

The Finite Element Method for the Analysis of Linear Systems

Prof. Dr. Michael Havbro Faber

Swiss Federal Institute of Technology ETH Zurich, Switzerland

Contents of Today's Lecture

- Summary of last lecture
- The principle of iso-parametric finite elements
- Implementation of FEM
 - Integration of "matrixes"
 - Interpolation using a polynomial
 - Newton Cotes integration
 - Gauss integration

Shape functions:

Polynomials are usually applied for the development of shape functions (polynomials are easily differentiated analytically)

- Langrange polynomials complete polynomial expansions
- Serendipity polynomials incomplete polynomial expansions
- Hermitian polynomials polynomials including derivatives

Shape functions:

Lagrange polynomials (general):

$$u(x, y, z) = \sum_{i=1}^{n} L_{i}(x, y, z)\hat{u}_{i}$$
$$u(x, y, z) = \sum_{i=1}^{n} \hat{u}_{i}$$
$$L_{i}(x_{j}, y_{j}, z_{j}) = 1, \quad i = j$$
$$L_{i}(x_{j}, y_{j}, z_{j}) = 0, \quad i \neq j$$
$$\sum_{i=1}^{n} L_{i}(x, y, z) = 1$$

Shape functions:

From Pascal's triangle we can see how many nodes are required for the representation of displacement fields of any order and completeness:

Shape functions:

Products of Lagrange polynomials (bi-linear four node rectangular)

Shape functions:

Products of Lagrange polynomials (quadratic nine-node rectangular)

Shape functions:

Serendipity shape functions are constructed by incomplete polynomials – avoiding inner nodes

Shape functions:

Whereas difficulties may arise (inner nodes) when aiming to develop quadratic shape functions for rectangular elements using Lagrange polynomials the shape functions developed by incomplete polynomials (serendipity shape functions) – less terms necessitates less nodes !

A bi-quadratic eight node rectangular element can be constructed !

Shape functions:

Hermitian shape functions relate not only the displacements at nodes to displacements within the elements but also the first order derivatives ∂u_1 ∂u_2

$$u(x) = \sum_{i=1}^{2} \left(H_{0i}(x)\hat{u}_{i} + H_{1i}(x)\frac{\partial\hat{u}_{i}}{\partial x} \right)$$
$$H_{0i}(x) = 1, \text{ and zero at the other node}$$
$$H_{0i}'(x) = 0 \text{ at both nodes}$$
$$H_{1i}(x) = 0, \text{ at both nodes}$$

 $H'_{1i}(x) = 1$, and zero at the other node

Shape functions – Natural coordinates:

As we have seen we are able to establish shape functions in global or local coordinate systems as we please. However, for the purpose of standardizing the process of developing the element matrixes it is convenient to introduce the so-called natural coordinate system.

Shape functions – Natural coordinates:

Let us consider the simple bar element

The relation between the x-coordinate and the r-coordinate is given as:

$$x = \frac{1}{2}(1-r)\hat{x}_{1} + \frac{1}{2}(1+r)\hat{x}_{2}$$
$$= \sum_{i=1}^{2} h_{i}\hat{x}_{i}$$

The relation between the displacement u and the nodal displacements are given in the same way:

The principle of iso-parametric FE

Shape functions – Natural coordinates:

Let us consider the simple bar element

We need to be able to establish the strains – meaning we need to be able to take the derivatives of the displacement filed in regard to the x-coordinate

$$\varepsilon = \frac{du}{dx} = \frac{du}{dr} \frac{dr}{dx}$$

$$\frac{du}{dr} = \frac{d}{dr} (\frac{1}{2}(1-r)\hat{u}_{1} + \frac{1}{2}(1+r)\hat{u}_{2}) = \frac{1}{2}(\hat{u}_{2} - \hat{u}_{1})$$

$$\frac{dx}{dr} = \frac{d}{dr} (\frac{1}{2}(1-r)x_{1} + \frac{1}{2}(1+r)x_{2}) = \frac{1}{2}(x_{2} - x_{1})$$

$$r = -1 \quad r = 0 \quad r = 1$$

$$\downarrow$$

$$\frac{du}{dx} = \frac{(\hat{u}_{2} - \hat{u}_{1})}{(x_{2} - x_{1})} = \frac{(\hat{u}_{2} - \hat{u}_{1})}{L}$$
Method of Finite Elements 1

The principle of iso-parametric FE

Shape functions – Natural coordinates:

Let us consider the simple bar element

The strain-displacement matrix then becomes:

$$\mathbf{B} = \frac{1}{L} \begin{bmatrix} -1 & 1 \end{bmatrix}$$

and the stiffness matrix is calculated as:

$$\mathbf{K} = \frac{AE}{L^2} \int_{-1}^{1} \begin{bmatrix} -1\\1 \end{bmatrix} \begin{bmatrix} -1&1 \end{bmatrix} \mathbf{J} dr, \quad \mathbf{J} = \frac{dx}{dr} = \frac{L}{2}$$
$$\Downarrow$$
$$\mathbf{K} = \frac{AE}{L} \begin{bmatrix} 1&-1\\-1&1 \end{bmatrix}$$

Finite Element Equilibrium Equations:

The equations we need to solve include several integrals !

$$\mathbf{K}\mathbf{U} = \mathbf{R}$$
 $\mathbf{R} = \mathbf{R}_B + \mathbf{R}_S - \mathbf{R}_I + \mathbf{R}_C$ $\mathbf{K} = \sum_{m=1}^N \int_{V^{(m)}} \mathbf{B}^{(m)T} \mathbf{C}^{(m)} \mathbf{B}^{(m)} dV^{(m)}$ $\mathbf{R}_B = \sum_{m=1}^N \int_{V^{(m)}} \mathbf{H}^{(m)T} \mathbf{f}^{B(m)} dV^{(m)}$ We need efficient approaches to
solve these integrals $\mathbf{R}_S = \sum_{m=1}^N \int_{S_{f1}^{(m)}, S_{f2}^{(m)}, \dots} \mathbf{H}^{(m)T} \mathbf{f}^{S_f^{(m)}} dS^{(m)}$ $\mathbf{R}_I = \sum_{m=1}^N \int_{V^{(m)}} \mathbf{B}^{(m)T} \boldsymbol{\tau}^{i(m)} dV^{(m)}$
 $\mathbf{R}_C = \mathbf{R}_C$

In principle we need to consider 1, 2 and 3 dimensional integrals

We may write the integrals in the following way

 $\int \mathbf{F}(r)dr, \quad \int \mathbf{F}(r,s)drds, \quad \int \mathbf{F}(r,s,t)drdsdt$

In practice we may solve the integrals in terms of sums

$$\int \mathbf{F}(r)dr = \sum_{i} \alpha_{i} \mathbf{F}(r_{i}) + \mathbf{R}_{n},$$

$$\int \mathbf{F}(r,s)drds = \sum_{i,j} \alpha_{ij} \mathbf{F}(r_{i},s_{j}) + \mathbf{R}_{n},$$

$$\int \mathbf{F}(r,s,t)drdsdt = \sum_{i,j,k} \alpha_{ijk} \mathbf{F}(r_{i},s_{j},t_{k}) + \mathbf{R}_{n}$$

The elements of the matrixes are integrated individually

In principle we need to consider 1, 2 and 3 dimensional integrals

We may write the integrals in the following way

 $\int \mathbf{F}(r)dr, \quad \int \mathbf{F}(r,s)drds, \quad \int \mathbf{F}(r,s,t)drdsdt$

In practice we may solve the integrals in terms of sums

$$\int \mathbf{F}(r)dr = \sum_{i} \alpha_{i} \mathbf{F}(r_{i}) + \mathbf{R}_{k},$$

$$\int \mathbf{F}(r,s)drds = \sum_{i,j} \alpha_{ij} \mathbf{F}(r_{i},s_{j}) + \mathbf{R}_{k},$$

$$\int \mathbf{F}(r,s,t)drdsdt = \sum_{i,j,k} \alpha_{ijk} \mathbf{F}(r_{i},s_{j},t_{k}) + \mathbf{R}_{k}$$
The error matrixes are usually omitted

In principle we need to consider 1, 2 and 3 dimensional integrals

We may write the integrals in the following way

 $\int \mathbf{F}(r)dr, \quad \int \mathbf{F}(r,s)drds, \quad \int \mathbf{F}(r,s,t)drdsdt$

The elements of the matrixes are integrated individually

$$\int F(r)dr = \sum_{i} \alpha_{i}F(r_{i}),$$

$$\int F(r,s)drds = \sum_{i,j} \alpha_{ij}F(r_{i},s_{j}),$$

$$\int F(r,s,t)drdsdt = \sum_{i,j,k} \alpha_{ijk}F(r_{i},s_{j},t_{k})$$

In principle we need to consider 1, 2 and 3 dimensional integrals

Considering the 1-dimensional case

$$\int_{a}^{b} F(r)dr, \text{ iso-parametric; } a = -1, b = 1$$

The general idea is that we fit a polynomial $\psi(r)$ through

$$F(r_i), i = 1, 2, ... n$$

and introduce the approximation

The problem remaining to determine

$$\int_{a}^{b} F(r)dr \approx \int_{a}^{b} \psi(r)dr$$

$$r_{i}, i = 1, 2, ...n$$

Interpolation using a polynomial

Having calculated $F(r_i), r_i, i = 0, 1, 2, ... n$

we may fit a unique polynomial through these values

$$\psi(r) = a_0 + a_1r + a_2r^2 + \dots + a_nr^n$$

we get

Interpolation using a polynomial

To solve

Requires the inversion of a matrix which is associated with some numerical effort – we would like to avoid that !

Interpolation using a polynomial

We may associate with the functions

the axes of a *n*+1 dimensional vector space in which the specific coordinates

define the approximating polynomial

however difficult to determine !

Langrangian interpolation functions

Instead of using the basis $1, r, r^2, ..., r^n$

we may use Lagrangian interpolation functions of the form

$$l_{j}(r) = \frac{(r - r_{0})(r - r_{1})\cdots(r - r_{j-1})(r - r_{j+1})\cdots(r - r_{n})}{(r_{j} - r_{0})(r_{j} - r_{1})\cdots(r_{j} - r_{j-1})(r_{j} - r_{j+1})\cdots(r_{j} - r_{n})}$$

$$l_{j}(r_{i}) = \delta_{ij} \quad \text{(Kroneckers delta function), } i = j, \delta_{ij} = 1; \ i \neq j, \delta_{ij} = 0$$

in this space the polynomial can simply be written as

$$\psi(r) = F_0 l_0(r) + F_1 l_1(r) + F_2 l_2(r) + \dots + F_n l_n(r)$$

See example 5.33

Newton-Cotes integration

We assume equidistantly space integration points, i.e. for a one dimensional integral between *a* and *b* we get

$$r_0 = a;$$
 $r_n = b;$ $h = \frac{b-a}{n}$

$$\int_{a}^{b} F(r)dr = \sum_{i=0}^{n} \left[\int_{a}^{b} l_{i}(r)dr \right] F_{i} + R_{i}$$

$$= (b-a)\sum_{i=0}^{n} \left[C_{i}^{n}\right]F_{i} + R_{n}$$

The Newton-Cotes constants

TABLE 5.5 Newton-Cotes numbers and error estimates

Newton-Cotes integration

Using the Newton-Cotes approach we may increase the precision by

- increasing the number of intervals higher order polynomial
- subdividing the integral into parts (composite approach)

the composite approach has some advantages as this

- ensures convergence (as for the higher order polynomials)
- allows for consideration of discontinuities (example 5.37)

Gauss integration

In the foregoing we assumed equidistant integration points

In the following we will not only optimize the number of integration points but also the location (distance between) the integration points

As before we can write

$$\psi(r) = \sum_{j=1}^{n} F_j l_j(r)$$

but now we add the polynomial $P(r) = (r - r_1)(r - r_2) \cdots (r - r_n)$

$$F(r) = \sum_{j=1}^{n} F_{j} l_{j}(r) + P(r)(\beta_{0} + \beta_{1}r + \beta_{2}r \cdots \beta_{n}r)$$

Gauss integration

By integrating we get

$$F(r) = \sum_{j=1}^{n} F_j l_j(r) + P(r)(\beta_0 + \beta_1 r + \beta_2 r \cdots \beta_n r)$$

$$\int_{a}^{b} F(r)dr = \sum_{i=1}^{n} \left[\int_{a}^{b} l_{i}(r)dr \right] F_{i} + \sum_{j=0}^{n-1} \beta_{j} \left[\int_{a}^{b} r^{j} P(r) \right]$$

we may now determine the integration points from

$$\int_{a}^{b} P(r)r^{k}dr = 0, \quad k = 0, 1, 2, \dots n - 1$$

and in the end we achieve an approximating polynomial of order

Gauss integration

The sampling weights clearly depend on the integration limits and for this reason it is obviously beneficial to standardize the integration domain.

This may easily be achieved by integrating from -1 to +1 and then to adjust the sampling points and weights as:

$$\frac{a+b}{2} + \frac{b-a}{2}r_i, \qquad \frac{b-a}{2}\alpha_i, \qquad \alpha_j = \int_{-1}^1 l_j(r)dr$$

Gauss integration

TABLE 5.6 Sampling points and weights in Gauss-Legendre
 numerical integration (interval -1 to +1)

n	<i>r</i> _i	$oldsymbol{lpha}_i$			
1	0. (15 zero	os)	2.	(15 zeros	5)
2	±0.57735 02691	89626	1.00000	00000	00000
3	±0.77459 66692 0.00000 00000		0.55555 0.88888	55555 88888	55556 88889
4	± 0.86113 63115 ± 0.33998 10435	94053	0.34785 0.65214	48451 51548	37454 62546
5	±0.90617 98459 ±0.53846 93101 0.00000 00000	05683	0.23692 0.47862 0.56888	68850 86704 88888	56189 99366 88889
6	± 0.93246 95142 ± 0.66120 93864 ± 0.23861 91860	66265	0.17132 0.36076 0.46791	44923 15730 39345	79170 48139 72691

See examples 5.38-5.39

Finite Element Procedures, K.J. Bathe, 1996

Gauss integration

So far we looked at 1-dimensional integrals – but the same principle applies to 2 and 3-dimensional integrals as well

2-dimensions

$$\int_{-1}^{1} \int_{-1}^{1} F(r,s) dr ds = \sum_{i} \alpha_{i} \int_{-1}^{1} F(r_{i},s) ds = \sum_{i,j} \alpha_{i} \alpha_{j} F(r_{i},s_{j})$$

3-dimensions

$$\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} F(r, s, t) dr ds dt = \sum_{i} \alpha_{i} \alpha_{j} \int_{-1}^{1} F(r_{i}, s_{j}, t) dt = \sum_{i, j, k} \alpha_{i} \alpha_{j} \alpha_{k} F(r_{i}, s_{j}, t_{k})$$

TABLE 5.7 Gauss numerical integrations over quadrilateral domains

Finite Element Procedures, K.J. Bathe, 1996

^(f) The location of any integration point in the x, y coordinate system is given by: $x_p = \sum_i h_i(r_p, s_p) x_i$ and $y_p = \sum_i h_i(r_p, s_p) y_i$. The integration weights are given in Table 5.6 using (5.152).

Gauss integration

Finite Element Procedures, K.J. Bathe, 1996

TABLE 5.8 Gauss numerical integrations over triangular domains $\left[\iint F \, dr \, ds = \frac{l}{2} \sum w_i F(r_i, s_i)\right]$

Integration order	Degree of precision	Integration points	<i>r-</i> coordinates	<i>s</i> -coordinates	Weights
3-point	2	5 13 1- 1- 2 0	$r_1 = 0.16666 \ 66666 \ 667$ $r_2 = 0.66666 \ 66666 \ 667$ $r_3 = r_1$	S1 = r1 S2 = r1 S3 = r2	w ₁ = 0.33333 33333 333 w ₂ = w ₁ w ₃ = w ₁
7-point	5	5 6 5 5 6 5 5 1 4 4 2 5	$r_1 = 0.10128 \ 65073 \ 235 \\ r_2 = 0.79742 \ 69853 \ 531 \\ r_3 = r_1 \\ r_4 = 0.47014 \ 20641 \ 051 \\ r_5 = r_4 \\ r_6 = 0.05971 \ 58717 \ 898 \\ r_7 = 0.33333 \ 33333 \ 3333$	$S_1 = r_1$ $S_2 = r_1$ $S_3 = r_2$ $S_4 = r_6$ $S_5 = r_4$ $S_6 = r_4$ $S_7 = r_7$	$w_1 = 0.12593 91805 448$ $w_2 = w_1$ $w_3 = w_1$ $w_4 = 0.13239 41527 885$ $w_5 = w_4$ $w_6 = w_4$ $w_7 = 0.225$
13-point	7	S 6 12 13 5 9 10 11 7 5 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7	$\begin{array}{l} r_1 = 0.06513\ 01029\ 022\\ r_2 = 0.86973\ 97941\ 956\\ r_3 = r_1\\ r_4 = 0.31286\ 54960\ 049\\ r_5 = 0.63844\ 41885\ 698\\ r_6 = 0.04869\ 03154\ 253\\ r_7 = r_5\\ r_8 = r_4\\ r_9 = r_6\\ r_{10} = 0.26034\ 59660\ 790\\ r_{11} = 0.47930\ 80678\ 419\\ r_{12} = r_{10}\\ r_{13} = 0.33333\ 33333\ 333\end{array}$	$S_{1} = r_{1}$ $S_{2} = r_{1}$ $S_{3} = r_{2}$ $S_{4} = r_{6}$ $S_{5} = r_{4}$ $S_{6} = r_{5}$ $S_{7} = r_{6}$ $S_{6} = r_{5}$ $S_{9} = r_{4}$ $S_{10} = r_{10}$ $S_{11} = r_{10}$ $S_{12} = r_{11}$ $S_{13} = r_{13}$	$w_1 = 0.0533472356088$ $w_2 = w_1$ $w_3 = w_1$ $w_4 = 0.0771137608903$ $w_5 = w_4$ $w_6 = w_4$ $w_7 = w_4$ $w_8 = w_4$ $w_{10} = 0.1756152574332$ $w_{11} = w_{10}$ $w_{12} = w_{10}$ $w_{13} = -0.1495700444677$

 TABLE 5.9
 Recommended full Gauss numerical integration orders for the evaluation of isoparametric displacement-based element matrices (use of Table 5.7)

Gauss integration

Integration order