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Today’s agenda 232

Probabilistic representation of systems
B Representation of systems with (random) variables
m Observable and unobservable variables

B joint probability, conditional probability, marginal
probability, prior/posterior probability, predictive
probability

Bayesian probabilistic nhetworks (BPNs)

B Graphical representation / conditional probability (tables)

m Advantages of BPNs

m Example
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Representation of systems 5132

B Systems may be characterized by variables and the systems
performance may be described by using the variables.

Model
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B Systems may be characterized by variables and the systems
performance may be described by using the variables.

Ship hull structure system Corresponding model

Variables:
= Self weight
> = Wave loads
= Thickness of plates
= Stiffness
= Corrosion, etc.
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m If the states of the systems are uncertain, the systems may
be characterized by random variables.

Model
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Task in modeling
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B The main task in modeling is to identify the interrelations
between all the variables involved in the models in logical

and/or probabilistic manners.

Probabilistic model
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= Example of logical relation:
X, =X, +4X,

= Example of probabilistic relation:

P[X3 |X19X2]

(The logical relation is a special case
of the probabilistic relation.)
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Aim of analysis 7132

m The aim of the analysis with models is to evaluate the

quantities of interest, e.g. the probability of the occurrence of

critical situations, using the logical and probabilistic relations
in the models.

Probabilistic model

4 )

= Example of quantities of interest:

P.=P[X =1]
X19X29'”9Xn where
[(X Xn X)) X =I[X, < X,]
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Observable and unobservable 8/32

Observable variables

m The values of some of variables can be observed by e.q.
measurements.

m An example is the annual maximum wind speed
at a given location:

10 m/s, 12 m/s, 29 m/s, 14 m/s, 35 m/s, 18 m/s.
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Observable and unobservable 9/32

Unobservable variables
(latent variables, model parameters, etc.)

m Unobservable variables are not directly observed but
rather inferred from the variables that are directly
measured.

m An example is the mean value of the annual maximum
wind speed at one location. The mean value may be
inferred from the observations as:

(10+12+29+4+14+35+18)/6 = 19.67 m/s
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Observable and unobservable 10/32

Example

B The annual maximum wind speeds X, (i=1,2,3,4,5) are assumed

modeled as:
iid 5
Xi - N(luaa )
area Y ‘@ ara the avamnlec nf nhecarvahle variahlae and /.,
II\.—I\.—, 117/ G U\ Ul \.—/\UIII'JI\‘O Vil ViVl VUIIVIL VUl I(.«IIJIMJ, CIII\Jd ILL
and re the examples of unobservable variables.

m In Bayesian approaches, 4 and ¢ themselves may be
considered as random variables.
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Joint probability 11/32

B Any models that represent systems can be fully described by
joint probabilities (probability densities or their combination):

PlX,X,,...,X ]

m Only few parametric families of multivariate distributions are
known, e.g., multivariate Normal distribution, Dirichlet

distribution. They are often less flexible; consider the case
X, is continuous and X, is discrete.

m Quite lots of information are required for characterizing
the multivariate distributions; (n? + n) values are required for

the multivariate Normal distribution. Also, think of a
multivariate discrete distribution!
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Conditional probability 12/32

m An efficient (compact) way of characterizing joint probabilities
is to employ conditional probabilities.

m Any joint probability can be built up with conditional
probabilities:

PLX . X, X, ) =T PLX, | pa(X,)]

where pa(X,) represents the parents of X, (which will be later
explained in the context of Bayesian probabilistic networks.)
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Example

B Assume two situations where the joint probability of discrete
random variables X;, X, and X;, each of which can take 5

possible values, are modeled in two different ways:

"PLX,, X,, X,]

This direct representation requires 53=125 values to describe the
joint probability.

" P[X,,X,,X;]=P[X,| X,]P[X, | X,1P[X|]

This conditional independence representation requires only
5+52+52=55 values, although this representation is less flexible
than the above one.
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Marginal probability 1

®m Any marginal probability can be calculated from joint
probabilities for discrete cases as:

PXI=Y Y T S AN Ky X,

-1 i+l n

For continuous cases the summations may be replaced by
appropriate integrals.
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Marginal probability 15/32

Example

Consider a Bernoulli trial — throwing a coin 10 times. However,

the probability that a head comes out is not known. Assume that
X, represents the number that the head comes out in the 10

trials, and X, represents the probability that the head comes out
in each trial and follows the uniform distribution [0,1].
Calculate P[X/].
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Marginal probability 16/32

Example (solution)
® Joint probability

PlX, =i, X,=p]=P[X,=i|X,=p]- P[X, = p]

10 i 10—i
=(l.jp(1—p) -1

m Marginal probability
. 1 . (10 . L0
P[X1=l]=jP[X1=1,X2=p]dp=jo . |p(=p) " dp

0
100 i110-4) 1
10-0)1i! 111 11
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Prior/posterior probability 17132

B According to the Bayes’ theorem the following relation holds:

P[)(1 =X, |X2]
P[Xl :xl]

PlX,| X =x]= P[X,]

Consider special cases where X, represents the parameter of
the probability of X,. In such cases, the relation above

“Iﬁ’\\l:Af\ﬁ - lﬁﬂL:f\“ﬁlf\ kf\lll ka\ “lﬁ’\kﬂk:l:#\l ’\c V [ e A W4 kf\ I.“J‘LAJ
PIUVIUCS ad 1dliVlidic 11UV LT probdadullity Ul Agllldy UC Uupuatilcu

with the observed data (X, =z,). Thereby,
= P[X,] : prior probability (distribution)

= P[X,| X, =x,]: posterior probability (distribution).

10.10.2007



Prior/posterior probability 1832

Example
Consider again the Bernoulli trial — throwing a coin. Assume that

5 heads came out after 10 trials, i.e., X;=5.
Calculate P[X,|X,=5], the posterior probability of X.,.
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Prior/posterior probability 1032

Example

m Posterior probability

PIX,=5|X, =p]

P[X2:p|X1:5]: PLX, = 5] PlX, = p]
o< p’(1-p)
Thus,
_ e 1d2) s s
P[Xz—ple—S]—F(@F(@p (1-p)
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Predictive probability 20732

B Predictive probability is an alias of the marginal probability
when the joint probabilities are marginalized in regards to the
parameters of the probabilities:

P[XI]ZZP[X19X2]:ZP[X1 | X, |1P[X,]

>

| X, ] : Predictive probability
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Predictive probability
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Example

Consider again the Bernoulli trial — throwing the coin. Calculate
the predictive probability P[X,], using the updated (posterior)

probability of X.,.
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Example (solution)
ol
PlX, =i]=| PlX, =i, X,=plp

J0

o1
PlX, =i|X, =p]P[X, = pldp

J0

10) . |
:.vfl( ']pl(l_p)ml Y p’(1-pydp
: F(6)T(6)

l
10 F(lz) b oivs . 15—i
(ijr(@r(é)jop =py e
T ra2) CE+6)r16-1i)
CTGE+DTA1-) T6)C6)  T(22)
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Example (solution) I Predictive with prior
B Predictive with posterior
0.2

o
l—L
Ul

Probability
o

0.05

0 1 2 3 4 5 6 7 8 9 10
Number of heads
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Bayesian probabilistic networks 24/32

B DAG (Directed Acyclic Graph)
m Conditional probability (tables)

10.10.2007
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m Example of DAG (Directed Acyclic Graph)
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m Example of DAG (Directed Acyclic Graph)

PlLX,| X, X, |PLX, |PX, ]
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m Example of DAG (Directed Acyclic Graph)

PLX, [ X IPLXG [ X TPLX
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m Example of DAG (Directed Acyclic Graph)

PIX, | X;1PLX; | X, X, 1PLX, P X, ]
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Bayesian probabilistic networks 29/32

m Counter-example of DAG (Directed Acyclic Graph)
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Why are BPNs useful? 30/32

m Easy way of mind mapping.
m Platform for integrating all relevant aspects.
m Generic algorithms as well as software tools are available for

- creating BPNs
- calculating probabilities of interest.
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Example

Consider the Bernoulli trial — throwing a coin 10 times.

|
&4 Bernaull @@
HSFBE oovol® ¥ +- B& a2

= X1 before: number of heads at first trial
= X1 after: number of heads at second trial
o = X2: the probability that a head comes out

X1_before
- @ < Will be demonstrated.
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Modeling with BPNs 32/32

m Bottom-up approach

The components of a BPN are built up by expert knowledge and
analyses and are integrated into the BPN.

Top-down approach

TlhhnA immbkAaveAlakiAam laAakiarAA- FlaA ~AmrmAamm A AmE~ i A DDAl AwA FiuvA la: i+ Ela A
1 HiLtci1rcialioll UCLVVCCII LT CUITTIPUINICHIW 111 d DFIN dlc T1XACU, DUL LIIC
probabilistic (quantitative) relations are estimated from observed
data

Let’s see these approaches with application examples later.
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