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C t t  f T d '  L tContents of Today's Lecture

• I t d ti  • Introduction 

Formulation of the displacement-based finite element method

• General derivation of the finite element equilibrium equations

- The principle of virtual displacementsThe principle of virtual displacements
- The Finite Element equations
- The assumption about stress equilibrium
- Local to global coordinate transformations

I iti  f di l t b d  diti- Imposition of displacement boundary conditions
- Lumping of structural properties and loads

• G li d di t  d l• Generalized coordinate models
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I t d tiIntroduction

What we would like to establish is the response of a 
structure subject to “loading”.

The Method of Finite Elements provides a framework for 
the analysis of such responses – however for very 
general problems.general problems.

The Method of Finite Elements provides a very general 
approach to the approximates solutions of differential 

tiequations.

In the present course we consider a special class of 
bl  lproblems, namely:

Linear quasi-static systems, no material or geometrical or 
boundary condition non-linearities and also no inertia 

Method of Finite Elements 1

boundary condition non linearities and also no inertia 
effect!
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I t d tiIntroduction

In principle the structures/systems we consider can be p p / y
represented like show in the figure

y

P(x,y)

x

Method of Finite Elements 1
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I t d tiIntroduction

C ti tContinuous-system:

The governing differential 
equation we consider in general 

y

P(x y)equation we consider in general 
have the form (second order 
differential equations)

x

P(x,y)

2 2 2

( ) 2 ( ) ( ) ( )u u u u uA x y B x y C x y x y uφ∂ ∂ ∂ ∂ ∂
+ + =

x

2 2( , ) 2 ( , ) ( , ) ( , , , , )A x y B x y C x y x y u
x x y y x y

φ+ + =
∂ ∂ ∂ ∂ ∂ ∂

0 elliptic (Laplace equation)<⎧
2

0   elliptic                (Laplace equation)
=0    parabolic            (heat conduction equation)
>0 h b li ( ti )

B AC
<⎧
⎪− ⎨
⎪
⎩

Method of Finite Elements 1

>0    hyperbolic          (wave equation)⎪
⎩
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I t d tiIntroduction

We know that this type of problem can be analyzed yp p y
taking basis in the governing differential equation

Only – the problem 

y

Only the problem 
is that it is very 
difficult to find 
solutions for 

P(x,y)

solutions for 
general cases

However we have 

x

However – we have 
an idea about the 
physics which are 
governing the governing the 
problem !

Method of Finite Elements 1
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I t d tiIntroduction

General principles of mechanics on how to derive and p p
solve the differential equations were developed by Ritz 
and Galerkin – taking basis in variational approaches

These developments 

y

These developments 
led to the principle 
of virtual work -
which essentially 

P(x,y)

which essentially 
forms the basis for 
the Method of Finite 
Elements

x

Method of Finite Elements 1



Swiss Federal Institute of 
Technology

Page 8

G l D i ti  f th  FEE E tiGeneral Derivation of the FEE Equations

Based on the principle of virtual work we can derive the p p
element and system equations for the analysis of the 
response 

Z,W
Sf

y,v

B
Yf

iR

x,u
z,w

Finite element

CYR

Y,V

X U

Finite element

Nodal point

S

Method of Finite Elements 1

X,U Su
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G l D i ti  f th  FEE E tiGeneral Derivation of the FEE Equations

Th  i i l  f i t l di l t
y,v

Z,W
Sf

B
Yf

iRThe principle of virtual displacements:

The loads are given as

x,u
z,w

Y,V

X,U

Finite element

Nodal point

S

i
CYR

The loads are given as

Body loads

B
X

B B
Y

f
f

⎡ ⎤
⎢ ⎥= ⎢ ⎥f

, Su

Y
B
Zf

⎢ ⎥
⎢ ⎥⎣ ⎦

S
Xf⎡ ⎤

⎢ ⎥Surface loads
X

S S
Y
S
Z

f
f
f

⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

f

Concentrated loads i
CX

i i
C CY

R
R
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥

R

Method of Finite Elements 1
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G l D i ti  f th  FEE E ti

y,v

Z,W
Sf

B
Yf

General Derivation of the FEE Equations

Th  i i l  f i t l di l t
x,u

y,v

z,w

Y,V

X U

Finite element

Nodal point

i
CYRThe principle of virtual displacements:

Displacements are measured in unloaded configuration
U⎡ ⎤ X,U Su

Th  t i  di  t  U 

( , , )
U

X Y Z V
W

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

U

The strains corresponding to U are:

[ ], , , , ,T
XX YY ZZ XY YZ ZX=ε ε ε ε γ γ γ

with

,   ,   XX YY ZZ
U U U
X Y Z
∂ ∂ ∂

= = =
∂ ∂ ∂

ε ε ε

,   ,   XY YZ ZX

X Y Z
U V V W W U
Y X Z Y X Z

∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

= + = + = +
∂ ∂ ∂ ∂ ∂ ∂

γ γ γ

Method of Finite Elements 1
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G l D i ti  f th  FEE E ti
Z,W

Sf

BfTh  i i l  f i t l di l t

General Derivation of the FEE Equations

x,u

y,v

z,w

Y V
Finite element

Yf

i
CYR

The principle of virtual displacements:

The stresses are obtained through the constitutive relations:
Y,V

X,U
Nodal point

Su[ ], , , , ,
with

T
XX YY ZZ XY YZ ZX=τ τ τ τ τ τ τ

with
′= +τ Cε τ

Stress-strain matrix

Initial stresses

Method of Finite Elements 1
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G l D i ti  f th  FEE E ti

y,v

Z,W
Sf

B
Yf

Th  i i l  f i t l di l t

General Derivation of the FEE Equations

x,u

y,v

z,w

Y,V

X U

Finite element

Nodal point

i
CYRThe principle of virtual displacements:

We may now express the principle of virtual displacements 
in a more general form: X,U Su
in a more general form:

Internal virtual work External virtual work

f fS T ST T B iT i
C

i
dV dV dS= + +∑∫ ∫ ∫ε τ U f U f U R

f
iV V S

Stresses in equilibrium with applied loadsStresses in equilibrium with applied loads

Virtual strains corresponding to virtual displacements

Method of Finite Elements 1
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G l D i ti  f th  FEE E ti

y,v

Z,W
Sf

B
Yf

Fi it  El t E ti

General Derivation of the FEE Equations

x,u

y,v

z,w

Y,V

X U

Finite element

Nodal point

i
CYRFinite Element Equations:

We now consider the volume modeled as an assemblage of N
elements connected in the nodal points on the element X,U Su
elements connected in the nodal points on the element 
boundaries

The displacements within the individual elements are 
d i   i t l l di t  t  measured in a convenient local coordinate system x,y,z

For element m we now write the displacements within the 
element as a function of the total set of global nodal element as a function of the total set of global nodal 
displacements U

( ) ( ) ˆ( , , ) ( , , )m mx y z x y z=u H U( , , ) ( , , )x y z x y zu H U

[ ] [ ]1 1 1 2 2 2 1 2
ˆ , , ,   , , ,...  , , , ,...T

N N N nU V W U V W U V W U U U= =U

Method of Finite Elements 1
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G l D i ti  f th  FEE E ti
Z,W

Sf

B
Yf

Fi it  El t E ti

General Derivation of the FEE Equations

x,u

y,v

z,w

Y,V
Finite element

Nodal point

i
CYR

Finite Element Equations:

For element m we now write the strains within the element 
as a function of the total set of global nodal displacements U

X,U Su
as a function of the total set of global nodal displacements U

( ) ( ) ˆ( , , ) ( , , )m mx y z x y z=ε B U

The stresses are then:

( ) ( ) ( )( , , ) ( , , ) ( , , )m m i mx y z x y z x y z= +τ Cε τ

Method of Finite Elements 1
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G l D i ti  f th  FEE E ti

y,v

Z,W
Sf

B
Yf

Fi it  El t E ti

General Derivation of the FEE Equations

x,u

y,v

z,w

Y,V

X U

Finite element

Nodal point

i
CYRFinite Element Equations:

We can now write the equlibrium equations for the total 
volume by summing up over the N elementsX,U Su
volume by summing up over the N elements

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1m m

N N
m T m m m T B m m

m mV V

dV dV
= =

= +∑ ∑∫ ∫ε τ U f
( ) ( )

( ) ( )

1 1

( ) ( ) ( )

1

f f

m m

m mV V
N

S m T S m m

m S S

dS
=

−∑ ∫ U f
( ) ( )

1 1
1 , ,...

( ) ( ) ( )

m m
f f

m S S

N
m T i m mdV

=

+∑ ∫ ε τ
( )1 mm V

iT i
C

=
∑ ∫

∑U R

Method of Finite Elements 1

C
i
∑
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G l D i ti  f th  FEE E ti

y,v

Z,W
Sf

B
Yf

Fi it  El t E ti

General Derivation of the FEE Equations

x,u

y,v

z,w

Y,V

X U

Finite element

Nodal point

i
CYRFinite Element Equations:

As a next step we represent both the real unknown 
displacement fields as well as the virtual displacement fields X,U Su
displacement fields as well as the virtual displacement fields 
through the interpolation functions (provides symmetrical 
stiffness matrixes ☺ )

N⎡ ⎤

( )

( ) ( ) ( ) ( )

1

ˆ
m

N
T m T m m m

m V

dV
=

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∫U B C B U

( ) ( ) ( )
1 1

( )( ) ( ) ( ) ( ) ( )

1 1ˆ

f

m m m
f f

N N
S mm T B m m m T m

m mV S ST

dV dS
= =

⎡ ⎤+⎢ ⎥
⎢ ⎥
∑ ∑∫ ∫H f H f

1 1, ,..

( ) ( ) ( )

f fV S ST

N
m T m m

CdV

⎢ ⎥
⎢ ⎥
⎢ ⎥− +
⎢ ⎥⎣ ⎦
∑ ∫

U
B τ R

Method of Finite Elements 1

( )1 mm V=⎢ ⎥⎣ ⎦
∫
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G l D i ti  f th  FEE E ti

Fi it  El t E ti
y,v

Z,W
Sf

B
Yf

General Derivation of the FEE Equations

Finite Element Equations:

Now we may finally simplify as
x,u

z,w

Y,V

X,U

Finite element

Nodal point

S

i
CYR

( ) ( ) ( )

B S I C
N

m T B m mdV

= + − +

∑ ∫

R R R R R

R H f( ) ( ) ( ) ( )
N

m T m m mdV

=

=∑ ∫

KU R

K B C B

X,U Su

( )

( ) ( ) ( )

1

( )( ) ( )

m

f

B
m V
N

S mm T m

dV

dS

=

=∑ ∫

∑ ∫

R H f

R H f

( )1 mm V

dV
=

=∑ ∫K B C B

( ) ( )
1 1

( ) ( )

1 , ,..

( ) ( ) ( )

f

m m
f f

S
m S S

N
m T i m m

dS

d

=

=∑ ∫

∑ ∫

R H f

These are the finite element 

( )

( ) ( ) ( )

1 m

m T i m m
I

m V

C C

dV
=

=

=

∑ ∫R B τ

R R

equations to be solved ☺

Method of Finite Elements 1

C CR R
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G l D i ti  f th  FEE E ti

Th  ti  b t t  ilib i

General Derivation of the FEE Equations

The assumption about stress equilibrium:

Equilibrium with 
externally applied loads Auto equilibrium

Method of Finite Elements 1
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G l D i ti  f th  FEE E ti

L l t  l b l di t  t f ti

General Derivation of the FEE Equations

Local to global coordinate transformations:

It is often more convenient to define the element stiffness 
relations and to calculate their contributions to the load relations and to calculate their contributions to the load 
vector in a local coordinate system – this is often specific for 
each individual element.

local u

In this case we need to transform the element matrixes into 
global coordinates before we can assemble the global 

local       u

global coordinates before we can assemble the global 
stiffness relation    

ˆ=u Tu =u Tu

Method of Finite Elements 1
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G l D i ti  f th  FEE E ti

L l t  l b l di t  t f ti

General Derivation of the FEE Equations

Local to global coordinate transformations:

Y
2v 2v

1v

2u

u
a

X

1u

2u

ˆ=u Tu

X

1 1cos sin 0 0u uα α⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ =u Tu 1 1

1 1

2 2

sin cos 0 0
0 0 cos sin
0 0 i

v v
u u

α α
α α

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥=
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦

Method of Finite Elements 1

2 20 0 sin cosv vα α⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦
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G l D i ti  f th  FEE E ti

I iti  f di l t b d  diti

General Derivation of the FEE Equations

Imposition of displacement boundary conditions:

The boundary conditions in regard to displacements may be included in 
the equations system as:the equations system as:

aa ab a a
b b

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⇒ = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥

K K U R
K U R K Uaa a a ab b

ba bb b b

⇒⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

K U R K U
K K U R

b b b b
b ba a bb b B S I C= + − − + −R K U K R R R R R

Ua:    unknown displacement
Ub:    prescribed displacements
R ti

Method of Finite Elements 1

Rb:       reactions
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G l D i ti  f th  FEE E ti

L i  f t t l ti  d l d

General Derivation of the FEE Equations

Lumping of structural properties and loads:

Using the formulations we have seen till now all forces 
acting on the volume are integrated up using the assumed acting on the volume are integrated up using the assumed 
displacement fields represented in terms of generalized 
coordinate models as weighing functions

The result of this is that the forces not already acting in the 
nodes are equivalated by nodal forces.

This process requires significant computations efforts and 
for this reason so-called lumped forces are appplied.

Lumped forces are distributed geometrically to the 
adjacent nodes.

Method of Finite Elements 1
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G l D i ti  f th  FEE E ti

L i  f t t l ti  d l d

General Derivation of the FEE Equations

Lumping of structural properties and loads:

p / 4b

/ 2b

p / 4pb

/ 2b/ 2b

/ 2b

Approximate 
lumped load

/ 2pb

/ 2b
/ 4pb

Actual load

Method of Finite Elements 1
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G li d C di t  M d l

Having established the fundamental equations at element 

Generalized Coordinate Models

g q
as well as system level

What remains is to 
establish the 

y

appropriate 
solutions at element 
level and to 
optimize these 
– in terms of 
accuracy/efficiency 
f diff l

x

for different classes 
of problems

Method of Finite Elements 1
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G li d C di t  M d l

Fundamentally we need to identify the different cases to 

Generalized Coordinate Models

y y
be considered – and their characteristics

y
and then we need to 
solve these 
situation in the situation in the 
easiest way 
possible!

x

Method of Finite Elements 1
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G li d C di t  M d l

The fundamental idea is that we approximate the 

Generalized Coordinate Models

pp
displacement fields within smaller parts of the system -
elements – aiming to represent the real variation of these 
appropriately accurate in a simplified manner. 

For this reason – a 
major part of the j p
Method of Finite 
Elements concerns 
the representation 

y

of displacement 
fields within 
elements

x

Method of Finite Elements 1
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G li d C di t  M d l

R i t  t  h  f ti

Generalized Coordinate Models

Requirements to shape functions:

First of all the functions which we want to represent 
(displacements and their derivatives) need to be able to (displacements and their derivatives) need to be able to 
represent the physics of the type of problem we are aiming 
to model within the individual elements.

Secondly we also need to be concerned with continuity 
over the borders of the elements.

W  h  i t d  ti it  i tWe here introduce continuity requirements:

C0 continuity Continuity of displacement field
C1 continuity Continuity of the first order derivative of the C continuity Continuity of the first order derivative of the 

displacement field
Cm continuity Continuity of the mth order derivative of the 

displacement field 

Method of Finite Elements 1
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G li d C di t  M d l

From the theory of elasticity we e.g. know what types of 

Generalized Coordinate Models

response is required to represent the characteristics of 
beams, plates, shells and solids under different loading 
conditions.

Element type u ε τ

1 Bar
2 Beam
3 Plane stress

u
w
u v

[ ]XXε [ ]XXτ
[ ]XXκ [ ]XXM
[ ]ε ε γ [ ]τ τ τ3 Plane stress

4 Plane strain
5 Axisymmetric
6 Three-dimensional

,u v
,u v
,u v
,u v

[ ], ,XX YY XYε ε γ [ ], ,XX YY XYτ τ τ
[ ], ,XX YY XYε ε γ [ ], ,XX YY XYτ τ τ
[ ], , ,XX YY XY ZZε ε γ ε [ ], , ,XX YY XY ZZτ τ τ τ
[ ], , , , ,XX YY ZZ XY YZ ZXε ε ε γ γ γ [ ], , , , ,XX YY ZZ XY YZ ZXτ τ τ τ τ τ

7 Plate bending
,u v
w

[ ]XX YY ZZ XY YZ ZXγ γ γ [ ]XX YY ZZ XY YZ ZX

[ ], ,XX YY ZZM M M[ ], ,XX YY ZZκ κ κ

Method of Finite Elements 1
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G li d C di t  M d l

The real issue being to establish a cost efficient way of 

Generalized Coordinate Models

g y
developing the element stiffness matrixes  

To this end the 
general concept is to g p
develop 

“generic” elements

y

x

Method of Finite Elements 1



Swiss Federal Institute of 
Technology

Page 30

G li d C di t  M d lGeneralized Coordinate Models

G li d di t d lGeneralized coordinate models:

The principle behind these models is:

Formulate displacement field in terms of polynomials 

G li d diβ
2 3

1 2 3 4

one-dimensional
( )u x x x xα α α α= + + + +

:  Genenralized coordinatesα,β,γ

2
1 2 3 4

2

two-dimensional
( , )u x y x xy xα α α α= + + + + =u Φα

2
1 2 3 4

2

( , )
plate bending

( )

v x y x xy xβ β β β= + + + +

Method of Finite Elements 1

2
1 2 3 4( , )w x y x xy xγ γ γ γ= + + + +



Swiss Federal Institute of 
Technology

Page 31

G li d C di t  M d lGeneralized Coordinate Models

G li d di t  d lGeneralized coordinate models:

Next step is to relate the generalized coordinates to the nodal 
displacements:displacements:

We insert the nodal coordinates into =u Φα

and get: 1ˆ ˆ−= ⇒ =u Aα α A u

Now we can obtain =ε Eαε α
=τ Cε

Method of Finite Elements 1
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Sh  f tiShape functions:

In general we may write the approximate relation between 
the field representation (displacements/strains) and the the field representation (displacements/strains) and the 
nodal displacements as:

ˆ( , ) ( , )Tu x y x y= H u
We consider an element with
n nodes( ) ( )y y

N d l i t di l t
Displacements 
in the u-direction Shape/interpolation

functions

Nodal point displacements
in the u-direction

vector with dimension n
scalar vector with dimension n

vector with dimension n

Method of Finite Elements 1
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G li d C di t  M d lGeneralized Coordinate Models

Sh  f tiShape functions:

Polynomials are usually applied for the development of 
shape functions (polynomials are easily differentiated shape functions (polynomials are easily differentiated 
analytically)

L  l i l- Langrange polynomials
complete polynomial expansions

- Serendipity polynomials Serendipity polynomials 
incomplete polynomial expansions

- Hermitian polynomials
l i l  i l di  d i tipolynomials including derivatives

Method of Finite Elements 1
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G li d C di t  M d lGeneralized Coordinate Models

To achieve “generic” elements is important – but also g p
numerical efficiency is important.

Numerical efficiency 
relates to the degree relates to the degree 
to which the elements 
are able to represent 
the real displacement the real displacement 
fields measured in 
terms of number of 
nodes.

y

On top of this – also 
the numerical efforts 
required to calculate 
the element stiffness 
matrixes plays an 
important role

x

Method of Finite Elements 1
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Sh f ti ( l ) 1
y

Shape functions (example):

Three node triangle element

3
1

we assume a complete first order polynomial 
2

x

( )u x y a a x a y= + + =Φα

we can now relate this displacement field to the nodal displacements

1 2 3( , )u x y a a x a y= + + =Φα

ˆˆ Φˆ

ˆ 1

=

⇓

⎡ ⎤ ⎡ ⎤ ⎡ ⎤

u Φα

[ ]( , ) , 1u x y x y= =Φα Φ
1 1 1 1

1
2 2 2 2

1
ˆˆ ˆ1

ˆ 1

u x y a
u x y a
u x y a

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⇒ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

α Φ u

[ ]

1

( , ) ,   1

ˆ ˆ( )

u x y x y

u x y −

⇓

=

Φα Φ

ΦΦ u

Method of Finite Elements 1

3 3 3 31u x y a⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ( , )u x y =ΦΦ u
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G li d C di t  M d lGeneralized Coordinate Models

Sh f ti ( l ) 1
y

Shape functions (example):

Three node triangle element

3
1

we assume a complete first order polynomial 
2

x

( )u x y a a x a y= + + =Φα

we can now relate this displacement field to the nodal displacements

1 2 3( , )u x y a a x a y= + + =Φα

[ ] [ ]h h hH[ ]

1

( , ) ,   1

ˆ ˆ( )

u x y x y

−

= =

⇓

Φα Φ

ΦΦ

[ ]1 2 3

2 3 3 2 2 3 3 2
1

1 2 2 3 3 1 1 3 2 1 3 2

( ) ( ) ( )
h h h
y y x x x y x y x yh
x y x y x y x y x y x y

=

− + − + −
=

+ + − − −

H

1( , )

ˆ( , )

u x y

u x y

=

⇓
=

ΦΦ u

Hu

3 1 1 3 3 1 1 3
2

1 2 2 3 3 1 1 3 2 1 3 2

1 2 2 1 1 2 2 1

( ) ( ) ( )

( ) ( ) ( )

y y x x x y x y x yh
x y x y x y x y x y x y
y y x x x y x y x yh

− + − + −
=

+ + − − −
− + − + −
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( , )u x y Hu 1 2 2 1 1 2 2 1
3

1 2 2 3 3 1 1 3 2 1 3 2

( ) ( ) ( )y y y y yh
x y x y x y x y x y x y

=
+ + − − −
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Ch i  f h  f tiChoice of shape functions:

So far we have only addressed the representation of 
displacements and their derivatives within the elements by displacements and their derivatives within the elements by 
stating that we need to establish some approximations for 
these – e.g. through polynomials which might be directly 
related (polynomial coefficients) to the nodal 
di l t   displacements.  
Of course we need these fields in order to establish the 
element stiffness matrixes as well as the nodal point forces 
equivalating the surface and the body forcesequivalating the surface and the body forces.
In the Method of Finite Elements this step is a major one –
in principle using „brutal force“ the approaches we have 
seen are sufficient – however, considering the associated seen are sufficient however, considering the associated 
required numerical efforts it is not efficient. For this reason 
we will later go into more details on how element stiffness 
matrixes might be developed generically and efficiently.

Method of Finite Elements 1


