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C t t f T d ' L tContents of Today's Lecture

• Summary of last lecture

• The principle of iso-parametric finite elements

• Implementation of FEM• Implementation of FEM

- Integration of “matrixes”

- Interpolation using a polynomial

- Newton Cotes integrationNewton Cotes integration

- Gauss integration
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S f l t l tSummary of last lecture

Sh f tiShape functions:

Polynomials are usually applied for the development of shape 
functions (polynomials are easily differentiated analytically)functions (polynomials are easily differentiated analytically)

- Langrange polynomials
l t l i l icomplete polynomial expansions

- Serendipity polynomials 
incomplete polynomial expansionsincomplete polynomial expansions

- Hermitian polynomials
polynomials including derivatives
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S f l t l tSummary of last lecture

Sh f tiShape functions:

Lagrange polynomials (general):
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S f l t l tSummary of last lecture

Sh f tiShape functions:

From Pascal’s triangle we can see how many nodes are required for 
the representation of displacement fields of an order andthe representation of displacement fields of any order and 
completeness:  
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S f l t l tSummary of last lecture

Sh f tiShape functions:

Products of Lagrange polynomials (bi-linear four node rectangular)

                         1 Zero order
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First order
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Second order

Third order
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S f l t l tSummary of last lecture

Sh f tiShape functions:

Products of Lagrange polynomials (quadratic nine-node rectangular)

                         1 Zero orderThis requires an inner node
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S f l t l tSummary of last lecture

Sh f tiShape functions:

Serendipity shape functions are constructed by incomplete 
pol nomials a oiding inner nodes

                         1

polynomials – avoiding inner nodes 
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S f l t l tSummary of last lecture

Sh f tiShape functions:

Whereas difficulties may arise (inner nodes) when aiming to develop 
quadratic shape functions for rectangular elements using Lagrangequadratic shape functions for rectangular elements using Lagrange 
polynomials the shape functions developed by incomplete 
polynomials (serendipity shape functions) – less terms necessitates 
less nodes !

A bi-quadratic eight node rectangular element can be constructed !  
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S f l t l tSummary of last lecture

Sh f tiShape functions:

Hermitian shape functions relate not only the displacements at nodes 
to displacements ithin the elements b t also the first orderto displacements within the elements but also the first order 
derivatives    
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S f l t l tSummary of last lecture

Sh f ti N t l di tShape functions – Natural coordinates:

As we have seen we are able to establish shape functions in global or 
local coordinate s stems as e please Ho e er for the p rpose oflocal coordinate systems as we please. However, for the purpose of 
standardizing the process of developing the element matrixes it is 
convenient to introduce the so-called natural coordinate system.
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S f l t l tSummary of last lecture

Sh f ti N t l di tShape functions – Natural coordinates:

Let us consider the simple bar element

The relation between the x-coordinate 
and the r-coordinate is given as: 
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Th i i l f i t i FEThe principle of iso-parametric FE

Sh f ti N t l di tShape functions – Natural coordinates:

Let us consider the simple bar element

We need to be able to establish the strains – meaning we need to be 
able to take the derivatives of the displacement filed in regard to the 
x coordinatex-coordinate
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Th i i l f i t i FEThe principle of iso-parametric FE

Sh f ti N t l di tShape functions – Natural coordinates:

Let us consider the simple bar element

The strain-displacement matrix then becomes:

[ ]1 1 1B

and the stiffness matrix is calculated as:
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I l t ti f FEImplementation of FE

Fi it El t E ilib i E tiFinite Element Equilibrium Equations:

The equations we need to solve include several integrals !
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I l t ti f FEImplementation of FE

In p inciple e need to conside  1  2 and 3 dimensional In principle we need to consider 1, 2 and 3 dimensional 
integrals

We may write the integrals in the following wayWe may write the integrals in the following way

( ) ,     ( , ) ,     ( , , )r dr r s drds r s t drdsdt∫ ∫ ∫F F F

In practice we may solve the integrals in terms of sums 
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I l t ti f FEImplementation of FE

In p inciple e need to conside  1  2 and 3 dimensional In principle we need to consider 1, 2 and 3 dimensional 
integrals

We may write the integrals in the following wayWe may write the integrals in the following way

( ) ,     ( , ) ,     ( , , )r dr r s drds r s t drdsdt∫ ∫ ∫F F F

In practice we may solve the integrals in terms of sums 
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I l t ti f FEImplementation of FE

In p inciple e need to conside  1  2 and 3 dimensional In principle we need to consider 1, 2 and 3 dimensional 
integrals

We may write the integrals in the following wayWe may write the integrals in the following way

( ) ,     ( , ) ,     ( , , )r dr r s drds r s t drdsdt∫ ∫ ∫F F F

The elements of the matrixes are integrated individually
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I l t ti f FEImplementation of FE

In p inciple e need to conside  1  2 and 3 dimensional In principle we need to consider 1, 2 and 3 dimensional 
integrals

Considering the 1-dimensional caseConsidering the 1 dimensional case

( ) ,     iso-parametric; 1, 1
b

F r dr a b= − =∫
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∫
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I l t ti f FEImplementation of FE

Inte polation sing a pol nomialInterpolation using a polynomial

Having calculated i( ),    , 0,1, 2,..iF r r i n=

we may fit a unique polynomial through these values

2
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I l t ti f FEImplementation of FE

Inte polation sing a pol nomialInterpolation using a polynomial

To solve 
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Requires the inversion of a matrix which is associated with 
some numerical effort – we would like to avoid that !
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I l t ti f FEImplementation of FE

Inte polation sing a pol nomialInterpolation using a polynomial

We may associate with the functions 

the axes of a n+1 dimensional vector space in which the 

21, , ,..., nr r r

the axes of a n+1 dimensional vector space in which the 
specific coordinates 
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I l t ti f FEImplementation of FE

Lang angian inte polation f nctionsLangrangian interpolation functions

Instead of using the basis 21, , ,..., nr r r

we may use Lagrangian interpolation functions of the form

( )( ) ( )( ) ( )r r r r r r r r r r0 1 1 1

0 1 1 1
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=
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in this space the polynomial can simply be written as
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p p y p y

0 0 1 1 2 2( ) ( ) ( ) ( ) ... ( )n nr F l r F l r F l r F l rψ = + + + + See example 
5.33
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I l t ti f FEImplementation of FE

Ne ton Cotes integ ationNewton-Cotes integration

We assume equidistantly space integration points, i.e. for a 
one dimensional integral between a and b we getone dimensional integral between a and b we get
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I l t ti f FEImplementation of FE

Ne ton Cotes integ ationNewton-Cotes integration

Using the Newton-Cotes approach we may increase the 
precision by precision by 

- increasing the number of intervals – higher order 
polynomial

- subdividing the integral into parts (composite approach)

the composite approach has some advantages as this 

- ensures convergence (as for the higher order polynomials)

- allows for consideration of discontinuities (example 5.37)
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I l t ti f FEImplementation of FE

Ga ss integ ationGauss integration

In the foregoing we assumed equidistant integration points

In the following we will not only optimize the number of 
integration points but also the location (distance between) 
the integration points

As before we can write
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I l t ti f FEImplementation of FE

Ga ss integ ationGauss integration

By integrating we get
0 1 2

1
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we may now determine the integration points from

( ) 0,    0,1, 2,... -1
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k
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and in the end we achieve an approximating polynomial of 
order 
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I l t ti f FEImplementation of FE

Ga ss integ ationGauss integration

The sampling weights clearly depend on the integration 
limits and for this reason it is obviously beneficial to limits and for this reason it is obviously beneficial to 
standardize  the integration domain.

This may easily be achieved by integrating from -1 to +1 and This may easily be achieved by integrating from 1 to +1 and 
then to adjust the sampling points and weights as:
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I l t ti f FEImplementation of FE

Ga ss integ ation
1a b b a b a+ − −
∫Gauss integration
1
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2 2 2i i j j
a b b a b ar l r drα α

−

+
+ = ∫

See examples 5.38-5.39p

Finite Element Procedures, K.J. Bathe, 1996
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I l t ti f FEImplementation of FE

Ga ss integ ationGauss integration

So far we looked at 1-dimensional integrals – but the same So far we looked at 1 dimensional integrals but the same 
principle applies to 2 and 3-dimensional integrals as well

2 dimensions

1 1 1

( , ) ( , ) ( , )i i i j i jF r s drds F r s ds F r sα α α= =∑ ∑∫ ∫ ∫

2-dimensions

,1 1 1
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∑ ∑∫ ∫ ∫

3-dimensions

1 1 1 1
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( , , ) ( , , ) ( , , )i j i j i j k i j k
i i j k

F r s t drdsdt F r s t dt F r s tα α α α α= =∑ ∑∫ ∫ ∫ ∫
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I l t ti f FEImplementation of FE

Ga ss integ ation Finite Element Procedures  K J  Bathe  1996Gauss integration Finite Element Procedures, K.J. Bathe, 1996
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I l t ti f FEImplementation of FE

Ga ss integ ation Finite Element Procedures  K J  Bathe  1996Gauss integration Finite Element Procedures, K.J. Bathe, 1996
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I l t ti f FE
Finite Element Procedures, K.J. Bathe, 1996

Implementation of FE

Ga ss integ ationGauss integration

Integration order
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