Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Lecture "Methods of Finite Elements I"
Prof. Dr. M. H. Faber

Name

Stud. Nr.: \qquad

Date \qquad

Assignment 2

1. Cantilever Beam

A) Calculate the local stiffness matrix for a shear stiff beam element. The element and the corresponding degrees of freedom are given in Figure 1.

Figure 1. Beam element

Hint:

$w(r)=a_{1}+a_{2} r+a_{3} r^{2}+a_{4} r^{3}$
$r_{1}=0, \quad r_{2}=1$
$x_{2}-x_{1}=L$
B) Calculate the global stiffness matrix for the two element cantilever beam given in Figure 2. Use local stiffness matrix for a shear stiff beam element derived in part A)

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Lecture "Methods of Finite Elements I"
Prof. Dr. M. H. Faber

Figure 2. Cantilever beam
C) Calculate the displacement of the two element cantilever beam given in Figure 2 at the location 3 by using the global stiffness matrix calculated in part B).

