Exercise 6.3 (Group exercise) - Solution

The probability of success is given as $p=0.27$.
Following the theory regarding the Binomial distribution (Script, Section D.4), it is:
a. The probability that the engineering office will have at least 1 success out of the 12 proposals submitted is:

$$
\begin{aligned}
p_{Y}(y) & =1-\mathrm{P}(\text { no success })=1-\binom{12}{0} 0.27^{0}(1-0.27)^{12}= \\
& =1-\frac{12!}{0!(12-0)!}(1-0.27)^{12}=1-(1-0.27)^{12} \\
& =0.9771
\end{aligned}
$$

b. The required probability can be estimated through the geometric distribution (Equation D.57):
$p_{Y}(y)=p(1-p)^{10-1}=0.27(1-0.27)^{9}=0.016$.
c.

$$
\begin{aligned}
p_{Y}(y) & =\mathrm{P}(\text { no success })+\mathrm{P}(\text { one success })+\mathrm{P}(\text { two successes })= \\
& =\binom{13}{0} \cdot 0.27^{0} \cdot(1-0.27)^{13}+\binom{13}{1} \cdot 0.27^{1} \cdot(1-0.27)^{13-1}+\binom{13}{2} \cdot 0.27^{2} \cdot(1-0.27)^{13-2} \\
& =(1-0.27)^{13}+13 \cdot 0.27 \cdot(1-0.27)^{12}+\frac{13(13-1)}{2} \cdot 0.27^{2}(1-0.27)^{11} \\
& =0.275
\end{aligned}
$$

(Check Equations D. 52 and D.53)

