Exercise 2.7 (Group Exercise) - Solution:

a. It is: $P\left(I=C_{1} \mid C_{1}\right)+P\left(I=C_{2} \mid C_{1}\right)+P\left(I=C_{3} \mid C_{1}\right)=1$

Hence:

$$
\begin{aligned}
& 0.84+P\left(I=C_{2} \mid C_{1}\right)+0.03=1 \\
& P\left(I=C_{2} \mid C_{1}\right)=0.13
\end{aligned}
$$

Similarly the rest of the table can be completed.

Category of the thickness of clay layer C_{i}	Indication of the thickness of the clay layer		
	$I=C_{1}$	$I=C_{2}$	$I=C_{3}$
C_{1}	0.84	$\mathbf{0 . 1 3}$	0.03
C_{2}	0	0.77	$\mathbf{0 . 2 3}$
C_{3}	$\mathbf{0 . 0 9}$	0.02	0.89

Table 2.7.2: Probability of indication on each ground category
b. The probability that the true state is C_{1} given the indication of C_{3} is obtained as:

$$
P\left(C_{1} \mid I=C_{3}\right)=\frac{P\left(I=C_{3} \mid C_{1}\right) P\left(C_{1}\right)}{P\left(I=C_{3} \mid C_{1}\right) P\left(C_{1}\right)+P\left(I=C_{3} \mid C_{2}\right) P\left(C_{2}\right)+P\left(I=C_{3} \mid C_{3}\right) P\left(C_{3}\right)}=0.015
$$

In the same way, the posterior probability of the other state is obtained as:

$$
\begin{aligned}
& P\left(C_{2} \mid I=C_{3}\right)=\frac{P\left(I=C_{3} \mid C_{2}\right) P\left(C_{2}\right)}{P\left(I=C_{3} \mid C_{1}\right) P\left(C_{1}\right)+P\left(I=C_{3} \mid C_{2}\right) P\left(C_{2}\right)+P\left(I=C_{3} \mid C_{3}\right) P\left(C_{3}\right)}=0.265 \\
& P\left(C_{3} \mid I=C_{3}\right)=\frac{P\left(I=C_{3} \mid C_{3}\right) P\left(C_{3}\right)}{P\left(I=C_{3} \mid C_{1}\right) P\left(C_{1}\right)+P\left(I=C_{3} \mid C_{2}\right) P\left(C_{2}\right)+P\left(I=C_{3} \mid C_{3}\right) P\left(C_{3}\right)}=0.720
\end{aligned}
$$

