TUTORIAL 8 - SOLUTION 

Exercise 8.1 - Solution 

a. From the Pythagorean Theorem it follows that: 

 2 2 2 2f a b d+ + =  

Therefore, the error in d propagates according to 2 2 2
d f a bε ε ε ε= + + . 

 Then, 2 2 2( ) ( ) ( )fd a b

ε ε ε ε

εε ε ε
σ σ σ σ

= + +  is Chi-distributed with three degrees of freedom. 

 The probability density function of dZ
ε

ε
σ

=  is: 

 
2

(3 1)
( / 2)

3/ 2 1
( )

2 (3 / 2)
z

Z

z
f z e

−
−

−=
Γ

 

 Therefore, the probability density function of dε  is obtained as: 

 
2 2( ( ) / 2) ( ( ) / 2)

2 21 1 1 1
( ) ( ) ( )

2 2 / 2 2

d d

e e

d

d d
d

e d

dz
f e e

d

ε ε
σ σ

ε
ε ε

ε εε
σ ε σ σπ π

− −
= =  

b. The error in c propagates according to 2 2
c a bε ε ε= + . 

 2 2( ) ( )c a b

c

Y
ε ε

ε ε ε
σ σ σ

= = +  is Chi-distributed with two degrees of freedom and the 

 probability density function is: 

 
2

2
(2 1)

( / 2) 2
2/ 2 1

( )
2 (2 / 2)

y
y

Y

y
f y e ye

− −−
−= =

Γ
. 

 The probability that the error in c exceeds 2.4 εσ  is obtained as: 

 
2

2

2.4
( 2.4 ) ( 2.4) ( 2.4) 0.056

y
c

cP P P Y ye dyε
ε

εε σ
σ

∞ −
≥ = ≥ = ≥ = =∫ . 
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Exercise 8.2 - Solution 

1. Formulate the null and alternate hypotheses:  

The null hypothesis 0H  is formulated as the true mean μ  being equal to 30 MPa. The 

alternate hypothesis 1H  is then simply given by 30μ ≠ MPa. 

0 : 30H MPaμ =   1 : 30H MPaμ ≠  

(It may be strange to assume that the null hypothesis is 30 MPaμ = , since 30 MPaμ >  is 
also acceptable if 30 MPaμ =  is acceptable. However, in this exercise, for simplicity the null 

hypothesis and the alternative hypothesis are taken as above.) 

2. Formulate an operating rule: 

The operating rule is given as: (30 30 ) 1P X α− Δ ≤ ≤ + Δ = −  

3. Choose the level of significance α : 

10%α = . 

4. Determine the condition of sampling (what kind of and how many data?): 

15 samples of the compressive strength are taken at one day from the concrete production. 

5. Do the calculations: 

(30 30 ) 1

30 30
(30 30 ) 0.9 2 ( ) 1 0.9 ( ) 0.95

/ 16.36 /15x

P X

P X
n

α

σ

− Δ ≤ ≤ + Δ = − ⇒
+ Δ − Δ− Δ ≤ ≤ + Δ = ⇒ Φ − = ⇒ Φ =

 

where X is the sample statistic. From the probability table for the standard Normal 
distribution (Annex T, Table T.1), it is: 

1.645 1.72
16.36 /15

Δ = ⇒ Δ = . 

Thus, if the sample mean x  from the 15 samples lies within the interval:  

28.28 31.72MPa x MPa⎡ ⎤≤ ≤⎣ ⎦  then the null hypothesis cannot be rejected at the 10% 

significance level.  

6. Obtain the sample mean: 

The sample mean is equal to 32.25 MPa. 
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7. Judge the null hypothesis H0 

Since 32.25 MPa is outside the interval, the null hypothesis is rejected. 

In the same procedure, the interval for accepting the null hypothesis at the 1% significance 

level is obtained as 27.31 32.69MPa X MPa⎡ ⎤≤ ≤⎣ ⎦ . Since the sample mean (32.25MPa) is 

within the interval, the null hypothesis cannot be rejected. 

Exercise 8.3 - Solution 

1. Formulate the null and alternate hypotheses: 

0 : 23.7H μ =   1 : 23.7H μ ≠  

2. Formulate an operating rule: 

The operating rule is given as: 1.96 1.96x
n n

σ σμ μ− ≤ ≤ +  

where σ  is the standard deviation of the traveling time and n  is the number of samples.  

3. Choose the level of significance α :  

5%α = . 

4. Determine the condition of sampling (what kind of and how many data?) 

n = 13 samples of the traveling time. 

5. Do the calculations: 

3 3
1.96 1.96 23.7 1.96 23.7 1.96

13 13
22.07 25.33

x x
n n

x

σ σμ μ− ≤ ≤ + ⇔ − ≤ ≤ +

⇔ ≤ ≤
 

6. Obtain the sample mean. 

22.3x =  minutes. 

7. Judge the hypothesis H0. 

The sample mean is in the interval 22.07 25.33x⎡ ⎤≤ ≤⎣ ⎦ . Therefore the null hypothesis cannot 

be rejected at the 5% significance level. 
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Exercise 8.4 - Solution 

a. 

1. Formulate the null and alternate hypotheses: 

0 : 40 /XH hour weekμ =  

1 : 40 /XH hour weekμ ≠  

2. Formulate an operating rule: 

The operating rule is stated as: The null hypothesis cannot be rejected at the α  significance 
level if the following is satisfied: 

/ 2 / 21
X

X
k k

n

α α
μ

σ

−− < < , where  is the number of measurementsn  

3. Choose the level of significance α : 

0.05α =  

4. Determine the condition of sampling (what kind of and how many data?) 

Weekly working hours of 9 workers. 

5. Do the calculations: 

1 1
/ 2 / 2

0.05 40 0.05
1 1

1 12 29.5
9

40
1.96 1.96 37.99 42.01

1
9.5

9

X

X X
k k

n

X
hours X hours

α α
μ

σ
− −− −⎛ ⎞ ⎛ ⎞− < < ⇔ −Φ − < < Φ − ⇔⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−− < < ⇔ < <
 

The null hypothesis cannot be rejected if the sample mean of the weekly working hour of the 
9 workers lies between 37.99 hours and 42.01 hours. 

6. Obtain the sample mean. 

The sample mean is: 

( )1
39 41 40 42 43 40 39 37 43 40.33

9
⋅ + + + + + + + + =  hour/week  
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7. Judge the null hypothesis H0. 

The sample mean lies within the interval [ ]37.99;42.01  and hence the null hypothesis cannot 

be rejected at the 5% significance level. 

 

b. 

1. Formulate the null and alternate hypotheses: 

0 : X YH μ μ≤  

1 : X YH μ μ>  

2. Formulate an operating rule: 

The null hypothesis cannot be rejected at the α  significance level if the following condition 

is satisfied: X Y− ≤ Δ  where Δ  is a critical value to be determined in the following. 

3. Choose the level of significance α : 

0.05α = . 

4. Determine the condition of sampling (what kind of and how many data?) 

The weekly working hours of 9 workers before and after the installation of the new rule 
respectively. 

5. Do the calculations: 

The critical value Δ  is obtained as: 

2 2

0
1 0.05 0.95 0.95

0.95 2.39
9.5 9.5
9 9

X Y

X YX Y

P X Y

k l

μ
σ σσ

−

−

⎛ ⎞
⎜ ⎟⎛ ⎞Δ − Δ −⎡ ⎤− ≤ Δ = − ⇒ Φ = ⇒ Φ = ⇒⎜ ⎟⎜ ⎟⎣ ⎦ ⎜ ⎟ ⎜ ⎟⎝ ⎠ +⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟ΔΦ = ⇒ Δ =⎜ ⎟
⎜ ⎟+
⎝ ⎠

 

The null hypothesis cannot be rejected at the 5% significance level if the difference of the 
mean values of the random variables X and Y is smaller or equal to 2.39. 

6. Obtain the sample mean difference. 

40.33x =  
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39.33y =  

40.33 39.33 1.00z x y= − = − =  hours. 

7. Judge the null hypothesis H0. 

Since it is 1.00 2.39x y− = < , the null hypothesis cannot be rejected at the 5% significance 

level. 

Exercise 8.5 - Solution 

a and b. The probability density function and the cumulative distribution functions are 

2

2
0 10000

( ) 10000
0

X

x x
f x

otherwise

⎧ ≤ ≤⎪= ⎨
⎪⎩

 (8.5.1) 

2

0 0

( ) 0 10000
10000

1 10000

X

x

x
F x x

x

≤⎧
⎪
⎪⎛ ⎞= < ≤⎨⎜ ⎟
⎝ ⎠⎪
⎪ >⎩

 (8.5.2) 

 Taking the square root of both sides of Equation (8.5.1), a linear relationship between 
 the square root of ( )XF x and x  is obtained: 

2

( ) ( )
10000 10000X X

x x
F x F x

⎛ ⎞= ⇔ =⎜ ⎟
⎝ ⎠

 (8.5.3) 

For values of the cumulative distribution function in the interval [ ]0;1  the following table is 

obtained: 
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With the help of the above table the probability paper is created by rescaling the y-axis. Plot 
the data in the probability paper. If the data fit on a straight line the data follow the triangular 
distribution. The cumulative distribution function used to plot the data is obtained in the 
following table. 

 

i No. of cars 
( )

1
o

X i

i
F x

N
=

+
 

1 3600 0.1 

2 4500 0.2 

3 5400 0.3 

4 6500 0.4 

5 7000 0.5 

6 7500 0.6 

7 8700 0.7 

8 9000 0.8 

9 9500 0.9 

It is seen that the data fit well on a straight line and hence the hypothesis of the triangular 
distribution can be accepted. 

  

Exercise 8.6 - Solution 

a. The cumulative distribution function of the exponential distribution is written as: 

 ( ) 1 exp( )TF t tλ= − −  

The complementary cumulative distribution function is expressed by:  

( ) 1 ( ) exp( )T TG t F t tλ= − = −  



 8.8 

By taking the natural logarithm the following relation is obtained: 

ln( ( ))TG t tλ= −  

The pair ( ), ln ( )t G t  represents a straight line with a slope of λ− . The assumption that the 

time interval is exponentially distributed is checked by plotting the data in the probability 
paper. To do so the following calculation sheet is used: 

 

i Time interval (seconds) ( )o
T iF t  1 ( )o

T iF t−  ln( ( ))TG t  

1 1.52 0.077 0.923 -0.080 

2 6.84 0.154 0.846 -0.167 

3 9.12 0.231 0.769 -0.262 

4 10.64 0.308 0.692 -0.368 

5 15.2 0.385 0.615 -0.486 

6 21.28 0.462 0.538 -0.619 

7 30.4 0.538 0.462 -0.773 

8 30.4 0.615 0.385 -0.956 

9 34.2 0.692 0.308 -1.179 

10 60.8 0.769 0.231 -1.466 

11 78.28 0.846 0.154 -1.872 

12 95.76 0.923 0.077 -2.565 

The probability paper with the plotted data is shown in the following figure: The data fit well 
on a straight line and hence it is reasonable to say that the time interval of car arrivals is 
exponentially distributed. 
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-2.5000

-2.0000

-1.5000

-1.0000

-0.5000

0.0000
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Time interval t (seconds)

ln
(

(
))

T
G

t

 

1 

−λ 
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b. The sample mean is obtained as: 

( )1 1.52 6.84 9.12 10.64 15.2 21.28 30.4 30.4 34.2 60.8 78.28 95.76
12
32.87 seconds

x = + + + + + + + + + + +

=
 

Since the negative slope of the line in the above figure corresponds to the parameter λ , the 
parameter is estimated from the figure as 0.026. The mean value is then estimated from the 
following relation: 

1 1
38.1 seconds

ˆ 0.026λ
= =  
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EXERCISE TUTORIAL 9 - SOLUTION 

Exercise 9.1 - Solution 

a. The likelihood function is written as: 

 ( ) ( )2

2
1

1
, exp

22

n
i

i

x
L

μ
μ σ

σπσ=

⎛ ⎞−
= ⋅ −⎜ ⎟

⎜ ⎟
⎝ ⎠

∏  

 where ix  is the thi  observation of concrete compressive strength. The log 

 likelihood function is written as: 

( ) ( ) ( ) ( ) ( )
2 2

2 2
1 1

1 1
ln ln exp ln 2 ln

2 22

μ
π σ μ

σ σπσ= =

⎛ ⎞⎛ ⎞−
⎜ ⎟= = ⋅ − = − − − −⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑

n n
i

i
i i

x
l L n n x  

b. The estimators with the maximum likelihood method are obtained by solving the 
following equations simultaneously. 

 
( , )

0
l μ σ

μ
∂ =

∂
 and 

( , )
0

l μ σ
σ

∂ =
∂

 

 

( )2
1

1

1

1
2 0

2

0

1

n

i
i

n

i
i

n

i
i

l
x

x n

x
n

μ
μ σ

μ

μ

=

=

=

∂ = − =
∂

⇔ − =

⇔ =

∑

∑

∑

 

 

( )

( )

2

3
1

2
2

1

1
0

1
ˆ ˆ

n

i
i

n

i
i

l n
x

x
n

μ
σ σ σ

σ μ

=

=

∂ = − + − =
∂
⇔

= −

∑

∑

 

 By substituting the numbers of ix ,  

 ( )1 1
24.4 27.6 ... 39.7 653.3 32.67

20 20
μ = + + + = × =  

 ( )
2 2

1

1
ˆ 4.04

n

i
i

x
n

σ μ
=

= − =∑ . 
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c. Analytical moments are obtained as: 

 ( ) ( )2

1 2

1
exp

22
X

x
xf x dx x dx

μ
λ μ

σπσ

∞ ∞

−∞ −∞

⎛ ⎞−
= = ⋅ − =⎜ ⎟

⎜ ⎟
⎝ ⎠

∫ ∫  

 
( )2

2 2 2
2 2

1
exp

22

x
x dx

μ
λ σ μ

σπσ

∞

−∞

⎛ ⎞−
= − = +⎜ ⎟

⎜ ⎟
⎝ ⎠

∫  

 Sample moments are obtained from the data as: 

 1
1

1
32.67

=
= =∑

n

i
i

m x
n

 and 2
2

1

1 21674.6
1083.7

20=
= = =∑

n

i
i

m x
n

 

 By equating the analytical moments and the sample moments, 

 1 1( ) 32.67( )mλ μ= = =  

 2 2
2 2( ) 1083.7( )mλ μ σ= + = =  

 The estimates are thus ˆ 32.67μ =  and ˆ 4.04σ = . 

Exercise 9.2 – Solution 

a. The likelihood function is written as: 

 ( )
1

exp
n

i

L xλ λ
=

= −∏  

 and the log likelihood function is written as: 

 ( ) ( )( )( ) ( )
1 1

ln ln exp ln
n n

i i
i i

l L x n xλ λ λ λ
= =

= = − = −∑ ∑  

 The maximum likelihood estimator is obtained as: 

 
1

1

0

0

20ˆ 0.031
653.3

n

i
i

n

i
i

dl

d
dl n

x
d

n

x

λ

λ λ

λ

=

=

=

⇔ = − =

⇔ = = =

∑

∑
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b. Whereas it is almost always possible to estimate the parameters of distributions by 
means of the maximum likelihood method or the method of moment, it does not 
necessarily mean that the distribution drawn with the estimated parameters fits the data 
well, see Figure 9.2.1. 
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Figure 9.2.1: Cumulative distribution function and observed cumulative distribution. 
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EXERCISE TUTORIAL 10 - SOLUTION 

Exercise 10.1 – Solution 

a. 

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6

Observation

Uniform

 
Figure 10.1.1: Histogram of observations and uniform mass probability. 
 

b. 
60

, 6

60! 1
[ 10, 1,2,3, 4,5,6] 0.0000745

(10!) 6
⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

o jP N j . 

Remark that the probability that the observations of the resulting side distribute uniformly is 
very small even if the dice is symmetric. 
 

c. The null hypothesis that the dice is symmetric is expressed as: 
( ) 1/ 6, ( 1,2,3, 4,5,6)= =jp x j .  

The sample statistic is: 

26
, ,2

1 ,

( )
ε

=

−
=∑ o j p j

m
j p j

N N

N
, where , ( )=p j jN np x , with n being the number of total trials and ,p jN  

the number of outcomes of side j. 

The operating rule, i.e. the critical value Δ  to which the sample statistic shall be compared in 
order to judge the null hypothesis, is: 2ε Δ α≥ =mP( ) , stating that the null hypothesis shall be 

rejected, at the α % significance level, if the sample statistic is larger or equal to the critical 
value. The sample statistic follows the Chi-square distribution with 6-1=5 degrees of freedom. 
At the 5% significant level, the null hypothesis shall be rejected if the sample statistic is larger 
than 11.07, see the probability table for the Chi-square distribution (Annex T, Table T.3).  
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Since the sample statistic is obtained as 2 11 07ε Δ= ≤ =m 2.20 .  from the observations, see 

Table 10.1.2, the null hypothesis that the dice is symmetric cannot be rejected at the 5% 
significance level. 
 

Side o, jN  jp( x )  =p, j jN np( x )  2εm  

1 7 9 10 9/10 
2 12 4 10 4/10 
3 11 1 10 1/10 
4 10 0 10 0/10 
5 8 4 10 4/10 
6 12 4 10 4/10 

Sum 60   = 2.20 

Table 10.1.2: Calculation sheet for the 2χ - goodness of fit test.  

Exercise 10.2 – Solution 

a. The parameters are estimated as: 

1ˆ 32.67mμ = =  

2 2
2 1ˆ 1083.4 32.67 4.04m mσ = − = − = . 

b. The sample statistic for the χ2 goodness-of-fit test is given as: 

2
, ,2

1 ,

( )
ε

=

−
=∑

k
o j p j

m
j p j

N N

N
, where , ( )=p j jN np x , with n being the number of total trials and ,p jN  

the number of outcomes within a certain interval. 

The operating rule, i.e. the critical value Δ  to which the sample statistic shall be compared in 
order to judge the null hypothesis, is: 2ε Δ α≥ =mP( ) , stating that the null hypothesis shall be 

rejected, at the α % significance level, if the sample statistic is larger or equal to the critical 
value.  

The sample statistic follows the Chi-square distribution with 4-1-2=1 degree of freedom. At 
the 5% significant level, the null hypothesis shall be rejected if the sample statistic is larger 
than 3.84, see the probability table for the Chi-square distribution (Annex T, Table T.3).  

Since the sample statistic is obtained as 2 0 163 3 84ε Δ= < =m . .  from the observations, see 

Table 10.2.2, the null hypothesis that the dice is symmetric cannot be rejected at the 5% 
significance level. 
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Interval o, jN  jp( x )  =p, j jN np( x )  2εm  

-30 5 
30 32.67

0.254
4.04

−⎛ ⎞Φ =⎜ ⎟
⎝ ⎠

 5.08 0.001 

30-33 5 
33 32.67 30 32.67

0.278
4.04 4.04

− −⎛ ⎞ ⎛ ⎞Φ − Φ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 5.56 0.06 

33-36 6 
36 32.67 33 32.67

0.263
4.04 4.04

− −⎛ ⎞ ⎛ ⎞Φ − Φ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 5.26 0.10 

36- 4 
36 32.67

1 0.205
4.04

−⎛ ⎞− Φ =⎜ ⎟
⎝ ⎠

 4.10 0.002 

Sum 20   = 0.163 

Table 10.2.3: Calculation sheet for the 2χ - goodness of fit test.  

Exercise 10.3: 

a. 
 

i ix  
=o

o i

i
F ( x )

n
 o

p iF ( x )  −o o
o i p iF ( x ) F ( x )  

1 6.33 0.05 0.121891 0.071891 

2 6.85 0.1 0.258987 0.158987 

3 7.17 0.15 0.369813 0.219813 

4 7.41 0.2 0.464813 0.264813 

5 7.57 0.25 0.526882 0.276882 

6 7.81 0.3 0.62297 0.32297 

7 7.86 0.35 0.641923 0.291923 

8 7.90 0.4 0.657023 0.257023 

9 7.96 0.45 0.678091 0.228091 

10 8.06 0.5 0.712015 0.212015 

11 8.11 0.55 0.73037 0.18037 

12 8.13 0.6 0.734124 0.134124 

13 8.17 0.65 0.750047 0.100047 

14 8.29 0.7 0.784557 0.084557 

15 8.33 0.75 0.795964 0.045964 

16 8.73 0.8 0.889861 0.089861 

17 9.07 0.85 0.941416 0.091416 

18 9.19 0.9 0.954406 0.054406 

19 9.19 0.95 0.954574 0.004574 

20 10.18 1 0.996354 0.003646 

Table 10.3.2: Calculation sheet for the Kolmogorov-Smirnov goodness of fit test. 
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The sample statistic for the Kolmogorov-Smirnov goodness of fit test is calculated with the 

help of Table 10.3.2 and it is: 
1

0 32297ε
=

⎡ ⎤= − =⎣ ⎦
n

o o
max o i p i

i
max F ( x ) F ( x ) . .  

The operating rule, i.e. the critical value Δ  to which the sample statistic shall be compared in 
order to judge the null hypothesis, is: ε Δ α≥ =maxP( ) , stating that the null hypothesis shall 

be rejected, at the α % significance level, if the sample statistic is larger or equal to the 
critical value.  

At the 1% significant level and n=20, the null hypothesis shall be rejected if the sample 
statistic is larger than 0.352, (Annex T, Table T.4). Since the sample statistic is obtained as 

0 322 0 352ε Δ= ≤ =max . .  from the observations, see Table 10.3.2, the null hypothesis cannot 

be rejected at the 1% significance level. 

b. 

The sample statistic for the Kolmogorov-Smirnov goodness of fit test is calculated with the 

help of Table 10.3.3 and it is: 
1

0 28297ε
=

⎡ ⎤= − =⎣ ⎦
n

o o
max o i p i

i
max F ( x ) F ( x ) . .  

The operating rule, i.e. the critical value Δ  to which the sample statistic shall be compared in 
order to judge the null hypothesis, is: ε Δ α≥ =maxP( ) , stating that the null hypothesis shall 

be rejected, at the α % significance level, if the sample statistic is larger or equal to the 
critical value.  

At the 1% significant level and n=50, the null hypothesis shall be rejected if the sample 
statistic is larger than 0.352, (Annex T, Table T.4). Since the sample statistic is obtained as 

0 28297 0 231ε Δ= > =max . .  from the observations, see Table 10.3.2, the null hypothesis shall 

be rejected at the 1% significance level. 
 

i ix  
=o

o i

i
F ( x )

n
 o

p iF ( x )  −o o
o i p iF ( x ) F ( x )  

1 5.83 0.02 0.047393 0.027393 

2 6.33 0.04 0.121891 0.081891 

3 6.40 0.06 0.134778 0.074778 

4 6.41 0.08 0.137037 0.057037 

5 6.56 0.1 0.173362 0.073362 

6 6.66 0.12 0.201526 0.081526 

7 6.80 0.14 0.241197 0.101197 

8 6.85 0.16 0.258987 0.098987 

9 6.94 0.18 0.288944 0.108944 

10 7.08 0.2 0.336548 0.136548 

11 7.17 0.22 0.369813 0.149813 

12 7.19 0.24 0.380149 0.140149 
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13 7.31 0.26 0.423959 0.163959 

14 7.41 0.28 0.464813 0.184813 

15 7.57 0.3 0.526882 0.226882 

16 7.60 0.32 0.539873 0.219873 

17 7.81 0.34 0.62297 0.28297 

18 7.84 0.36 0.634307 0.274307 

19 7.86 0.38 0.641923 0.261923 

20 7.90 0.4 0.657023 0.257023 

21 7.94 0.42 0.670326 0.250326 

22 7.96 0.44 0.678091 0.238091 

23 7.98 0.46 0.684461 0.224461 

24 8.06 0.48 0.712015 0.232015 

25 8.11 0.5 0.73037 0.23037 

26 8.13 0.52 0.734124 0.214124 

27 8.17 0.54 0.750047 0.210047 

28 8.22 0.56 0.764028 0.204028 

29 8.26 0.58 0.775566 0.195566 

30 8.29 0.6 0.784557 0.184557 

31 8.29 0.62 0.786522 0.166522 

32 8.33 0.64 0.795964 0.155964 

33 8.53 0.66 0.8482 0.1882 

34 8.57 0.68 0.857948 0.177948 

35 8.67 0.7 0.878718 0.178718 

36 8.69 0.72 0.882976 0.162976 

37 8.71 0.74 0.887226 0.147226 

38 8.71 0.76 0.887688 0.127688 

39 8.73 0.78 0.889861 0.109861 

40 8.82 0.8 0.90585 0.10585 

41 8.86 0.82 0.912768 0.092768 

42 9.07 0.84 0.941416 0.101416 

43 9.19 0.86 0.954406 0.094406 

44 9.19 0.88 0.954566 0.074566 

45 9.19 0.9 0.954574 0.054574 

46 9.25 0.92 0.960285 0.040285 

47 9.29 0.94 0.963293 0.023293 

48 9.42 0.96 0.972263 0.012263 

49 9.62 0.98 0.983147 0.003147 

50 10.18 1 0.996354 0.003646 

Table 10.3.3: Calculation sheet for the Kolmogorov-Smirnov goodness of fit test. 
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c. The sample statistic for the Kolmogorov-Smirnov goodness of fit test is calculated 

with the help of Table 10.3.2 and it is: 
1

0 32297ε
=

⎡ ⎤= − =⎣ ⎦
n

o o
max o i p i

i
max F ( x ) F ( x ) . .  

The operating rule, i.e. the critical value Δ  to which the sample statistic shall be compared in 
order to judge the null hypothesis, is: ε Δ α≥ =maxP( ) , stating that the null hypothesis shall 

be rejected, at the α % significance level, if the sample statistic is larger or equal to the 
critical value. At the 5% significant level and n=20, the null hypothesis shall be rejected if the 
sample statistic is larger than 0.294, (Annex T, Table T.4). Since the sample statistic is 
obtained as 0 32297 0 294ε Δ= > =max . .  from the observations the null hypothesis shall be 

rejected at the 5% significance level. 

d. The sample statistic for the Kolmogorov-Smirnov goodness of fit test is calculated 

with the help of Table 10.3.2 and it is: 
1

0 28297ε
=

⎡ ⎤= − =⎣ ⎦
n

o o
max o i p i

i
max F ( x ) F ( x ) . .  

The operating rule, i.e. the critical value Δ  to which the sample statistic shall be compared in 
order to judge the null hypothesis, is: ε Δ α≥ =maxP( ) , stating that the null hypothesis shall 

be rejected, at the α % significance level, if the sample statistic is larger or equal to the 
critical value. At the 5% significant level and n=50, the null hypothesis shall be rejected if the 
sample statistic is larger than 0.192, (Annex T, Table T.4). Since the sample statistic is 
obtained as 0 28297 0 192ε Δ= > =max . .  from the observations the null hypothesis shall be 

rejected at the 5% significance level. 

Exercise 10.4: 

a. The first and the second sample moments are: 

1 26.41m =  

2 747.55m =  

The exponential distribution has the following cumulative distribution function: 

( ) 1 exp( )XF x xλ= − − , 0x >   

The first analytical moment 1μ  is: 1

1μ
λ

=  

Equating 1m  and 1μ , the parameter λ is estimated as: 1 1
1

1ˆ 0.038m
m

μ λ= ⇔ = =  

b. The cumulative distribution function is shown in the following figure. Remark that the 
model of the exponential distribution is quite poor, although it is possible to estimate 
the parameter in the exponential distribution with the method of moment. 
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c. The sample statistic for the χ2 – goodness of fit test is: 
2

, ,2

1 ,

( )
ε

=

−
=∑

k
o j p j

m
j p j

N N

N
, where 

, ( )=p j jN np x , with n being the number of total measurements and ,p jN  the number of 

measurements within a certain interval. The operating rule, i.e. the critical value Δ  to which 
the sample statistic shall be compared in order to judge the null hypothesis, is: 

2ε Δ α≥ =mP( ) , stating that the null hypothesis shall be rejected, at the α % significance 

level, if the sample statistic is larger or equal to the critical value. 

The sample statistic follows the Chi-square distribution with 4-1-1=2 degrees of freedom. At 
the 10% significant level, the null hypothesis shall be rejected if the sample statistic is larger 
than 4.6, see the probability table for the Chi-square distribution (Annex T, Table T.3). Since 
the sample statistic is obtained as 2 43 55 4 6ε Δ= > =m . .  from the observations, see Table 

10.4.3, the null hypothesis that the shall be rejected at the 10% significance level. 

 

Interval o, jN  jp( x )  =p, j jN np( x )  2εm  

-20 7 0.49 14.7 4.03 

20-25 4 0.08 2.4 1.07 

25-30 11 0.07 2.1 37.72 

30- 8 0.36 10.8 0.73 

Sum 30   43.55 

Table 10.4.3: Calculation sheet for the 2χ - goodness of fit test.  

c. The sample statistic for the Kolmogorov-Smirnov goodness of fit test is calculated 

with the help of Table 10.4.4 and it is: 
1

0 412ε
=

⎡ ⎤= − =⎣ ⎦
n

o o
max o i p i

i
max F ( x ) F ( x ) . .  

The operating rule, i.e. the critical value Δ  to which the sample statistic shall be compared in 
order to judge the null hypothesis, is: ε Δ α≥ =maxP( ) , stating that the null hypothesis shall 

be rejected, at the α % significance level, if the sample statistic is larger or equal to the 
critical value. 
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At the 10% significance level and n=30, the null hypothesis shall be rejected if the sample 
statistic is larger than 0.22, (Annex T, Table T.4). Since the sample statistic is obtained as 

0 412 0 22ε Δ= > =max . .  from the observations the null hypothesis shall be rejected at the 10% 

significance level. 

 

i ix  
=o

o i

i
F ( x )

n
 o

p iF ( x )  −o o
o i p iF ( x ) F ( x )  

1.0 12.8 0.033 0.401 0.367 

2.0 16.3 0.067 0.479 0.412 

3.0 16.6 0.100 0.485 0.385 

4.0 16.9 0.133 0.491 0.358 

5.0 17.2 0.167 0.497 0.331 

6.0 17.9 0.200 0.511 0.311 

7.0 19.5 0.233 0.542 0.308 

8.0 21.9 0.267 0.584 0.317 

9.0 22.3 0.300 0.590 0.290 

10.0 22.5 0.333 0.593 0.260 

11.0 23.4 0.367 0.608 0.241 

12.0 26.8 0.400 0.658 0.258 

13.0 26.9 0.433 0.659 0.226 

14.0 27.0 0.467 0.660 0.194 

15.0 27.1 0.500 0.662 0.162 

16.0 27.2 0.533 0.663 0.130 

17.0 27.2 0.567 0.663 0.096 

18.0 27.5 0.600 0.667 0.067 

19.0 27.9 0.633 0.672 0.039 

20.0 28.3 0.667 0.678 0.011 

21.0 29.3 0.700 0.690 0.010 

22.0 29.5 0.733 0.693 0.041 

23.0 30.3 0.767 0.702 0.064 

24.0 32.1 0.800 0.723 0.077 

25.0 32.3 0.833 0.725 0.108 

26.0 33.5 0.867 0.738 0.129 

27.0 33.9 0.900 0.742 0.158 

28.0 35.6 0.933 0.759 0.174 

29.0 39.2 0.967 0.792 0.175 

30.0 43.5 1.000 0.824 0.176 

Table 10.4.4: Calculation sheet for the Kolmogorov-Smirnov goodness of fit test. 
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EXERCISE TUTORIAL 11 - SOLUTION 

Exercise 11.2 – Solution 

a. Based on the information provided the following event tree is constructed for carrying 
out the prior analysis: 

 

Figure 11.2.1: Event tree for carrying out the prior decision analysis. 

The benefit associated with the opening of the borehole, a-priori, is estimated as follows: 

[ ] [ ] [ ]
1

'[ ] ( 90000) (15000) (170000)

        = 0.5 ( 90000) 0.3 (15000) 0.2 (170000)

        = 4000 

′ ′ ′= ⋅ − + ⋅ + ⋅

⋅ − + ⋅ + ⋅
aE u P D P D P O

CHF

 

Hence the action that gives the larger utility (larger expected benefit in terms of cost) is action 

1a , 

[ ] { } { }
1 2

max ; max 4000; 0 4000⎡ ⎤ ⎡ ⎤′ ′ ′= = =⎣ ⎦ ⎣ ⎦a aE u E u E u CHF   

and hence a-priori the engineer would decide to open up the borehole. 

 

b. and c.  

The event tree is now extended to include the cases of performing a test, 11a , or not 

performing a test, 12a . The following probabilities can readily be estimated: 

In case that the test is carried out the probability of receiving the indication that the well is dry 
is: 
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( ) ( | ) ( ) ( | ) ( ) ( | ) ( )

          0.6 0.5 0.3 0.3 0.1 0.2 0.41

′ ′ ′ ′= ⋅ + ⋅ + ⋅
= ⋅ + ⋅ + ⋅ =

D D C OP I P I D P D P I C P C P I O P O
 

The probabilities of the states of the well are updated given the above indication: 

( | ) ( ) 0.6 0.5 0.3
( | ) 0.732

( ) 0.41 0.41

′⋅ ⋅′′ = = = =
′

D
D

D

P I D P D
P D I

P I
 

( | ) ( ) 0.3 0.3 0.09
( | ) 0.220

( ) 0.41 0.41

′⋅ ⋅′′ = = = =
′

D
D

D

P I C P C
P C I

P I
 

( | ) ( ) 0.1 0.2 0.02
( | ) 0.048

( ) 0.41 0.41

′⋅ ⋅′′ = = = =
′

D
D

D

P I O P O
P O I

P I
 

Similarly for the other two possible outcomes of the test it is: 

( ) ( | ) ( ) ( | ) ( ) ( | ) ( )

          0.1 0.5 0.3 0.3 0.5 0.2 0.24

′ ′ ′ ′= ⋅ + ⋅ + ⋅
= ⋅ + ⋅ + ⋅ =

C C C CP I P I D P D P I C P C P I O P O
 

( | ) ( ) 0.1 0.5 0.05
( | ) 0.208

( ) 0.24 0.24

′⋅ ⋅′′ = = = =
′

C
C

C

P I D P D
P D I

P I
 

( | ) ( ) 0.3 0.3 0.09
( | ) 0.375

( ) 0.24 0.24

′⋅ ⋅′′ = = = =
′

C
C

C

P I C P C
P C I

P I
 

( | ) ( ) 0.5 0.2 0.1
( | ) 0.417

( ) 0.24 0.24

′⋅ ⋅′′ = = = =
′

C
C

C

P I O P O
P O I

P I
 

( ) ( | ) ( ) ( | ) ( ) ( | ) ( )

          0.3 0.5 0.4 0.3 0.4 0.2 0.35

′ ′ ′ ′= ⋅ + ⋅ + ⋅
= ⋅ + ⋅ + ⋅ =

O O O OP I P I D P D P I C P C P I O P O
 

( | ) ( ) 0.3 0.5 0.15
( | ) 0.429

( ) 0.35 0.35

′⋅ ⋅′′ = = = =
′

O
O

O

P I D P D
P D I

P I
 

( | ) ( ) 0.4 0.3 0.12
( | ) 0.343

( ) 0.35 0.35

′⋅ ⋅′′ = = = =
′

O
O

O

P I C P C
P C I

P I
 

( | ) ( ) 0.4 0.2 0.08
( | ) 0.228

( ) 0.35 0.35

′⋅ ⋅′′ = = = =
′

O
O

O

P I O P O
P O I

P I
 

The expected utility can be written: 

}{
1,...,

1 1

[ ] '[ ] ''[ ] '[ ] max ''[ ( ) ]
== =

= =∑ ∑
n n

i i i j i
j m

i i

E u P I E u I P I E u a I   

Where n  is the number of different possible experiment findings and m  is the 
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number of different decision alternatives. So it is: 

{ }
}{ }{

''[ ] max ''[ ]( 90000) ''[ ](50000) ''[ ](170000);0]

           = max 0.732(-90000)+0.220(50000)+0.048(170000);0 max 46720;0

           =0 

= − + + =

= − =

D D D DE u I P D I P C I P O I

CHF

 

Similarly: 

{ }
}{ }{

''[ ] max ''[ ]( 90000) ''[ ](50000) ''[ ](170000);0]

           = max 0.208(-90000)+0.375(50000)+0.417(170000);0 max 46720;0

           =70920 

= − + + =

= − =

C C C CE u I P D I P C I P O I

CHF

 

{ }
}{ }{

''[ ] max ''[ ]( 90000) ''[ ](50000) ''[ ](170000);0]

           = max 0.429(-90000)+0.343(50000)+0.228(170000);0 max 17300;0

           =17300 

= − + + =

= =

C O O OE u I P D I P C I P O I

CHF

 

And the expected utility considering the costs of the test is: 

[ ] [ ] [ ] [ ] }{
{ }

'' | ( ) '' | ( ) '' | ( ) 10000

( 0) 0.41 (70920) 0.24 (17300) 0.35 10000

23076 10000 13076

′ ′ ′= ⋅ + ⋅ + ⋅ − =

= ⋅ + ⋅ + ⋅ − =
= − =

D D C C O OE u E u I P I E u I P I E u I P I

CHF

 

Hence if this is compared to the case of not carrying out the test it can be seen that the utility 
is higher in the case that the test is carried out. 

The benefit associated from opening up the borehole is then equal to 13076 CHF. 
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Figure 11.2.2: Event tree for carrying out the pre-posterior decision analysis. 
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Exercise 11.3 – Solution 

a. The company should consider the following two choices: 

1A : Develop a well locally. 

2A : Construct a pipeline. 

The capacity of the well is associated with uncertainty and there are two cases: 

1θ : Capacity less than100 kl. 

2θ : Capacity greater than 100 kl. 

Based on experience the prior probabilities of the above mentioned cases are: 

[ ]1 0 60.P θ′ =  

[ ]2 0 40.P θ′ =  

A1

10 Mio.  CHF 

110 Mio.  CHF 

100 Mio.  CHF 
A2

 

Well

Pipeline

Enough water

Not enough water

Expected cost=??

 

The minimized expected cost is: 

[ ] [ ] [ ]{ }
{ }

1 2min 10 (100 10), 100

min 0.4 10 0.6 110, 100 70 Mio. CHF

E C P Pθ θ′ ′ ′= ⋅ + ⋅ + =

⋅ + ⋅ =
 

Action 1A  poses less expected cost and hence the company should develop a well locally.  

 

 

 

b.  
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According to the Bayes’ theorem: 

1 1

( ) ( | )
( | ) ( )

( ) ( | ) ( ) ( | ) ( )n n

P X E P E X
P X E P X

P E P E X P X P E X P X
∩

= =
+

Posterior prob. Prior prob.

Likelihood

 

Given the indicator 2I : 

2 1
1 2 1

2 1 1 2 2 2

( | ) 0.2
''( | ) '( ) 0.6 0.75

( | ) ( ) ( | ) ( ) 0.2 0.6 0.1 0.4

P I
P I P

P I P P I P

θθ θ
θ θ θ θ

= = ⋅ =
+ ⋅ + ⋅

 

2 2
2 2 2

2 1 1 2 2 2

( | ) 0.1
''( | ) '( ) 0.4 0.25

( | ) ( ) ( | ) ( ) 0.2 0.6 0.1 0.4

P I
P I P

P I P P I P

θθ θ
θ θ θ θ

= ⋅ =
+ ⋅ + ⋅

 

 

 

The minimized expected cost is: 

[ ] [ ] [ ]{ }
{ }

2 1 2'' | min '' 10 '' (100 10),100

min 0.25 10 0.75 110, 100 85 Mio. CHF

E C I P Pθ θ= ⋅ + ⋅ + =

⋅ + ⋅ =
 

Action 1A  poses less expected cost and hence the company should develop a well locally.  
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c. 

Before all, it has to be decided whether a test well should be constructed or not. 

There are three decision alternatives: 

1A : Develop a well locally 

2A : Construct a pipeline 

3A : Develop a test well before develop/construct a well/pipeline. 

If a test well is developed, three possible results can be obtained, namely the indicator 1I , 

2I and 3I . After the development of a test well the company can decide whether the well 

should be developed locally ( 1A ) or construct a pipeline ( 2A ). 

A1

10 Mio.  110 Mio.  100 Mio.  10 Mio.  110 Mio.  100 Mio.  10 Mio.  110 Mio.  100 Mio.  

A2A1A2A1A2

I1I2
I3

P [ I1]   P [ I2]   P [ I3]   

Pipeline

Well

Test Well

100 70

 

How large are the probabilities that the results of a test well are 1I , 2I and 3I  respectively? 

The probabilities can be calculated by: 

[ ] [ ] [ ] [ ] [ ]1 1 1 1 1 2 2| | 0.1 0.6 0.8 0.4 0.38P I P I P P I Pθ θ θ θ= ⋅ + ⋅ = ⋅ + ⋅ =  

[ ] [ ] [ ] [ ] [ ]2 2 1 1 2 2 2| | 0.2 0.6 0.1 0.4 0.16P I P I P P I Pθ θ θ θ= ⋅ + ⋅ = ⋅ + ⋅ =  

[ ] [ ] [ ] [ ] [ ]3 3 1 1 3 2 2| | 0.7 0.6 0.1 0.4 0.46P I P I P P I Pθ θ θ θ= ⋅ + ⋅ = ⋅ + ⋅ =  

The posterior analysis for 1I , 2I and 3I  is performed. For this purpose, the company needs to 

know the probabilities of the state Θ  for each indicator.  
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Given the indicator 1I , the posterior probabilities can be calculated by: 

 

1 1 1
1 1

1

( | ) ( ) 0.1 0.6 0.06
( | ) 0.158

( ) 0.38 0.38

P I P
P I

P I

θ θθ ′⋅ ⋅′′ = = = =
′

 

1 2 2
2 1

1

( | ) ( ) 0.8 0.4 0.32
( | ) 0.842

( ) 0.38 0.38

P I P
P I

P I

θ θθ ′⋅ ⋅′′ = = = =
′

 

The minimized expected cost is: 

[ ] [ ] [ ]{ }
{ }

1 2 1 1 1'' | min '' | 10 '' | (100 10),100

min 0.842 10 0.158 110, 100 26 Mio. CHF

E C I P I P Iθ θ= ⋅ + ⋅ + =

⋅ + ⋅ =
 

Therefore, given 1I , action 1A  should be chosen. 

The posterior analysis for the indicator 2I  is already done in part  

 

2 1 1
1 2

2

( | ) ( ) 0.2 0.6 0.12
( | ) 0.75

( ) 0.16 0.16

P I P
P I

P I

θ θθ ′⋅ ⋅′′ = = = =
′
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2 2 2
2 2

2

( | ) ( ) 0.1 0.4 0.04
( | ) 0.25

( ) 0.16 0.16

P I P
P I

P I

θ θθ ′⋅ ⋅′′ = = = =
′

 

[ ] [ ] [ ]{ }
{ }

2 1 2 2 2'' | min '' | (10) '' | (100 10), 100

min 0.25 10 0.75 110, 100 85 Mio. CHF

E C I P I P Iθ θ= ⋅ + ⋅ + =

⋅ + ⋅ =
 

Given the result of the test well 2I , action 1A  should be chosen. 

Posterior analysis for the indication 3I  is perfomed as: 

 

3 1 1
1 3

3

( | ) ( ) 0.7 0.6 0.42
( | ) 0.913

( ) 0.46 0.46

P I P
P I

P I

θ θθ
′⋅ ⋅′′ = = = =

′
 

3 2 2
2 3

3

( | ) ( ) 0.1 0.4 0.04
( | ) 0.087

( ) 0.46 0.46

P I P
P I

P I

θ θθ
′⋅ ⋅′′ = = = =

′
 

The minimized expected cost is: 

[ ] [ ] [ ]{ }
{ }

3 1 3 2 3'' | min '' | (10) '' | (100 10), 100

min 0.087 10 0.913 110, 100 100 Mio. CHF

E C I P I P Iθ θ= ⋅ + ⋅ + =

⋅ + ⋅ =
 

Given the result of the test well 3I , alternative 2A  should be chosen. 

By multiplying the expected costs associated with each decision with the probabilities that 
each indication is obtained, the expected cost when the test well is obtained as: 

The minimized expected cost is: 

[ ] [ ] [ ] [ ]1 1 2 2 3 3| ( ) | ( ) | ( )

26 0.38 85 0.16 100 0.46 69.49

E C E C I P I E C I P I E C I P I′′ ′′ ′′ ′′= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅ =
 

Since the development of a test well requires a cost c , the cost has to be added to the 
expected cost: 
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[ ] 69.49E C c′′ = +  

 

Test well 

69.49 Mio. CHF

100 Mio. CHF 85 Mio. CHF 26 Mio. CHF

69.49+c Mio. CHF

=0.38=0.16=0.46

I3 I12I

3IP ( )
P(I2) P(I1)

 

 

Finally, the following decision tree is obtained: 

Well
Pipeline Test well

 

 

The minimum cost for the test well that allows the company to construct the test well is: 

1 269.48 + c min(A ,A ) = 70

c 0.52  Mio.CHF

≤
⇔ ≤

 

Since the test well costs 1 Million CHF, the best decision is to develop a local well without 
constructing a test well. 
 




