Exercise 4.3 (Group exercise) - Solution:

a. Under given conditions, the probability density function $f_{X}(x)$ can be written as:
$f_{X}(x)= \begin{cases}a x & (0<x \leq 4) \\ k(x-12)^{2} & (4<x \leq 12) \\ 0 & (\text { otherwise })\end{cases}$
Since the probability density function is continuous at $x=4$, it is:
$4 a=k(4-12)^{2}$
The integral of the probability density function over the entire support must be unity:
$\int_{-\infty}^{\infty} f_{X}(x) d x=\int_{0}^{4} a x d x+\int_{4}^{12} k(x-12)^{2} d x=1$
From Equation (4.3.1), it follows:
$k=\frac{1}{16} a$
By substituting this into Equation (4.3.2), it is
$a=\frac{3}{56}$ and $k=\frac{3}{896}$
Therefore,
Point A has coordinates ($4, \frac{3}{14}$) and the probability density function is described as:
$f_{x}(x)= \begin{cases}\frac{3}{56} x & (0<x \leq 4) \\ \frac{3}{896}(x-12)^{2} & (4<x \leq 12) \\ 0 & \text { (otherwise) }\end{cases}$
b) The cumulative distribution function $F(x)$ is described as:
$F_{X}(x)= \begin{cases}0 & (x \leq 0) \\ \frac{3}{112} x^{2} & (0<x \leq 4) \\ 1-\frac{(12-x)^{3}}{896} & (4<x \leq 12) \\ 1 & (12<x)\end{cases}$
The cumulative distribution function is drawn in Figure 4.3.2.
$F_{x}(x)$

Figure 4.3.2: Cumulative distribution function.
c. The mean value is obtained as:

$$
\begin{aligned}
\mu_{X} & =\int_{0}^{12} x f_{X}(x) d x=\int_{0}^{4} x \frac{3}{56} x d x+\int_{4}^{12} x \frac{3}{896}(x-12)^{2} d x \\
& =\frac{32}{7}
\end{aligned}
$$

d. $P[X>4]=1-P[X \leq 4]=1-\int_{0}^{4} \frac{3}{56} x d x=1-\left[\frac{3}{112} x^{2}\right]_{0}^{4}=\frac{4}{7}$.

