Exercise 3.4 (Group exercise) - Solution

a. In order to plot the Tukey box plot five main features are required as shown in Table C. 8 in the lecture notes. These are:

- the lower quartile
- the lower adjacent value
- the median
- the upper adjacent value
- the upper quartile

Consider the data of resistivity in direction 1. Based on Equation C. 10 from the lecture notes a value v is required such that

$$
v=n Q_{v}+Q_{v}
$$

Therefore for the lower quartile (i.e. the 0.25 quartile) it is:
$v=25 \cdot 0.25+0.25=6.5$
v has a non integer value. The value is splitted to its integer part $k=6$ and the fractional part $p=0.5$

Therefore the lower quartile is calculated as:
$x_{v}^{o}=(1-p) x_{6}^{o}+p x_{6+1}^{o}=(1-0.5) \cdot 24.7+0.5 \cdot 25.3=25 \mathrm{kOhm}$
In the same way for the upper quartile (the 0.75 quantile) it is:
$v=25 \cdot 0.75+0.75=19.5$
v has a non integer value. The value is splitted to its integer part $k=19$ and the fractional part $p=0.5$.

Therefore the upper quartile is calculated as:
$x_{v}^{o}=(1-p) x_{19}^{o}+p x_{19+1}^{o}=(1-0.5) \cdot 28.3+0.5 \cdot 28.7=28.5 \mathrm{kOhm}$
In order to calculate the median it is:
$v=25 \cdot 0.5+0.5=13$
The 13th value of the data set is equal to 26.9 kOhm .
To evaluate the adjacent values the interquartile range is required:
$r=Q_{0.75}-Q_{0.25}=28.5-25=3.5$
The lower adjacent value is the smallest observation that is greater than or equal to the lower quartile minus 1.5r. It is:
$Q_{0.25}-1.5 r=25-1.5 \cdot 3.5=19.75 \mathrm{kOhm}$

Thus from Table 3.1.1 the lower adjacent value is 20.2 kOhm.
In the same way the upper adjacent value is found as:
$Q_{0.75}+1.5 r=28.5+1.5 \cdot 3.5=33.75 \mathrm{kOhm}$
Therefore from Table 3.4.1 the upper adjacent value is a value less than or equal to 33.75 kOhm, that is 29.9 kOhm . Table 3.4.2 summarizes the above features of both data sets.

	Direction 1	Direction 2
Lower adjacent value	20.2	3.8
Lower Quartile	25.0	8.65
Median	26.9	11.1
Upper Quartile	28.5	14.2
Upper adjacent value	29.9	17.8
Outside values	-	23.4

Table 3.4.2: Descriptive statistics.
The Tukey box plots are shown in Figure 3.4.1.

Figure 3.4.1: Tukey box plot for direction 1 and 2.
b. Both are left skewed, although the data of direction 2 are less skewed.
c. It is proposed that the number of intervals k is: $k=1+3.3 \cdot \log (n)$, where n is the number of data. By substituting $n=25, k$ is obtained as: $k=1+3.3 \cdot \log (25) \approx 6$. From the histogram in Figure 3.4.2, it is seen that the distribution is skewed to the left.

Figure 3.4.2: Histogram.

