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• Variational formulations
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I t d tiIntroduction

I i i l h / id b dIn principle the structures/systems we consider can be represented 
like show in the figure

y

P(x,y)

x

Method of Finite Elements I
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I t d tiIntroduction

W k h hi f bl b l d ki b i iWe know that this type of problem can be analyzed taking basis in 
the governing differential equation

Only – the problem is

y

Only – the problem is 
that it is very difficult 
to find solutions for 
general cases

P(x,y)

general cases

However – we have

x

However we have 
an idea about the 
physics which are 
governing thegoverning the 
problem !

Method of Finite Elements I
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I t d tiIntroduction

G l i i l f h i h d i d l hGeneral principles of mechanics on how to derive and solve the 
differential equations were developed by Ritz and Galerkin – taking 
basis in variational approaches 

y

These developments 
led to the principle of 
virtual work whichy

P(x,y)

virtual work - which 
essentially forms the 
basis for the Method 

f Fi it El t( ,y) of Finite Elements

x

Method of Finite Elements I
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Diff ti l f l tiDifferential formulation

I h diff i l f l i bli h h ilib i d• In the differential formulation, we establish the equilibrium and 
constitutive requirements of typical differential elements in terms 
of state variables.

• It is possible that all compatibility requirements are already 
contained in these differential equations In general the equationscontained in these differential equations. In general, the equations 
must be supplemented by additional differential equations that 
impose appropriate constraints on the state variables.

• All boundary conditions, and in a dynamic analysis the initial 
conditions are statedconditions, are stated.

Method of Finite Elements I
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Diff ti l f l tiDifferential formulation

Th i diff i l i id i l h hThe governing differential equation we consider in general have the 
form (second order differential equations)

y

( ) ( ) ( )
2 2 2u u u u u⎛ ⎞∂ ∂ ∂ ∂ ∂

y

P(x,y)

( ) ( ) ( )2 2, 2 , , , , , ,u u u u uA x y B x y C x y x y u
x x y y x y

φ
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ + = ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

0 elliptic (Laplace equation)<⎧

x

2

0   elliptic                (Laplace equation)
=0    parabolic            (heat conduction equation)
>0    hyperbolic          (wave equation)

B AC
<⎧

⎪− ⎨
⎪
⎩
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B i ti f th th f l ti itBasic equations of the theory of elasticity

:  supported area with prescribed displacements 

f i h ib d f

u

f

s
u

s

s U

f:  surface with prescribed forces 

:  body forces (per unit volume)
: displacement vector

fs
f

B

s f

f
U :  displacement vector

:  strain vector
:  stress vector

U
ε
τ

Method of Finite Elements I
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B i ti f th th f l ti itBasic equations of the theory of elasticity

Ki i l iKinematic relations

0 0
x

∂⎡ ⎤
⎢ ⎥∂⎢ ⎥

0 0
y

∂⎢ ⎥
∂⎢ ⎥

⎢ ⎥∂
⎢ ⎥

∂⎢ ⎥0 0
,  ,  2 2 2

0

T
xx yy zz xy yz xz

U
zV

W
ε ε ε ε ε ε

∂⎢ ⎥⎡ ⎤ ⎢ ⎥∂⎢ ⎥ ⎡ ⎤= = =⎢ ⎥ ⎣ ⎦⎢ ⎥ ∂ ∂⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥

U L ε

0

W y x

z y

⎢ ⎥⎣ ⎦ ⎢ ⎥∂ ∂
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∂ ∂
⎢ ⎥

0

y

z x

⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

ε = LU
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ε = LU



Swiss Federal Institute of Technology Page 10

B i ti f th th f l ti itBasic equations of the theory of elasticity

Ki i l iKinematic relations

2 2 2

strain compatibility

⎡ ⎤∂ ∂ ∂
2 2

2 2 2

2 2

0 2 0 0

0 0 2 0

y x x y
⎡ ⎤∂ ∂ ∂

−⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂

−⎢ ⎥2 2

2 2 2

2 20 0 0 2

z y y z

z x x z

⎢ ⎥
∂ ∂ ∂ ∂⎢ ⎥

⎢ ⎥∂ ∂ ∂
⎢ ⎥−

∂ ∂ ∂ ∂⎢ ⎥L L 01 2 2 2 2

2

2 2 2 2

0 0

z x x z

y z x z x x y

∂ ∂ ∂ ∂⎢ ⎥= ⎢ ⎥∂ ∂ ∂ ∂
− −⎢ ⎥

∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂

L 1,   =L ε 0

2 2 2 2

2

2 2 2 2

0 0

0 0

x z z y x y y

⎢ ⎥∂ ∂ ∂ ∂⎢ − −
∂ ∂ ∂ ∂ ∂ ∂ ∂⎢

⎢ ∂ ∂ ∂ ∂⎢

⎥
⎥
⎥
⎥
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B i ti f th th f l ti itBasic equations of the theory of elasticity

E ilib i iEquilibrium equations

2
BL τ + f = 02

2where ,  =T T
xx yy zz xy yz zxτ τ τ τ τ τ⎡ ⎤= ⎣ ⎦

L τ + f 0

τ L L⎣ ⎦
on  we have fs

fs −Ντ f = 0

0 0 0 0
where 0 0 0 ,

0 0 0

l m
m l n

n m l

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

N
0 0 0

,  , and  are cosines of the angles between the normal on the surface

n m l

l m n

⎢ ⎥⎣ ⎦

Method of Finite Elements I
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B i ti f th th f l ti itBasic equations of the theory of elasticity

C i i lConstitutive law

=τ Cε

where  is elasticity matrix
and depends on material properties  and  (modulus of elasticity and Poisson's ratio)E ν

C

Method of Finite Elements I
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B i ti f th th f l ti itBasic equations of the theory of elasticity

Diff i l iDifferential equations

• Stress and strain state is represented through 15 unknowns: 3Stress and strain state is represented through 15 unknowns: 3 
displacement components, 6 strain components, and 6 stress 
components.

• We also have 15 equations (9 differential and 6 algebraic). They, 
together with boundary conditions, define the problemg y , p

Method of Finite Elements I
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P i i l f Vi t l kPrinciple of Virtual work

Th i i l f i l di l h i l k f• The principle of virtual displacements: the virtual work of a system 
of equilibrium forces vanishes on compatible virtual 
displacements; the virtual displacements are taken in the form of 
variations of the real displacements

• Equilibrium is a consequence of vanishing of a virtual work• Equilibrium is a consequence of vanishing of a virtual work
Internal virtual work External virtual work

f f

f

S T ST T B iT i
C

iV V S

dV dV dS= + + ∑∫ ∫ ∫ε τ U f U f U R

Stresses in equilibrium with applied loads

Method of Finite Elements I

Virtual strains corresponding to virtual displacements
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P i i l f Vi t l kPrinciple of Virtual work

Th i i l f i l f i l k f ilib i i i• The principle of virtual forces: virtual work of equilibrium variations 
of the stresses and the forces on the strains and displacements 
vanishes; the stress field considered is a statically admissible field 
of variation

• Equilibrium is assumed to hold a priori and the compatibility of• Equilibrium is assumed to hold a priori and the compatibility of 
deformation is a consequence of vanishing of a virtual work

• Both principles does not depend on a constitutive law

Method of Finite Elements I
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V i ti l f l tiVariational formulation

B d h i i l f i i f f i l hi h i• Based on the principle of stationarity of a functional, which is 
usually potential or complementary energy

• Two classes of the boundary conditions: essential (geometric) 
and natural (force) boundary conditions

• Scalar quantities (energies, potentials) are considered rather 
than vector quantitiesq

• For approximate solutions, a larger class of trial functions than 
i th diff ti l f l ti b l d f l thin the differential formulation can be employed; for example, the 
trial functions need not satisfy the natural boundary conditions 
because these boundary conditions are implicitly contained in 

Method of Finite Elements I

the functional – this is extensively used in MFE 
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V i ti l f l tiVariational formulation

F l i bl (li d li ) i l f h• For elastic problems (linear and non-linear) a special case of the 
principle of virtual work – principle of minimum total potential 
energy can be applied

• Total potential energy is  a sum of strain energy and potential of 
l d Π U Wloads, Π=U–W

• This equation which gives Π as a function of deformationThis equation, which gives Π as a function of deformation 
components, together with compatibility relations within the
solid and geometric boundary conditions, defines the so called 
L f ti lLagrange functional

• Applying the variation we invoke the stationary condition of the

Method of Finite Elements I

Applying the variation we invoke the stationary condition of the 
functional δΠ=δ U–δW =0
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V i ti l f l tiVariational formulation

2• It can be shown that functional Π has a minimum since δ2Π=
δ2 U>0 (due to the fact that the elasticity matrix is a positive 
definite matrix)definite matrix)

• If δΠ =0 holds and the variations of the displacements satisfy 
the essential boundary conditions and the compatibility 
relations, the element will be in equilibrium

• Since the total potential has a minimum, every displacement 
field that is used for the approximation of the real field gives 

l f Π th t hi h th th l Π th b d MFEvalues of Π that are higher than the real Π; thus, so based MFE 
yields displacements that are smaller than the real ones

Method of Finite Elements I
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V i ti l f l ti

• C l t t ti l i f l t

Variational formulation

• Complementary potential energy is  a sum of a complementary 
strain energy and potential (complementary work) of loads, 
Πc = Uc –WcΠc  Uc Wc

• This equation, which gives Πc as a function of stress q g c
components, together with equilibrium relations within the solid 
and static boundary conditions, defines the so called 
Castigliano functionalCastigliano functional

• Applying the variation we invoke the stationary condition of the 
functional Πc

δ Π = δU δW = 0
Method of Finite Elements I

δ Πc = δUc – δWc = 0
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V i ti l f l ti

It b h th t f ti l Π h i i i δ2Π

Variational formulation

• It can be shown that functional Πc has a minimum since δ2Πc = 
δ2Uc > 0 (due to the fact that the elasticity matrix is a positive 
definite matrix)de te at )

• If δΠc = 0 holds and the variations of the stresses satisfy c
equilibrium and the natural boundary conditions, the 
deformation (displacement) field will be compatible

• Since the complementary potential has a minimum, every stress 
field that is used for the approximation of the real field gives the 
values of Πc that are higher than the real Πc; thus, so based 
MFE yields displacements that are larger than the real ones

Method of Finite Elements I
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A i ti th d

• S l ti i th f f ( i f) t i l f ti

Approximative methods

• Solution in the form of (series of) trial functions 

n

i
i

i fa∑
=

=Φ
1

• Solution of the problem, which is given by differential 
formulation L2m[ф] = r, is found using (weighted) residual 

th d f t l ti th id l R imethods; for exact solution the residual R is zero

[ ]Φ−= mLrR 2

Method of Finite Elements I
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A i ti th d

• G l ki th d ti f a 0∫ RdDf

Approximative methods

• Galerkin method, n equations for ai
i=1,2,…n 

0=∫ RdDf
D

i

• Least square method, 
i=1,2,…n

[ ] 02
2 ==

∂
∂

∫∫ dDfRLdDR
a

D
im

Di

• Collocation method: R is set to 0 in n (arbitrary) discrete points 
in solution domain D to obtain n simultaneous equations for ain solution domain D to obtain n simultaneous equations for ai

• Sub-domain method: D is divided in n sub-domains and theSub domain method: D is divided in n sub domains and the 
integral of R over that sub-domain is set to 0 to obtain n 
simultaneous equations for ai

Method of Finite Elements I
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A i ti th dApproximative methods

• Solution of varionatial problem

Trial function is substituted in functional Π and using a 
stationery condition δΠ = 0 a set of n equations for thestationery condition δΠ  0 a set of n equations for the 
parameters ai is obtained, i=1,2,…n (for 2m rank problem fi
must be only m-times differentiable)

0=
∂
Π∂

ia∂ ia

Method of Finite Elements I
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Rit th dRitz method

Thi h d h f i l di h• This method operates on the functional corresponding to the 
problem.

• In our case we choose potential energy as a functional.

Method of Finite Elements I
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Rit th dRitz method

Th i l f i i i h fThe trial function is in the form

n

i ia fΠ = ∑
1

where  is independent trial functions 

i i
i

i

a f

f

=
∑

p
and  is multipliers to be determined in the solution.

i

i

f
a

s are obtained from the simultaneous equations using the stationary condition of
i.e. 0 
ia

δ
Π

Π = which yields  equations:n

0 1, 2, ,
i

i n
a

∂Π
= =

∂
…

Method of Finite Elements I
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Rit th dRitz method

Th i l f i i i h fThe trial function is in the form
n

i ia fΠ = ∑
1

 need to satisfy only the essential (geometric) boundary conditions

i

if

=

and not the natural (force) boundary conditions.

Ritz approximation method is converging for It can be proved thatn→ ∞Ritz approximation method is converging for . It can be proved that,
f

n→ ∞
or one dimensional space

2

1
lim ( ) 0

nb

i ian i
a f x dx

→∞
=

⎡ ⎤
Π − →⎢ ⎥⎣ ⎦

∑∫

Method of Finite Elements I
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Rit th d E lRitz method: Example

L id i l b l d d b ) if l di ib dLet us consider a simple beam loaded by a) uniformly distributed 
load q and b) concentrated force Q.

We use the Ritz method to calculate the deflection w and bending 
moment M at the midspan.

Boudary conditions at 0 (B) and  (A):x x l= =

(0) ( ) 0w w l= =

2 2

2 2
0

0
x x l

d w d w
dx dx

= =

= =

Method of Finite Elements I
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Rit th d E lRitz method: Example

Potential energy functional is obtained from:

22

Potential energy functional is obtained from:

1l ld wEI d d Q
⎛ ⎞

Π ⎜ ⎟∫ ∫2
20 02
lEI dx qwdx Qw

dx
⎛ ⎞

Π = − −⎜ ⎟
⎝ ⎠

∫ ∫

Trial function is choosen as

( ) i
n i xπ∑
1

( ) sin

hi h i fi h b d di i A d B

i
i

i xw x a
l

π
=

= ∑

which satisfies the boundary conditions at A and B.

Method of Finite Elements I
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Rit th d E lRitz method: Example
We consider only the first term, thus

1( ) sin xw x a
l

π
=

2 2

1 12 2cos sindw x d w xa a
dx l l dx l l

π π π π
= = −

1Now, we calculate keeping in mind that

dx l l dx l l

lw a⎛ ⎞Π =⎜ ⎟ 1

4

Now, we calculate  keeping in mind that 
2

1l l

w a

x xπ π π

Π ⎜ ⎟
⎝ ⎠

∫ ∫2 2
1 1 14

0 0
4

2

1 sin sin
2

2

x xEIa dx qa dx Qa
l l l

EI qla Q

π π π

π

Π = − −

= − +

∫ ∫

a⎛ ⎞
⎜ ⎟

Method of Finite Elements I
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a Q

l π
= + 1a⎜ ⎟

⎝ ⎠
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Rit th d E lRitz method: Example

We invoke stationarity of Π

4

13

y

2 0
2

d EI qla Q
d l

πΠ ⎛ ⎞= − + =⎜ ⎟
⎝ ⎠

13
1

3

2

2 2

Q
da l

ql lQ

π⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟1 4

2 2

hi h l d

ql la Q
EIπ π

⎛ ⎞= +⎜ ⎟
⎝ ⎠

3

which leads to

2 2( ) iql l xQ π⎛ ⎞
⎜ ⎟ 4

2 2( ) sinql l xw x Q
EI l

π
π π

⎛ ⎞= +⎜ ⎟
⎝ ⎠

Method of Finite Elements I
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Rit th d E lRitz method: Example
Deflection at midspan

l
3 4

4

2 2 52a) sin 1.0039
2 384

l
l ql l qlw

EI l EI

π

π π
⎛ ⎞ = =⎜ ⎟
⎝ ⎠

45exact solution: ,  0
384
ql
EI

Δ ≈

3 3

384

2 2

EI

l
l l Qlπ⎛ ⎞

4

2 2b) sin 0.9855
2 48
l l Qlw Q

EI l EIπ
⎛ ⎞ = =⎜ ⎟
⎝ ⎠

3

exact solution: ,  1.4%
48

It can be noticed that we rea

Ql
EI

Δ ≈

ch very good approximation

Method of Finite Elements I
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Rit th d E lRitz method: Example
Bending moment at midspan

2

2 2

2 2- sind w ql l xM EI Q
dx l

l

π
π π

⎛ ⎞= = +⎜ ⎟
⎝ ⎠

2
2

2 2 2a) sin 0.129
2

l
l l qlM ql

l

π

π π
⎛ ⎞ = =⎜ ⎟
⎝ ⎠

2exact solution: 0.125 ,  3.2%ql Δ ≈

2

2 2b) sin 0.2026
2

l
l lM Q Ql

l

π

π
⎛ ⎞ = =⎜ ⎟
⎝ ⎠

exact solution: 0.25 ,  23.4%Ql

⎝ ⎠

Δ ≈

Method of Finite Elements I
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Rit th d E lRitz method: Example

N h l i l i i f h b diNote the relatively poor approximation for the bending moment 
value due to the concentrated force. This is because the difference 
between the real moment distribution (linear) and our 
approximation (sin).

approximation

Method of Finite Elements I

real
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A i t 1Assignment 1
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A i t 1Assignment 1

Two classes of the boundary conditions: essential (geometric) 
and natural (force) boundary conditions

For approximate solutions, a larger class of trial functions than in 
the differential formulation can be employed; for example, the trial p y ; p ,
functions need not satisfy the natural boundary conditions

Method of Finite Elements I


