m Swiss Federal Institute of Technology
The Finite Element Method
for the Analysis of Linear Systems
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Contents of Today's Lecture

® Short summary
® Convergence of analysis results

- The model problem and a definition of convergence
- Criteria for monotonic convergence

- Properties of the Finite Element Solution

- The "Patch Test”

® Discussion
® Mode of oral exam
® Closure ©
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Short Summary

Introduction to the use of FEM

Basic concepts of engineering analysis
Displacement based FEM

Formulation of Finite Elements
Implementation

Isoparametric finite element matrixes
Quadrilateral elements

Beam elements

Plate elements

Shell elements

Solution of equilibrium equations
Convergence, compatibility, completeness
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Introduction to the use of finite eiement

What we would like to establish is the response of a structure
subject to “loading”.

The Method of Finite Elements provides a framework for the
analysis of such responses — however for very general
problems.

The Method of Finite Elements provides a very general
approach to the approximates solutions of differential
equations.

In the present course we consider a special class of
problems, namely:

Linear quasi-static systems, no material or geometrical or
boundary condition non-linearities and also no inertia effect!

Method of Finite Elements 1
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Basic concepts of engineering analysis

In principle the structures/systems we consider can be represented
like show in the figure. This type of problem can be analyzed taking

basis in the governing differential equation.

e

0’u o’u 0’u
Yy 4 A(x,y)—+2B(x, +C(x,v)— =d(x, y,u,
(x,¥) P (x,¥) o0y (x,¥) & d(x,y .
P(x,y)
<0 elliptic (Laplace equation)
/> B*—AC{=0 parabolic (heat conduction equation)
X >0 hyperbolic (wave equation)

v
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[p— = y

Displacement based FEM

P(x.p)

X

General principles of mechanics on how to derive and solve the
differential equations were developed by Ritz and Galerkin — taking
basis in variational approaches. These developments led to the
principle of virtual displacements ( also called as principle of
virtual work) - which essentially forms the basis for the Method of
Finite Elements.

Internal virtual work External virtual work

A AL
r N ™
_[ETrdV:ijTdeV+.[I_ISfoSde+ZI_J"TR"C
V

11 L 1]

Stresses in equilibrium with applied loads

Virtual strains corresponding to virtual displacements
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Formulation of Finite Eiements

Finite Element Equations:

We now consider the volume modeled as an assemblage of N
elements connected in the nodal points on the element
boundaries

[ N
VA4 N\ Z J‘ B(m)Tc(m)B(m)dV(m) I_J:
_m=1 V(m)
[ A

N j HT§Bm 737 (m) +Z I H(”’)Tfsf(’")dS(m)_

<

Finite element —
AT m=1 p(m) m=1 Sfl(m)’Sf2(m)’"
\ Nodal point U
N
v Su (m)T (m) 777 (m)
— B AV + R,
m=1 V(m)
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Formulation of Finite Eiements

Finite element

’ Nodal point
\

Finite Element Equations: XU s,

Now we may finally simplify as

KU =R ' R=R,;+R;-R, +R,
N T g g S
_ m m)R(m m ! _ (m)T ¢ B(m) (m
K = jB C™B™dy :RB_ZJ.Hde)
m=1 V(m) | m=1 V(m)
E R = VN‘ H(m)Tfo(m)dS(m) |
These are the finite element s T L ﬂ
equations to be solved © ; "SI S i
| N Il
'R — (m)T i(m) g7 (m) I
We need efficient approaches to | R, = Z B dy i
. : m=1 y,(m) [
solve these integrals | i
' R, =R, |
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Impiementation
Shape functions:

* Requirements to shape functions

* On the choice of shape functions

Polynomials are usually applied for the development of shape
functions (polynomials are easily differentiated analytically)
- Langrange polynomials
- Serendipity polynomials
- Hermitian polynomials

3 4y,
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Implementation
Implementation of FEM In practice we may solve the

integrals in terms of sums

- Integration of “matrixes”
[F(r)dr=> aF()+R,,
- Interpolation using a polynomial ;
.F(r,s)drds = ZaljF(lfi,Sj) +R ,
- Newton Cotes integration ' irj

[F(r,s,t)drdsdt = o
- Gauss integration ) ik

F(r,s,,t,)+R,

ik
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Isoparametric Elements

For the purpose of standardizing the process of developing the
element matrixes it is convenient to introduce the so-called
natural coordinate system.

Different schemes exist for establishing such transformations:

1 sub-parametric representations
2 iso-parametric representations
3 super-parametric representations

»

S 4

A \Q( -1,1 1,1

v
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Isoparametric Elements

Transformation from natural to global coordinates :

Considering the general three-dimensional case there is:

Op _0pox 0¢Qy , 0f 0z 0g] [ox oy oz o4
or oOxor Oyor o0zor or or or orll ox
Op _0pox 090y 040z _ |04\ _|ox Oy 0z | 0f
Os  Ox Os Oy 0s Oy Os os | |os &s os oy
0p _ogox 0pdy 040z 0p| |Ox Y Oz| 3¢
ot oOx ot Oy ot Oz ot | ot Lot ot O] oz
i:Ji — i:J_li

or 16). X or
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Quadriiateral eiements

For the bi-linear four node element the shape functions in this
coordinate system become:

1 1

S A
h=—1-r)—=(1-s)
21 21 1,1 1,1
== ()= (1=s) 4 3
h3:%(1+r)%(1+s) "
1 1 1 2
h4=5(1—”)5(1+5‘) -1, -1 1, -1

x(r,s)= i((l —r)(1=s)x, +(1+r)1-=5)x, +A+7r)1+s5)x; +(1=r)1+5)x, )

y(r,s)= i((1 —r)(1=$)y +A+1)A=9)y, +A+7)A+5)y; +1=7)1+5)y,)
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Quadriiateral eiements

We can also construct the triangular element directly from the
quadrilateral element — by so-called collapsing:

x=hi + i b hE, & =1, 2 4 X
Y= hljﬁ +h2)>2 +h3)>3 +h4JA/4 )73 — Az 1 1
\ o
—
x=h# +(h, +m)%, +h3, “ “

Y= hlj>1 +(h, +h3))>2 + h4)A’4

Method of Finite Elements 1




E'H Swiss Federal Institute of Technology Page 15

Beam Eiements
e Straight beam elements

- Straight beam elements: neglecting shear effects (Bernoulli
beams)

- Straight beam elements: including shear effects (Timoshenko
beams)

- Phenomena of shear locking

* General curved beam elements

Method of Finite Elements 1
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Plate Eilements
The Reissner-Midlin plate theory
- Pure displacement based formulation
- Mixed interpolation elements (MITCn)
- Performance considerations
zow We assume the following deformation
I - assumptions
e ] u=—zf.(x.)
S mt e H
I S !a
e L weny) i
,’,/" y’V' ! [
The independent variables are the i{
< displacements and the rotations [
~ i
0, w, B, B, !
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hell Eiements

General shell elements

- Pure displacement based formulation
- Mixed interpolation elements (MITCn)

1

Element midsurface

................................... s$=-C00 rdi nate I i ne

K r-coordinate line

Mid surface

Bottom surface

r,s,t: Tangent vectors to r,s,t coordinate lines

Ly

at Gauss integration point = Z k
T 2

a o
2 n at Gauss integration point n sxt t x e

t
T T e L

H
2
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Solution of equilibrium equations
* Gauss elimination

* LDLT solution
K =LDL'

* Cholesky factorization
K=LL
1
where L = LD?
* Solution errors
- Truncation error
- Round-off error

Method of Finite Elements 1
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Convergence of analysis results

® The model problem and a definition of convergence

Physical problem

- Geometry
- Material
- Loading
- Boundary conditions
| ¥
Mathematical model Governing
- Kinematics (truss, plane stress,...) differential
- Material (isotropic linear, elastic,...) equation and
- Loading (concentrated, distributed,...) P"ln_Clple
- Boundary conditions (displacements,...) of virtual work

I

Approximate
solution of
mathematical
model

FEM solution
- Choice of elements
and solution procedures

Method of Finite Elements 1
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Convergence of analysis results

® The model problem and a definition of convergence

Physical problem

- Geometry

- Material

- Loading

- Boundary conditions

We are interested in the ——

Mathematical model G_overnln_g
= - Kinematics (truss, plane stress,...) differential
exa Ct SOI Utl On tO th e - Material (isotropic linear, elastic,...) equation and
- Loading (concentrated, distributed,...) D"ln_C|D|e
p ro b I em | - Boundary conditions (displacements,...) of virtual work
B |
A i t L
pbroximate FEM solution
solution of - Choice of elements
14 - mathematical

t know (in general) |moc and solution procedures
0

We can only assess whether the solution of the
mathematical model converges such that all
kinematic, static and constitutive conditions are
satisfied

Method of Finite Elements 1
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Convergence of analysis results
® The model problem and a definition of convergence

The solution is subject to the following possible errors:

- Discretization (interpolation functions)

- Numerical integration (finite element matrixes)
- Evaluation of constitutive relations (non-linear)
- Solution of equations (by iteration)

- Round off {cntt;ng up matrixes and solvii ng the

\J

We consider in the further only errors due to
discretization; we assume a linear elastic problem
with the geometry represented precisely and exact
solution of equation systems.

Method of Finite Elements 1
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Convergence of analysis results

® The model problem and a definition of convergence

To proceed we consider the principle of virtual work:

[Ty = [ £ ds+ [w't"ay
V Sf V

which we now rewrite as:

Find the displacements u (and corresponding stresses T)

such that a(u,v)=(f,v)

\ \

Bi-linear form Linear form

Method of Finite Elements 1
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Convergence of analysis results

® The model problem and a definition of convergence

[€7xav = [a*' 1% ds+ [w't"ay
Bi-linearity refers to: 1K 5 v
| a(u,v)=(f,v)

a(yu, +y,u,,v) = y,a(u;,v) +y,a(u,,v)
a(u,y,v,+y,v,)=ya(u,v)+y,a(u,v,)

1 :
5 a(u,u) = strain energy

Linearity refers to:

&V, +r,v,) =, v)+y,t,v,)

Method of Finite Elements 1
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Convergence of analysis results

® The model problem and a definition of convergence

[&tar = | ™ £5dS + [atray
Assuming that the FEM solution is: u,
and the exact solution is: u

a(u,v)=(f,v)

a(yu; +7,u,,v) = ya(u;,v)+y,a(u,,v)
a(u,y,v, +7,v,) =y,a(u,v,)+y,a(u,v,)

then convergence may be defined as:

(fﬂ;ylvl +11/2V2) zzq/l(favl)+/q/2(fa V2)

‘a(u—uh,u—uh) —0, ash—>0

|

Size of generic element
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Convergence of analysis results

® Criteria for monotonic convergence

For monotonic convergence, the elements must be:
Complete

Compatible

Fulfillment of these requirements ensure that if we
refine the mesh such that the refinement into smaller
elements always include the previous mesh (this is
embedded in the new mesh) then the solution will

converge to the exact solution.

Method of Finite Elements 1
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Convergence of analysis results

® Criteria for monotonic convergence
Completeness:

The elements must be able to represent all rigid body
displacements and also constant strain state

ANAD VAN NAVANA
®
®
®
®
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Convergence of analysis results

® Criteria for monotonic convergence

Completeness:

The displacement modes which may be represented
by a given element can be identified by solving the
eigenvalue problem

Ko =4¢
!

Eigen vectors
K® =®A, A=diag(l)

T
O KP=A Eigenvalues: stiffness in the basis of the eigenvectors

Method of Finite Elements 1
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Convergence of analysis results

® Criteria for monotonic convergence
Completeness:

The constant strain state is required as when we
reduce the size of the generic element h - then in the
limit as h approaches zero the strain must approach a
constant stress state

Method of Finite Elements 1
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Convergence of analysis resuits

® Criteria for monotonic convergence
Compatibility:

The displacements within and between elements
must be continuous;
Avoiding gaps between elements in a loaded situation

If the element degrees of freedom include only

ml Aicarnlm it Al nl-nll\' n

tl aIIDIGtIUIIqI UIDFIG\-CIIIcIILD, Ullly \-UI (] | Ilhl

displacements is required.

If rotational degrees of freedom are applied -
terms of derivatives of translational displacements -
then also continuity is required in the derivatives of
the displacements.

Method of Finite Elements 1
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Convergence of analysis resuits

® Criteria for monotonic convergence
Compatibility:

Automatically ensured between truss and beam
elements as they only join in the nodal points

As we have seen also, compatibility is relatively easy
to ensure in 2-3 dimensional analysis, when only the

+ Y 4 1 As 1 e + £ ¥l A=l ink
rdiiSiatiOna: Gispialeéiments OfF tn€ noGa:r points arce

applied as degrees of freedom
Difficult for plate bending analysis why we made a

great effort to formulate bending elements using the
rotations also as degrees of freedom

Method of Finite Elements 1
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Convergence of analysis results

® Properties of the Finite Element Solution

Uniqueness:
The exact solution to our elasticity problem is unique
meaning that there are no two different exact

solutions.

Convergence:
The finite element solution wi

to the exact strain energy - too small displacements -
the elements are too stiff as they may not represent
the true displacements exactly — (displacement
interpolation functions).

n' £y
|

il ~ AMFIA
Il G111Vl s [ |
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Convergence of analysis results

® The “"Patch Test"

The idea in this test is to consider an arbitrary patch
of elements:
There are two dual tests !

- The displacement patch test
- The force patch test

we can test for

compatibility
completeness

Internal node

Method of Finite Elements 1
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Convergence of analysis results

® The "Patch Test"
Internal node
The elements (displacement interpolation functions)
are compatible if we can prescribe:

One degree of freedom of the internal node to be
equal to 1 and the other to zero

Verify that all degrees of freedom in the external
nodes remain equal to zero

Method of Finite Elements 1
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Convergence of analysis resuits

® The “"Patch Test"

Internal node
The displacement patch test

For rigid body displacement modes:

1) Apply rigid body displacement field to external
nodes
e =k 1k

P\ Duracrrilan FAr~a raml
‘l NMIGIOGWIITIVG TVIWGVGD Al il

PeYe P=Y
111Gl 1T VNG

3) Solve for displacement components at internal
node (should be equal to displacement field)

4) Now - with given nodal displacements calculate
strains at all points in elements (should vanish at
all points)

Method of Finite Elements 1
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Convergence of analysis resuits

® The “"Patch Test"

Internal node

The displacement patch test
For constant strain displacement modes:

1) Apply constant strain displacement field to
external nodes

2) Prescribe forces at internal node to zero

3) S"I‘v'e fur dIDPIqMCIIICIIt &UIIIFUIICIItD ﬂt IIItCI na

node (should be equal to displacement field)

4) Now - with given nodal displacements calculate
strains at all points in elements (should comply
with the strain corresponding to the applied
displacement field at all points)

Method of Finite Elements 1




