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2/47Definition

• Complex systems are characterized through intricate 
dependences.

• Given the uncertainties prevailing in engineering systems, 
these dependences are often of probabilistic nature.

Main problem is reasoning under uncertainty.

24.10.2007
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3/47Reasoning under uncertainty

• Different approaches:

− Rule-based systems
− Fuzzy sets
− Dempster-Shafer belief functions
− Probabilities

− Neural networks
− Bayesian networks

24.10.2007

• Bayesian networks (BN) are based on probabilities.
BN‘s represents in a most compact way the joint distribution
of all relevant variables by exploiting known conditional
independences.
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4/47Determining the probabilities

The basis for conditional probabilities in a Bayesian 
network can have a different epistemological status, p g ,
ranging from well-founded theory over frequencies in a 
database to subjective estimates.

24.10.2007
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5/47Causality

• A way of structuring a situation for reasoning under uncertainty 
is to construct a graph representing causal relations between 
events.

• A causal network consists of a set of variables and a set of 
directed links between variables.

AA is a parent of B

24.10.2007

• Variables represent events and may have any number of 
states, but are in exactly one of its states (mutually 
exclusiveness).

BB is a child of A
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6/47

• Serial connections:

Causal networks

• D provide information about M, as long as the state of SD is 
t k  ith t i t

S DM

24.10.2007

not known with certainty.
M and D are d-separated given SD
Evidence may be transmitted through a serial 
connection unless the state of the variable in the 
connection is known.
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7/47

• Diverging connections:

Causal networks

• S provide information about G, as long as the state of M is not 
k  ith t i t

G S

M

24.10.2007

known with certainty.
G and S are d-separated given M
Evidence may be transmitted through a diverging 
connection unless the state of the variable in the 
connection is known.
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8/47

• Converging connections:

Causal networks

• S provide information about L, when the state of D is known 
ith t i t

L S

D

24.10.2007

with certainty.
L and S are d-connected given D.
Evidence may be transmitted through a converging 
connection if the state of the variable in the 
connection or one of its descendants receive 
evidence.
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9/47

• Beneficial to have as few parents as possible.

Divorcing

• The number of parents can be reduced by intermediate 
variables.

• This is known as divorcing.
G S

24.10.2007

M L

D

Dis
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10/47

• Two distinct variables A and B in a causal network are 
d-separated if, for all paths between A and B, there is 

d bl h h h

d-Separation

an intermediate variable V such that either
• The connection is serial/diverging and V is instantiated
• The connection is converging and neither V nor any of V’s descendants 

have received evidence.

B CA

24.10.2007

• D-separated parts can be computed separately.

E

F G

D
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11/47Indicators

• Include all observations, i.e. indicators.

M

G S

• Indicators are the input nodes used to update the network.

Obs

Mea

24.10.2007

L D
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12/47Model Building

• Helpful to distinguish between:

− Variables of interest (e.g. damage on structure, failure 
of a system). What we want to predict with the model?

− Observable variables (e.g. PGA). What can we observe 
with certainty or quantifiable uncertainty?

− Intermediate and unobservable variables (e.g. Spectral 
displacement). Parameters of a physical model that are 
computable.

24.10.2007

computable.
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13/47Example for Model Building

• We are interested in possible damages on structures (D) 
due to earthquakes.

• First we identify, which parameters prevail this situation.

− Magnitude of the earthquake (M)
− Peak ground acceleration (PGA)
− Spectral displacement (SD)

l l f ( )

24.10.2007

− Soil liquefaction (LIQ)
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14/47Example for Model Building

• In a first attempt we set up a network with only input and 
output variables.

M G L

D

S

24.10.2007

M: Magnitude
G: Peak ground acceleration (PGA)
L: Liquefaction
S: Spectral displacement
D: Structural damage
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15/47

• The model with non-causal relations (diagnostic model) is 
not correct:

Example for Model Building

• We know that PGA and SD are not independent from 
M and LIQ is not independent from PGA.

M

G L S

24.10.2007

• A graphical model automatically reveals the analyst’s 
intuitive and analytical understanding of the problem.

D
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16/47Example for Model Building

• Most often humans can communicate sensibly about causal 
relations in a knowledge domain. 

• Whenever possible the graphical model should represent 
causality, because this leads to minimal number of links.

M

24.10.2007

G

L D

S
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17/47Performance of Inference

• The performance of inference depends upon a number of 
factors. The most dominating factors are (assuming that all 
nodes are discrete):

− the number of nodes,
− the number of states of the nodes,
− the number of parents of each node,
− the density of the graph,
− the lengths of any undirected cycle in the graph.

24.10.2007

• In addition it is necessary to take other factors into account 
such as the structure of the evidence, the number of queries 
performed on the model, the algorithm used for inference, the 
triangulation of the graph, etc. 
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18/47Bayesian networks

• A Bayesian network consists of:

A set of variables and a set of directed links between − A set of variables and a set of directed links between 
variables.

− The variables are continuous or discretised into 
mutually exclusive states.

− All variables and links form a DAG.
− For each variable A with parents               , the 

conditional probability tables                         are 
i d

1( | , , )nP A B B…1, , nB B…

24.10.2007

assigned.

• There is no requirement that the links represent causal 
relation.

• However, the d-separation property implied by the 
structure must hold.
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19/47Bayesian networks

• Let                        be the universe of variables.
• If we have access to the joint probability table        , ( )P U

1( , , )nU A A= …
j

then we can calculate any marginal distribution of any 
variable in    .

• grows exponentially with number of variables.
Need for compact representation for         .

• A Bayesian network over      is such a representation.

( )P U

( )

U

U

( )P U

24.10.2007

where              is the parent set of 

( ) ( | ( ))i i
i

P U P A pa A=∏

iA( )ipa A
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20/47Discretisation

• BN’s may have only discrete or only continuous 
variables. Hybrid BN’s are also allowed only when none 
f h bl h d h ld dof the continuous variables have discrete child nodes.

• Most variables are continuous. Therefore, their state 
space must be divided in discrete intervals.

− Equidistant
− Equal frequency

24.10.2007

Equal frequency
− Supervised discretisation
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21/47Advantages of Bayesian networks

• BN’s are powerful, when additional information becomes 
available due to Bayesian nature.

• Easy inference of the effect of the evidence on all 
variables in the model.

• The evaluation can be automated and embedded in a 
software, in contrast to simulation techniques or 
structural reliability analysis for computing probabilities.

But,

24.10.2007

But,

• Discretisation of the variables may be tedious and 
erroneous in particular when dealing with small 
probabilities.
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22/47

• Let’s use following BN for introducing the algorithms.

Example

M

G

L D

S

24.10.2007

• The full probability distribution of the variables is:

( , , , , ) ( ) ( | ) ( | ) ( | ) ( | , )P M G S L D P M P G M P S M P L G P D L S=
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23/47Example

M

The conditional probability tables are:
M=0 0.9

M=7 0.1
M

G

L D

S
M=0 M=7

S=0 0.9 0.1

S=10cm 0.1 0.9

L=yes L=no

S=0 S=10 S=0 S=10

N 0 2 0 1 0 9 0 3

24.10.2007

M=0 M=7

G=0 0.9 0.2

G=0.5g 0.1 0.8

G=0 G=0.5g

L=yes 0.1 0.7

L=no 0.9 0.3

No 0.2 0.1 0.9 0.3

Collapse 0.8 0.9 0.1 0.7
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24/47

If a BN has only variables with discrete states, then it can be 
solved with exact inference, given that it is not too complex.

Algorithms

, g p
− Bucket elimination (variable elimination)
− Cluster algorithms (junction tree)

In case, when the space requirements cannot be met by the 
available hardware (e.g. too dense network, too many nodes 
and states) approximate methods may be used.

− Rejection sampling 

24.10.2007

Rejection sampling 
− Likelihood weighting 
− Self-Importance 
− Adaptive importance
− Markov chain Monte-Carlo algorithm, e.g. Gibbs 

sampling
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25/47Bucket elimination - Terminology

• Tables used in BN’s are generally called potentials (     ).
• A potential is a real valued table over a domain of variables

φ
• A potential is a real-valued table over a domain of variables.
• Potentials can be multiplied and/or summed.

− Unification
− Commutative
− Associative
− Existence of unity

1 2 2 1φφ φ φ=
1 2 3 1 2 3( ) ( )φφ φ φ φ φ=

1 2 1 2( ) ( ) ( )dom dom domφφ φ φ= ∪

1 φ φ⋅ =

24.10.2007

Existence of unity

• A potential can be marginalized.
− Commutative
− Unit potential property
− Distributive                                           if

A B B A
φ φ=∑ ∑ ∑ ∑

1 φ φ=

1 2 1 2A A
φφ φ φ=∑ ∑
( | ) 1

A
P A V =∑

1( )A dom φ∉
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26/47

The potentials are:

Bucket elimination

M1

2

( )
( | )
P M
P G M

φ
φ
=
=

Calculating           :

G

L D

S3

4

5

( | )
( | )
( | , )

P S M
P L G
P D S L

φ
φ
φ

=
=
=

( )P D

( )P U φφ φ φ φ

24.10.2007

According to chain rule for BN’s:

We need to marginalize out all variables except D:

1 2 3 4 5( )

( ) ( | ( ))i i
i

P U

P U P A pa A

φφ φ φ φ=

=∏

1 2 3 4 5, , ,
( )

M G S L
P D φφ φ φ φ=∑
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27/47

Elimination order: M-P-S-L

M ( ) ( ) ( ) ( ) ( ) ( )P G S L D M M G M S L G D S Lφ φ φ φ φ=∑

Bucket elimination

M

P

1 2 3 4 5

4 5 1 2 3

( , , , ) ( ) ( , ) ( , ) ( , ) ( , , )

( , ) ( , , ) ( ) ( , ) ( , )
M

M

P G S L D M M G M S L G D S L

L G D S L M M G M S

φ φ φ φ φ

φ φ φ φ φ

=

=

∑
∑

'
4 5 1

'
5 4 1

( , , ) ( , ) ( , , ) ( , )

( , , ) ( , ) ( , )
G

G

P S L D L G D S L G S

D S L L G G S

φ φ φ

φ φ φ

=

=

∑
∑

'∑

24.10.2007

S

L

5 4 1 2 3( ) ( , , ) ( , ) ( ) ( , ) ( , )
L S G M

P D D S L L G M M G M Sφ φ φ φ φ=∑ ∑ ∑ ∑

'
5 4

'
5 4

( , ) ( , , ) ( , )

( , , ) ( , )
S

S

P L D D S L L S

D S L L S

φ φ

φ φ

=

=

∑
∑

'
5( ) ( , )

L
P D D Lφ=∑
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28/47Example – Bucket elimination

5 4 1 2 3( ) ( , , ) ( , ) ( ) ( , ) ( , )
L S G M

P D D S L L G M M G M Sφ φ φ φ φ=∑ ∑ ∑ ∑
M=0 0 9 M=0 M=7 M=0 M=7

S=0 S=10

M=0 M=7 M=0 M=7

G=0 0.9*0.9*0.9=
0.729

0.2*0.1*0.1=
0.002

0.9*0.9*0.1=
0.081

0.2*0.1*0.9=
0.018

Multiply:

M=0 0.9

M=7 0.1

M=0 M=7

G=0 0.9 0.2

G=0.5g 0.1 0.8

M=0 M=7

S=0 0.9 0.1

S=10cm 0.1 0.9

24.10.2007

0 9 0 00 0 08 0 0 8

G=0.5g 0.1*0.9*0.9=
0.081

0.8*0.1*0.1=
0.008

0.1*0.9*0.1=
0.009

0.8*0.1*0.9=
0.072

Marginalize M: S=0 S=10

G=0 0.729+0.002=
0.731

0.081+0.018=
0.099

G=0.5g 0.081+0.008=
0.089

0.009+0.072=
0.081

'
1 ( , )G Sφ
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29/47Example – Bucket elimination

'
5 4 1( ) ( , , ) ( , ) ( , )

L S G
P D D S L L G G Sφ φ φ=∑ ∑ ∑

G=0 G=0 5g S=0 S=10

L=yes L=no

G=0 G=0.5g G=0 G=0.5g

S=0 0.731*0.1=
0.0731

0.089*0.7=
0.0623

0.731*0.9=
0.6579

0.089*0.3=
0.0267

Multiply:

G=0 G=0.5g

L=yes 0.1 0.7

L=no 0.9 0.3

S=0 S=10

G=0 0.731 0.099

G=0.5g 0.089 0.081

24.10.2007

0 0 3 0 06 3 0 65 9 0 0 6

S=10 0.099*0.1=
0.0099

0.081*0.7=
0.0567

0.099*0.9=
0.0891

0.081*0.3=
0.0243

Marginalize P: L=yes L=no

S=0 0.0731+0.0623=
0.1354

0.6579+0.0267=
0.6846

S=10 0.0099+0.0567=
0.0666

0.0891+0.0243=
0.1134

'
4 ( , )L Sφ
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30/47Example – Bucket elimination
'

5 4( ) ( , , ) ( , )
L S

P D D S L L Sφ φ=∑ ∑
L=yes L=noL=yes L=no

Multiply:

S=0 0.1354 0.6846

S=10 0.0666 0.1134

S=0 S=10 S=0 S=10

No 0.2 0.1 0.9 0.3

Collapse 0.8 0.9 0.1 0.7

L=yes L=no

S=0 S=10 S=0 S=10

No 0.2*0.1354=
0.02708

0.1*0.0666=
0.00666

0.9*0.6846=
0.61614

0.3*0.1134=
0.03402

Collapse 0.8*0.1354=
0 10832

0.9*0.0666=
0 05994

0.1*0.6846=
0 06846

0.7*0.1134=
0 07938

24.10.2007

No 0.03374+0.65016=0.6839

Collapse 0.16826+0.07938=0.3161

Marginalize S:

Marginalize L:

'
5 ( , )D Lφ

0.10832 0.05994 0.06846 0.07938

L=yes L=no

No 0.02708+0.00666=0.03374 0.61614+0.03402=0.65016

Collapse 0.10832+0.05994=0.16826 0.06846+0.07938=0.14784

( )P D
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31/47Bucket elimination – Elimination order

4

5

( , )
( , , )
L G
D S L

φ
φ

M-P-S-L                                                         L-P-M-S1

2

3

( )
( , )
( , )

M
G M
S M

φ
φ
φ

2 ( , )M Gφ

L∑
'
4 ( , , )G D Sφ

' ( )M D Sφ
G∑

4 ( , )G Lφ

M∑
'
1( , )G Sφ

' ( )L Sφ
G∑

24.10.2007

1

3

( )
( , )
M
M S

φ
φ

2 ( , , )M D Sφ

M∑ S∑ ( )P D

Task: finding an elimination order yielding 
the smallest domains to handle

5 ( , , )D S Lφ

4 ( , )L Sφ

S∑ L∑ ( )P D
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32/47Graph Theory

Overview of the consequences of various elimination orders 
graphically.g p y

Domain graphs

Undirected graph with variables of the universe as nodes and 
links between pairs of variables being members of the same 
domain.

MM

24.10.2007

Fill-ins means having new potentials. Try to avoid fill-ins !!!

L D

SG

L D

S Eliminating G

Link for triangulating the graph
Fill-ins

Moral link
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33/47Graph Theory

An elimination sequence that does not introduce fill-ins 
requires less space than elimination sequences that introduces q p q
fill-ins.

In the graph theoretic framework, to calculate P(D) 
corresponds to constructing an elimination sequence ending 
with D.

For the domain graph it is possible to eliminate down to D 
without introducing fill ins: M G L S

24.10.2007

without introducing fill-ins: M-G-L-S

Such a sequence is called a perfect elimination sequence. 

M

G

L D

S
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34/47Graph Theory

Which one is optimal, when there are several perfect 
elimination sequences? q

The complexity of using a particular elimination sequence is 
characterized by the set of domains used.

for M-G-S-L

for M-G-L-S { } { } { } { }{ }, , , , , , , , , ,G M S G L S D S L S D

{ } { } { } { }{ }, , , , , , , , , ,G M S G L S D S L L D

24.10.2007

Domain set:

Set of domains of potentials produced during elimination.
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35/47Graph Theory

Complete set:

A set of nodes is complete if all nodes are A set of nodes is complete if all nodes are 
pair wise linked

Clique set:

All perfect elimination sequences produce 
the same domain set, namely the set of 
cliques of the domain graph

G S

G

L D

S

24.10.2007

cliques of the domain graph.

Any perfect elimination sequence ending 
with the variable D is optimal with respect 
to calculating P(D).

L D
E
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36/47Graph Theory

Triangulated graph:

An undirected graph with a perfect elimination sequenceAn undirected graph with a perfect elimination sequence.

Simplicial node:

Nodes with a complete neighbor set. (G,D)

Determining clique set in a graph:

Generally NP-hard. For triangulated graphs following easy 

G

L D

S

24.10.2007

y g g p g y
procedure:

1. Eliminate simplicial node X. Set of neighbors of X plus X (Fx) is a clique candidate.
2. If Fx does not include all remaining nodes, go to 1.
3. Prune the set of cliques by removing sets that are subsets of other clique candidates.

The resulting set is the set of cliques. 
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37/47Join trees

• Definition: Let G be the set of cliques from an undirected 
graph, and let the cliques of G be organized in a tree. T is a 
join tree if for any pair of nodes V, W all nodes on the path 
between V and W contain the intersection V ∩ W.

a. The cliques of all triangulated graphs can be organized in a 
join tree.

b. When the cliques of G can be organized in a join tree, then 
G is a triangulated graph.

CF
V1

C
S1

24.10.2007

E F

CB

A

D

BCE
V2

BC
S2

ABC
V4

B
S4

BD
V6

V1
S1

Elimination sequence: F-E-C-A-B-D
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38/47

• Join trees with separators: Separators are the variables 
which are common to several cliques.

Join trees

Separators
BC
S2

ABC
V4

B
S4

C
S1

24.10.2007

BCE
V2

BD
V6

CF
V1
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39/47

• Junction trees are join trees where additionally
– all potentials    are assigned to a clique containing dom(  ).

Junction trees

φ φp g q g ( )
– each link has the appropriate separator assigned.
– each separator contains two mailboxes.

• The messages in the mailboxes are sets of potentials.

4 : , ,V A B C
1 2 3, ,φ φ φ

φ φ

24.10.2007

2 : , ,V B C E
5φ

1 : ,V C F
6φ

2 : ,S B C

4φ
6 : ,V B D

1 :S C4 :S B

1ψ
1ψ

4ψ
4ψ

2ψ
2ψ
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40/47

• Cliques and separators:

Junction trees – Example

MGS
V1

GS
S1

GSL
V2

SL
S2

SLD
V3

• Construct the junction tree: 

1 2 3, ,φ φ φ

2 : , ,V G S L
4φ

5φ

1 : ,S G S 2 : ,S S L

5ψ
5ψ

1ψ
1ψ

24.10.2007

M

G

L D

S

Elimination sequence: M-G-S-L

1 : , ,V M G S
1 2 3, ,φ φ φ

3 : , ,V S L D
5φ

5 4 1 2 3( )
L S G M

P D φ φ φφ φ=∑ ∑ ∑ ∑

1 1 2 3M
ψ φφ φ=∑
5

4 1 2 3G M
ψ φ φφ φ=∑ ∑
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Definition: 
Let V be a set of variables. For X∉V, n(X) denotes the 
number of states of X  The size of V  sz(V) is the product 

Triangulation of graphs

number of states of X. The size of V, sz(V) is the product 
ΠVn(X). Let G be a triangulated graph extending the BN’s 
moral graph and let V1...,Vn be the cliques of G. The size of 
G is the sum size(G)=∑sz(Vi)

Heuristic:
Eliminate repeatedly a simplicial node and if this not 
possible  eliminate a node X of minimal s (F )

24.10.2007

possible, eliminate a node X of minimal sz(FX)
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• For large problems the cliques in the triangulated 
graphs can be very large and space requirements can 
not be met. 

• Approximate methods can then be applied. Stochastic 
Simulation is such an approximate method.

• The idea behind the simulation is that the causal 
model is used to simulate the flow of impact.

24.10.2007

model is used to simulate the flow of impact.
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M

G S

M=0 0.9

M=7 0.1

L D
M=0 M=7

G=0 0.9 0.2

G=0.5g 0.1 0.8

P=0 P=0.5g

L=yes 0.1 0.7

L=no 0.9 0.3

M=0 M=7

S=0 0.9 0.1

S=10cm 0.1 0.9

L=yes L=no

S=0 S=10 S=0 S=10

No 0.2 0.1 0.9 0.3

24.10.2007

No 0.2 0.1 0.9 0.3

Collapse 0.8 0.9 0.1 0.7

The idea is to draw a random configuration of the 
variables (M,G,S,L,D) and to do this a sufficient 
number of times.
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First the state of M is sampled. According to the distribution 
the state is assigned, then another random number is drawn 
and the state assigned according to the conditional probability 

Example – Forward sampling

and the state assigned according to the conditional probability 
table, etc. So one set of configuration is sampled.

Repeating 100000 times and sorting yield following table:

SLD
MG 111 112 121 122 211 212 221 222
11 1505 5921 58790 6492 76 701 2124 5240

82798( ) 0.8280
100000

P G = =

81909

89953( ) 0.8995
100000

P M = =

24.10.2007

The probability distributions for the variables are calculated by 
counting in the sample set.

12 1116 4609 2214 247 53 584 83 198

21 5 18 154 13 16 154 472 1117

22 129 453 217 26 492 4639 642 1500

81909( ) 0.8191
100000

P S = =

21171( ) 0.2117
100000

P L = =

68088( ) 0.6809
100000

P D = =
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• In forward sampling too many simulations required for 
small probabilities. 

• In Gibbs sampling we start with a “probable” configuration 
and change randomly the state of variables in causal order. 
In one sweep through the variables, a new configuration is 
determined. Then this is used for the further simulation. 

• In this way a large sample consistent with the observation 

24.10.2007

− The initial configuration may be improbable
− We may stuck in certain areas of the 

configuration
− It may be very hard to find a starting 

configuration. (NP-hard)

is produced. 

• Problems:
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• Basic features of building graphical models are discussed.

Summary

• Two exact inference algorithms (bucket elimination and 
junction tree) were introduced.

• One approximate inference algorithm (Markov chain Monte-
Carlo simulation) was introduced.

A simple Bayesian network was calculated using the three 

24.10.2007

• A simple Bayesian network was calculated using the three 
algorithms. 

• The solution of the same BN was demonstrated using the 
commercial software HUGIN.
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