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Contents of Today's Lecture
* Introduction
* Differential formulation
* Basic equations of the theory of elasticity
* Principles of virtual work
* Variational formulations
* Approximative methods

* Assignment 1
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Introduction

In principle the structures/systems we consider can be represented
like show in the figure

/

P(x,y)

N
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Introduction

We know that this type of problem can be analyzed taking basis in
the governing differential equation

Only — the problem is
/ that it is very difficult
P 1 to find solutions for
general cases

P(x,y)

However — we have

@ an idea about the
physics which are
governing the
problem !

v
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Introduction

General principles of mechanics on how to derive and solve the
differential equations were developed by Ritz and Galerkin — taking
basis in variational approaches

/ These developments
led to the principle of
P 4 virtual work - which
essentially forms the
basis for the Method
Plxy) of Finite Elements
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Differential formulation

* In the differential formulation, we establish the equilibrium and
constitutive requirements of typical differential elements in terms
of state variables.

* Itis possible that all compatibility requirements are already
contained in these differential equations. In general, the equations
must be supplemented by additional differential equations that
impose appropriate constraints on the state variables.

* All boundary conditions, and in a dynamic analysis the initial
conditions, are stated.
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Differential formulation

Page 7

The governing differential equation we consider in general have the

form (second order differential equations)

o’u o’u o’u ou Ou
A(x,v)—+2B(x, +C(x,y)—=0¢| x,y,u,—,—
( y) ox’ ( y) Ox0y ( y) oy ¢( d Ox 8yj
<0 elliptic (Laplace equation)
B> —AC{=0 parabolic (heat conduction equation)
>0 hyperbolic (wave equation)
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Basic equations of the theory of elasticity

s . supported area with prescribed displacements U™

u

s, = surface with prescribed forces f g

f” : body forces (per unit volume)
5, U : displacement vector

€: strain vector

T . stress vector
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Basic equations of the theory of elasticity

Kinematic relations

2— 0O O
Oox
0 jz 0
oy
(U | 0 0 aﬁ
U: V , L e a a z R ST :|:gxx gyy €ZZ 26‘xy 2gyz 2gxz]
W — — 0
- oy Ox
0o 2 9
Oz Oy
9 4 9
| Oz ox _

e=LU
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Basic equations of the theory of elasticity

Kinematic relations
strain compatibility

0° 0°
oy ox’
2
o L
0z
2
=
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L, = 2
0yoz
2
0 0
Ox0z
0 0
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Basic equations of the theory of elasticity

Equilibrium equations

Lt+f" =0

T —
where 1 —[Txx T, T. Ty T, T.|

ons, we have Nt—f" =0

[ 0 0 m 0 O
where N=|0 m 0 [ n O],
0 0 n 0 m []

[, m, and n are cosines of the angles between the normal on the surface
and X, Y,and Z
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Basic equations of the theory of elasticity

Constitutive law

T=C¢

where C is elasticity matrix
and depends on material properties £ and v (modulus of elasticity and Poisson's ratio)
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Basic equations of the theory of elasticity

Differential equations

* Stress and strain state is represented through 15 unknowns: 3
displacement components, 6 strain components, and 6 stress

components.

* We also have 15 equations (9 differential and 6 algebraic). They,
together with boundary conditions, define the problem
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Principle of Virtual work

* The principle of virtual displacements: the virtual work of a system
of equilibrium forces vanishes on compatible virtual

displacements; the virtual displacements are taken in the form of
variations of the real displacements

* Equilibrium is a consequence of vanishing of a virtual work

Internabcfirtual work External virtual work

A
r N ™

[g72dy = [UTt%ay + [U'17ds+ ) U'R,
4

A N R

Stresses in equilibrium with applied loads

Virtual strains corresponding to virtual displacements
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Principle of Virtual work

* The principle of virtual forces: virtual work of equilibrium variations
of the stresses and the forces on the strains and displacements
vanishes; the stress field considered is a statically admissible field
of variation

* Equilibrium is assumed to hold a priori and the compatibility of
deformation is a consequence of vanishing of a virtual work

* Both principles does not depend on a constitutive law
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Variational formuiation

* Based on the principle of stationarity of a functional, which is
usually potential or complementary energy

* Two classes of the boundary conditions: essential (geometric)
and natural (force) boundary conditions

* Scalar quantities (energies, potentials) are considered rather
than vector quantities

* For approximate solutions, a larger class of trial functions than
in the differential formulation can be employed; for example, the
trial functions need not satisfy the natural boundary conditions
because these boundary conditions are implicitly contained in
the functional — this is extensively used in MFE
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Variational formuiation

* For elastic problems (linear and non-linear) a special case of the
principle of virtual work — principle of minimum total potential
energy can be applied

* Total potential energy is a sum of strain energy and potential of
loads, ITI= U-"W

* This equation, which gives IT as a function of deformation
components, together with compatibility relations within the

solid and geometric boundary conditions, defines the so called
Lagrange functional

* Applying the variation we invoke the stationary condition of the
functional 8I1=5 U-5 W =0
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Variational formuiation

* |t can be shown that functional 77 has a minimum since &?[1=
82 U >0 (due to the fact that the elasticity matrix is a positive
definite matrix)

* If 8I1 =0 holds and the variations of the displacements satisfy
the essential boundary conditions and the compatibility
relations, the element will be in equilibrium

* Since the total potential has a minimum, every displacement
field that is used for the approximation of the real field gives
values of IT that are higher than the real IT; thus, so based MFE
yields displacements that are smaller than the real ones
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Variational formuiation

* Complementary potential energy is a sum of a complementary
strain energy and potential (complementary work) of loads,

Hc=uc_wc

* This equation, which gives I1_ as a function of stress
components, together with equilibrium relations within the solid

and static boundary conditions, defines the so called
Castigliano functional

* Applying the variation we invoke the stationary condition of the
functional I1_

SIL=5U.-SW.=0
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Variational formuiation

* It can be shown that functional II_ has a minimum since 821'[C =
02U, > 0 (due to the fact that the elasticity matrix is a positive
definite matrix)

* If 8II_ = 0 holds and the variations of the stresses satisfy

equilibrium and the natural boundary conditions, the
deformation (displacement) field will be compatible

* Since the complementary potential has a minimum, every stress
field that is used for the approximation of the real field gives the

values of I1_ that are higher than the real I1; thus, so based
MFE yields displacements that are larger than the real ones

Method of Finite Elements |



E'H Swiss Federal Institute of Technology Page 21

Approximative methods

* Solution in the form of (series of) trial functions

n

a:Z”ifi

i=1

* Solution of the problem, which is given by differential
formulation L, [$] =1, is found using (weighted) residual
methods; for exact solution the residual R is zero

R=r-Ly,|®]
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Approximative methods

* Galerkin method, n equations for a; jﬁRdD =0
iI=1,2,...n D

* Least square method, ﬂJARZdD _ IRLzm [£.]laD =0
i=1,2,...n on; ¢ a l

* Collocation method: R is set to 0 in n (arbitrary) discrete points
in solution domain D to obtain n simultaneous equations for a;

* Sub-domain method: D is divided in n sub-domains and the
integral of R over that sub-domain is set to 0 to obtain n

simultaneous equations for a;
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Approximative methods

* Solution of varionatial problem

Trial function is substituted in functional II and using a
stationery condition 0l = 0 a set of n equations for the

parameters a; is obtained, i=1,2,...n (for 2m rank problem f;
must be only m-times differentiable)

ar _
oa;

0
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Ritz method

* This method operates on the functional corresponding to the
problem.

* In our case we choose potential energy as a functional.

Method of Finite Elements |




E'H Swiss Federal Institute of Technology Page 25

Ritz method

The trial function is in the form

1= Zn: aifi
i=1

where f, 1s independent trial functions

and q; 1s multipliers to be determined in the solution.

as are obtained from the simultaneous equations using the stationary condition of I1

1.e. oIl = 0 which yields n equations:

ol

—=0 i=L2,...,n
oa,
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Ritz method

The trial function is in the form

IT= Zn: a,f,
i=1

/, need to satisfy only the essential (geometric) boundary conditions

and not the natural (force) boundary conditions.

Ritz approximation method is converging for n — co. It can be proved that,

for one dimensional space

b

lim {H—Zn:aifi(x)} dx — 0

n—wda
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Ritz method: Example

Page 27

Let us consider a simple beam loaded by a) uniformly distributed
load q and b) concentrated force Q.

We use the Ritz method to calculate the deflection w and bending

moment M at the midspan.

TR

et
N
|
¥

051 N 0.51

Rt
_E
& ©
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w(0)=w(/)=0
d*w B d*w _0
dx? o dx’ o
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Ritz method: Exampie Ullllllllllqllllllllllq
B | A
Potential energy functional is obtained from: N wf =

0.5/

< @

I1= j).%E (dz ]dx J.qwdx QW‘

x

Trial function is choosen as
. ITx
w(x) = Za sin — l

which satisfies the boundary conditions at A and B.
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Ritz method: Example BRI
We consider only the first term, thus B l A
B =

0.5/

< @

. X
w(x) = a, smT

2 2
dw T ax dw o . TTX
— =a,—Cos =—a, —-sin—
[

dx / / dx’

Now, we calculate Il keeping in mind that W(LJ =q,
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Ritz method: Exampie Hllllllllllqllllllllllq
We invoke stationarity of T yT;;]i_'x } ~

0.5/

< @

dll  Elrx* 2ql
da, 2 al_(7+QJZO
1

2ql 20
=| —+
“ ( Vi Qj Elx

which leads to

2ql 20 . 7x
= —+ sin
W) (72 Qj Elx* /
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Ritz method: Exampie bR
Q
Deflection at midspan B l N
/ yTix WT =
3 T — 4 ¢ 0.5/ & 0.5/ &
) W(ij: 29! 217G "2 _1.0039 24 . o
2 r Elx [ 384E1
4
exact solution: >q! , A=0
384E1
[
(Y 28 "%, or
b)wL—JzQ -sin—= =0.9855—=
2 Elx 48

. or
exact solution: , A=1.4%
48E1

It can be noticed that we reach very good approximation
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Ritz method: Example BRI

Bending moment at midspan B l A

Pw (2q1 )2 Lt -

w . X N 051 N 051 N

M =-EI 2 :( z +QJ?SIHT ; N :;

!
a)M(ij:Z—iz—qlsm—zzo 129¢1°
2) n° &

exact solution: 0.125¢/°, A ~3.2%

!
72'7
b)M(ijzz—leinTz

2 7’

=0.20260!

exact solution: 0.250!, A = 23.4%
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Ritz method: Example

Note the relatively poor approximation for the bending moment
value due to the concentrated force. This is because the difference
between the real moment distribution (linear) and our
approximation (sin).

yTﬁx Wi 7
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Assignment 1

1. Cantilever Beam

Using the variational approach calculate the vertical displacement w at point 4 and the
bending moment distribution M (x) for a cantilever beam (Figure 1) subjected to
a) a uniform distributed load with ¢

b) a concentrated load Q@ at point A .
Here. EIis assumed to be a constant. Approximate the displacement w(x) by a third-

P . |
B%_,x 3’(” Bﬂl_,x 3’(!}
:) ) li) )

Figure 1. Cantilever beam

Method of Finite Elements |



E'H Swiss Federal Institute of Technology Page 35

Assignment 1

Two classes of the boundary conditions:
and natural (force) boundary conditions

For approximate solutions, a larger class of trial functions than in
the differential formulation can be employed; for example, the trial
functions need not satisfy the natural boundary conditions
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