

Prof. Dr. Michael Havbro Faber Swiss Federal Institute of Technology

ETH Zurich, Switzerland

Overview

- Introduction
- Matlab user interface
- Creating Variables
- Working with matrices
- The help function
- The m-file
- Plots

Short introduction into Matlab ${ }^{\circ}$

Why will we use Matlab in this course?

- It is useful for numerical calculations
- Symbolic calculations can be performed
- Easy visualization of data
- Interactive use
- Use as a programming language (easy programming)

Shortcuts π How to Add π What＇s New Workspace

Current Directory－shows the current working folder

Shortcuts $\mathbb{\pi}$ How to Add \square What＇s New

Workspace－shows all defined variables with their name，type， class and length of the array（or matrix）

$\gg \mid$

Shortcuts π_{6} How to Add What＇s New
Workspace

Name
Value
Class

Command window－Interactive use．Input of variables and commands output of data and any kind of messages（e．g．error massages）

displays the values of the variables

Example

Ef Array Editor - a

Variables

Rules for defining variables:

- The name of the variables must not include special characters ($\%, \&, *, \ldots$) exception: underscore (_)
- The first character has to be a alphabetic character (m3: ok. - 3m: not ok.)
- Matlab distinguishes between capitals and lower case letters
- With clear'name' you can delete variables

Defining matrices and vectors

Defining vectors and matrixes:
$\gg x=\left[\begin{array}{lllll}0 & 2 & 4 & 6 & 8\end{array}\right]$

$$
x=02468
$$

$x \sim$ matrix with 1 row and 5 columns

By using a comma the input may be easier to read:

$$
\gg x=[0,2,4,6,8]
$$

$$
x=02468
$$

Defining matrices and vectors

Sometimes vectors can be created easier:
$\gg x=0: 2: 8$

$$
x=02468
$$

linspace (x, y, n) generates n points between x and y.

$$
\begin{aligned}
& \gg x=\text { linspace }(0,8,5) \\
& x=02468
\end{aligned}
$$

Defining matrices and vectors

Matrix

Working with matrices

1) Element wise operations

Multiplication of a matrix with a scalar

$$
\left.\begin{array}{cccccccc}
\gg x=\left[\begin{array}{cccccccc}
0 & 2 & 4 & 6 & 8 ; & 1 & 3 & 5
\end{array}\right] & 9
\end{array}\right]=2
$$

Element wise multiplication of two matrices

$$
\begin{aligned}
& \gg x=[02468 ; 13579] . *[02468 ; 13579] \\
& \mathrm{X}= \\
& 04163664 \\
& 19254981 \\
& \gg x=\left[\begin{array}{llllllllll}
0 & 2 & 4 & 6 & 8 ; & 1 & 3 & 5 & 7 & 9
\end{array}\right] . \wedge 2
\end{aligned}
$$

Working with matrices

1) Element wise operations

Element wise division of two matrices

Addition of two matrices

$$
\gg x=[02446
$$

X=

$$
\begin{array}{llrll}
0 & 4 & 8 & 12 & 16 \\
2 & 6 & 10 & 14 & 18
\end{array}
$$

$$
\begin{aligned}
& \text { >>x=[0 2 4 6 8; 1 3 5 7 9]./[0 2 4 6 8; 1 3 5 7 9] } \\
& X= \\
& \begin{array}{lllll}
\mathrm{NaN} & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}
\end{aligned}
$$

Working with matrices

1) Matrix operations

Transpose a matrix

$$
\begin{aligned}
& \gg x=\left[\begin{array}{lllllll}
3 & 4 & -2 ; & -1 & 2 & 8 ; & 2
\end{array}\right] \text { 5 } \\
& \gg y=\operatorname{transpose}(x)
\end{aligned}
$$

$$
y=\begin{array}{rrr}
3 & -1 & 2 \\
4 & 2 & 0 \\
-2 & 8 & 5
\end{array}
$$

Or:

$$
\gg y=x^{\prime}
$$

Working with matrices

1) Matrix operations

Invert a matrix

$$
\begin{aligned}
& \gg x=\left[\begin{array}{lllllll}
3 & 4 & -2 ; & -1 & 2 & 8 ; & 2 \\
\gg y & 5
\end{array}\right] ; \\
& \gg \operatorname{inv}(x)
\end{aligned}
$$

$$
y=\quad \begin{array}{rrr}
-0.4545 & 0.9091 & 1.6364 \\
0.5000 & -0.5000 & -1.0000 \\
-0.1818 & 0.3636 & 0.4545
\end{array}
$$

Working with matrices

1) Matrix operations

Eigenvalue of a matrix

```
>>x=[1 2 3; 4 5 6; 7 8 9];
>>y=eig(x)
```

 \(y=\quad 16.1168\)
 -1.1168
 -0. 0000
 Sometimes a specific cell of a matrix is needed for the calculation. If you want to get the 3rd value of the vector, write:
$\gg z=y(3,1)$

$$
z=-1.304 e-15
$$

Working with matrices

1) Matrix operations

Or you are interested in the first column of matrix x :

$$
\begin{aligned}
& x=\left[\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\end{array}\right] \\
& x=123 \\
& 456 \\
& 789
\end{aligned}
$$

then you can select the whole row or column by using the colon

```
>>x(1,:)
```

 ans \(=1\)

Working with matrices

1) Matrix operations

Other helpful comands
$\operatorname{det}(x) \quad-\quad$ is the determinant of the matrix x
eye $(\mathrm{n}, \mathrm{m}) \quad$ - creates a $\mathrm{n} \times \mathrm{m}$ identity matrix
zeros(n, m) - creates a $\mathrm{n} \times \mathrm{m}$ zero matrix (helpful to allocate memory)
ones (n, m) - creates a $\mathrm{n} \times \mathrm{m}$ matrix filled with ones
$\operatorname{size}(x) \quad-\quad$ gives the dimension of the matrix x
If you perform matrix operation,
the dimensions of the matrix must agree
e.g. $y=o n e s(4,3)$ and $x=o n e s(1,4)$ >>z=y*x
??? Error using ==> mtimes
Inner matrix dimensions must agree.

The help function

Here you find everything you need!
>>help 'function'
Helps you to find the exact notation for all functions, e.g:
>>help ones

```
Command Window
>> help ones
ONES Ones array.
    ONES (N) is an N-by-N matrix of ones.
    ONES(M,N) or ONES ([M,N]) is an M-by-N matrix of ones.
    ONES(M,N,P,\ldots.) or ONES([M N P ...]) is an M-by-N-by-P-by-... array of
    ones.
    ONES(SIZE(A)) is the same size as A and all ones.
    ONES with no arguments is the scalar 1.
```


Programming with matlab - the m.files

Two different types of m.files are distinguished by matlab

- script files: all variables are global
- function files: all variables are local; input and output parameters are passed

m.files

The commands are written in a text editor and saved with the ending .m
The commands are written like in the command line
All commands available in the command line can be used (for loops - if else, etc.. + self programmed functions)

All commands are processed line by line

The variable x does not exist.

File Edit View Graphics Debug Desktop Window Help

Shortcuts π How to Add What＇s New

Name r

Use comments！

－af Array Editor－ x

The variable x does not exis

空 Editor－Untitled2＊
File Edit Text Go Cell Tools Debug Desktop Window Help

7
1
2
2
3
4
5
6
6
7
8

＊Method of finit fep Out
$\mathrm{x}=$ ones $(100,100)$ ； $y=$ ones $(100,100)$ ；

Command Window
＞＞
F1

Save and Run
 Save and Run

F12

Clear Breakpoints in All Files
Stop if Errors／Warnings．
Exit Detug Mode
$-|\square| x \mid$
y $\times x$田 C 日 \square
er

\square

Plotting with Matlab

Easy visualization of data using the manifold plot options

$$
\gg x=0: 0.01: 6 ; y=x . \wedge 2 ;
$$

>>plot (x,y)

Plotting with Matlab

Or by using the graphical user interface

Visualize your FE results by using Matlab

Prof. Dr. Michael Havbro Faber Swiss Federal Institute of Technology

ETH Zurich, Switzerland

