Exercise 7.4.

Diesel engines are used, among others, for electrical power generation. The operational time T of a diesel engine until a breakdown, is assumed to follow an Exponential distribution with mean $\mu T=24$ months. Normally such an engine is inspected every 6 months and in case that a default is observed this is fully repaired. It is assumed herein that a default is a serious damage that leads to breakdown if the engine is not repaired.

- Exponential distribution with mean $\mu T=24$ months
- engine is inspected every 6 months
- default is observed this is fully repaired

Shifted Exponential $x \geq \varepsilon$

$$
\begin{array}{lrll}
\lambda>0 \quad \mu=\varepsilon+1 / \lambda & \varepsilon=0 & \sigma=1 / \lambda \\
f(x)=\lambda^{*} \exp \left(-\lambda^{*}(x-\varepsilon)\right) & & \\
F(x)=1-\exp \left(-\lambda^{*}(x-\varepsilon)\right) & &
\end{array}
$$

Here:

$$
\begin{aligned}
& \mu=1 / \lambda=24 \quad \lambda=1 / 24 \\
& f(x)=1 / 24^{*} \exp \left(-1 / 24^{*} x\right) \\
& F(x)=1-\exp \left(-1 / 24^{*} x\right)
\end{aligned}
$$

7.4. a) Calculate the probability that such an engine will need repair before the first inspection.

$$
\begin{aligned}
P(T<6) & =\int 1 / 24^{*} \exp \left(-1 / 24^{*} x\right) * d x=-\exp \left(-1 / 24^{*} 6\right)-(-\exp (0)) \\
& =1-\exp \left(-1 / 24^{*} 6\right)=\underline{\mathbf{0 . 2 2 1 2}}
\end{aligned}
$$

7.4. b) Assume that the first inspection has been carried out and no repair was required. Calculate the probability that the diesel engine will operate normally until the next scheduled inspection.

$$
\begin{aligned}
& \mathrm{P}[\mathrm{~T}>12 \mid \mathrm{T}>6]=\mathrm{P}[\mathrm{~T}>12 \cap \mathrm{~T}>6] / \mathrm{P}[\mathrm{~T}>6] \\
& =P[T>12] / P[T>6] \\
& P[T>12]=1-\left(1-\exp \left(-1 / 24^{*} 12\right)\right)=\exp (-1 / 2)=0.6065 \\
& P[T>6]=1-\left(1-\exp \left(-1 / 24^{*} 6\right)\right)=\exp (-1 / 4)=0.7788 \\
& P[T>12 \mid T>6]=\exp (-1 / 2) / \exp (-1 / 4)=\exp (-1 / 4)=\underline{\mathbf{0 . 7 7 8 8}}
\end{aligned}
$$

7.4. c) Calculate the probability that the diesel engine will fail between the first and the second inspection.

$$
\begin{aligned}
\mathrm{P}[6 \leq \mathrm{T} \leq 12] & =\int 1 / 24^{*} \exp \left(-1 / 24^{*} \mathrm{x}\right) * \mathrm{dx}=-\exp (-1 / 2)+\exp (-1 / 4) \\
& =\underline{\mathbf{0 . 1 7 2 3}}
\end{aligned}
$$

7.4. d) A nuclear power plant owns 6 such diesel engines. The operational lives $t 1, t 2, \ldots, t 6$ of the diesel engines are assumed statistically independent. What is the probability that at most 1 engine will need repair at the first scheduled inspection?

Binomial dist. for 0 and 1 (at most 1)
$P[$ need repair at the first inspection $]=P[T \leq 6]=0.2212$
(from 7.4. a)

$$
\begin{aligned}
& P(y)=n \operatorname{Cr}(n, y)^{*} p^{\wedge} y^{*}(1-p)^{\wedge}(n-y) \quad y=0,1,2, \ldots, n \\
& n=6 \quad p=0.2212 \\
& P(0)=n \operatorname{Cr}(6,0)^{*} p^{\wedge} 0^{*}(1-p)^{\wedge}(6)=0.2235 \\
& P(1)=n C r(6,1)^{*} p^{\wedge} 0^{*}(1-p)^{\wedge}(5)=0.3804 \\
& \text { Ptot }=P(0)+P(1)=\underline{\mathbf{0 . 6 0 3 8 6}}
\end{aligned}
$$

7.4. e) It is a requirement that the probability of repair at each scheduled inspection is not more than 60%. The operational lives $\mathrm{t} 1, \mathrm{t} 2, \ldots, \mathrm{t} 6$ of the diesel engines are assumed statistically independent. What should be the inspection i nterval?
$0.6=\left(1-\left(1-\exp \left(-1 / 24^{*} x\right)\right)\right)^{\wedge} 6=>x=\underline{2.04}$ months

