

Eidgenossische Te Swiss Federal Inst		Institute of Structural Engineering Group Risk and Safety							
Example – Bucket elimination									
$P(D) = \sum_{L} \sum_{S} \phi_{5}(D, S, L) \sum_{G} \phi_{4}(L, G) \sum_{M} \phi_{1}(M) \phi_{2}(M, G) \phi_{3}(M, S)$									
M=0 0.9	M=0 M=7						M=0	M=7	
M=7 0.1	G=0	0.9	0.2	!	S=0)	0.9	0.1	
	G=0.5g	0.1	0.8	;	S=1	S=10cm 0		0.9	
			S=	=0			S=	10	
		M=	-	M=7		M=0		M=7	
Multiply:	G=0	0.9*0.9*0.9= 0.729		0.2*0.1*0.1= 0.002		0.9*0.9*0.1= 0.081		0.2*0.1*0.9= 0.018	
	G=0.5g	0.1*0.9*0.9= 0.081		0.8*0.1*0.1= 0.008		0.1*0.9*0.1= 0.009		0.8*0.1*0.9= 0.072	
Marginalize M:	Marginalize M: S=0 S=10								
	G=0	0.729+0		0.081+0.018= 0.099					
$\phi_1(G,S)$	G=0.5g	0.081+0.008= 0.089		0.009+0.072= 0.081		1			
	-	•		•		-		24.10.2007	

		hnische Hochschule tute of Technology Zi					[i]b		te of Structu Risk and Sat	iral Engineering ety
Exam	ple ·	- Bucł	e	t el	imi	ina	atior	ו		29/47
	P(D)	$=\sum_{L}\sum_{S}$	\$ _5(1	D, S, I	(L)	$_{G}\phi_{4}($	$(L,G)\phi'_1$	(G,S)		
		G=0	G=	=0.5g				S=0		S=10
	L=yes	0.1		0.7	G=	0		0.731		0.099
	L=no	0.9		0.3	G=0.5g			0.089		0.081
					L='	yes			L=	no
				G=0		0	G=0.5g	:0.5g G=		G=0.5g
Multiply:		S=0		0.731*0 0.073			189*0.7= 0.0623	0.731*0.9= 0.6579		0.089*0.3= 0.0267
	S=10 0.099*0.1= 0.081*0.7 0.0099 0.0567			0.099 0.08		0.081*0.3= 0.0243				
Marginaliz	o D:				_=ves		I -	no	1	
-	сг.	S=0		0.0731+0.0623= 0.1354		523=	0.6579+	0.0267= 846		
$\phi_4(L,S)$		S=10		0.0099+0.0567= 0.089			1+0.0243= .1134			
										24.10.2

Eldgenossische Technische Hochschule Zürich Swiss Federal Institute of Technology Zürich											
Example – Bucket elimination ^{30/47}											
	$P(D) = \sum_{L} \sum_{S} \phi_{5}(D, S, L) \phi_{4}'(L, S)$										
L=yes L=no								L=yes		L=no	
	S=0	S=	=10	S=0	S=10	S=	0	0.13	54	0.6846	
No	0.2	0	.1	0.9	0.3	S=	10	0.06	66	0.1134	
Collapse	0.8	0	.9	0.1	0.7	1					
Multip	Multiply:		No Collapse		0.2*0.1 0.02 0.8*0.1	L=yes S=0 S=10 0.2*0.1354= 0.1*0.0666= 0.02708 0.0666= 0.8*0.1354= 0.9*0.0666= 0.10832 0.05994		= 0.9*(0.6) = 0.1*(0.6)	L= 5=0 0.6846= 51614 0.6846= 06846	no <u>S=10</u> 0.3*0.1134= 0.03402 0.7*0.1134= 0.07938	
Marginalize S: No $\phi_{5}^{i}(D,L)$ Collapse				L=yes 0.02708+0.00666=0.03374 0.10832+0.05994=0.16826			L=no 0.61614+0.03402=0.65016 0.06846+0.07938=0.14784				
Marginalize L: $P(D)$				No	ie i		0.65016=0 0.07938=0		24.10.200		

Eidgenossische Technische Hochschule Zürich Swiss Federal Institute of Technology Zürich	ibK Institute of Structural Engineering Group Risk and Safety
Graph Theory	34/47
Which one is optimal, when there are elimination sequences?	several perfect
The complexity of using a particular e characterized by the set of domains u	•
for M-G-S-L $\{\{G, M, S\}, \{G, L, S\}, \{D, S, L\}, \{D, S, L$	$\{L,D\}$
for M-G-L-S $\{\{G, M, S\}, \{G, L, S\}, \{D, S, L\}, \}$	$\{S,D\}\}$
<u>Domain set:</u> Set of domains of potentials produced	during elimination.
	24.10.2007

Eidgenossische Technische Hochschule Zürich Swiss Federal Institute of Technology Zürich										
Example										
	M=0 M=7	0.9)					
	M=0	M=7		M=0	M=7		P=0	P=0.5g		
G=0	0.9	0.2	S=0	0.9	0.1	L=yes	0.1	0.7		
G=0.5g	0.1	0.8	S=10cm	0.1	0.9	L=no	0.9	0.3		
			L=	yes	L=	=no	1			
			S=0	S=10	S=0	S=10				
		No	0.2	0.1	0.9	0.3	1			
		Collapse	0.8	0.9	0.1	0.7	1			
The idea is to draw a random configuration of the variables (M,G,S,L,D) and to do this a sufficient number of times.										

71/			che Hochsch of Technolog				[Institute of Structural Engineering Group Risk and Safety		
Exai	Example – Forward sampling										
the s and t table	First the state of M is sampled. According to the distribution the state is assigned, then another random number is drawn and the state assigned according to the conditional probability table, etc. So one set of configuration is sampled. Repeating 100000 times and sorting yield following table:										
				S	LD				$P(M) = \frac{89953}{100000} = 0.8995$		
MG	111	112	121	122	211	212	221	222			
11	1505	5921	58790	6492	76	701	2124	5240	$P(G) = \frac{82798}{100000} = 0.8280$		
12	1116	4609	2214	247	53	584	83	198	$P(S) = \frac{81909}{100000} = 0.8191$		
21	5	18	154	13	16	154	472	1117	$P(L) = \frac{21171}{100000} = 0.2117$		
22	129	453	217	26	492	4639	642	1500	$P(D) = \frac{100000}{100000} = 0.6809$		
			distri samp			r the	variat	oles a	re calculated by		

