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2/32Today’s agenda 2/32Today’s agenda

Probabilistic representation of systems
Representation of systems with (random) variables

Observable and unobservable variables

joint probability  conditional probability  marginal joint probability, conditional probability, marginal 
probability, prior/posterior probability, predictive 
probability

Bayesian probabilistic networks (BPNs)
Graphical representation / conditional probability (tables)

Advantages of BPNs
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3/32Representation of systems 3/32Representation of systems

Systems may be characterized by variables and the systems 
performance may be described by using the variables.

Model

1 2, ,..., nx x x

1 2( , ,..., )i nf x x x
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4/32Representation of systems 4/32Representation of systems

Systems may be characterized by variables and the systems 
performance may be described by using the variables.

Ship hull structure system Corresponding model

Variables:
Self weight
W  l dWave loads
Thickness of plates
Stiffness
Corrosion, etc.
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5/32Representation of systems 5/32Representation of systems

If the states of the systems are uncertain, the systems may 
be characterized by random variables.

Model Probabilistic model

1 2, ,..., nX X X1 2, ,..., nx x x
1 2, , , n

1 2( , ,..., )i nf x x x 1 2( , ,..., )i nf X X X
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6/32Task in modeling 6/32Task in modeling

The main task in modeling is to identify the interrelations 
between all the variables involved in the models in logical 
and/or probabilistic manners.and/or probabilistic manners.

Probabilistic model Example of logical relation:

1 2, ,..., nX X X
3 1 2X X X= +

1 2, , , n

1 2( , ,..., )i nf X X X Example of probabilistic relation:

3 1 2[ | , ]P X X X
(The logical relation is a special case
of the probabilistic relation.)

3 1 2[ | , ]P X X X
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7/32Aim of analysis 7/32Aim of analysis

The aim of the analysis with models is to evaluate the 
quantities of interest, e.g. the probability of the occurrence of 
critical situations, using the logical and probabilistic relations critical situations, using the logical and probabilistic relations 
in the models.

P b bili ti  d l E l  f titi  f i t tProbabilistic model Example of quantities of interest:

[ 1]FP P X= =
1 2, ,..., nX X X

1 2( , ,..., )if X X X
where

[ ]X I X X= <

[ ]F

1 2( , ,..., )i nf X X X 1 2[ ]X I X X= <
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8/32Observable and unobservable 8/32Observable and unobservable

Observable variables
The values of some of variables can be observed by e.g. 
measurements  measurements. 

An example is the annual maximum wind speed An example is the annual maximum wind speed 
at a given location:

/ / / / / /10 m/s, 12 m/s, 29 m/s, 14 m/s, 35 m/s, 18 m/s.

10.10.2007
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9/32Observable and unobservable 9/32Observable and unobservable

Unobservable variables 
(latent variables, model parameters, etc.)

Unobservable variables are not directly observed but 
rather inferred from the variables that are directly rather inferred from the variables that are directly 
measured.

l h l f h lAn example is the mean value of the annual maximum 
wind speed at one location. The mean value may be 
inferred from the observations as:

(10+12+29+14+35+18)/6 = 19.67 m/s
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Eidgenossische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zürich

Institute of Structural Engineering
Group Risk and Safety  

10/32Observable and unobservable 10/32Observable and unobservable

Example

The annual maximum wind speeds Xi (i=1,2,3,4,5) are assumed 
modeled as:

iid

Here  X ‘s are the examples of observable variables  and μ

2( , )
iid

iX N μ σ∼

Here, Xi s are the examples of observable variables, and μ
and σ2 are the examples of unobservable variables.

In Bayesian approaches, μ and σ2 themselves may be 
considered as random variables.
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11/32Joint probability 11/32Joint probability

Any models that represent systems can be fully described by 
joint probabilities (probability densities or their combination):

1 2[ , ,..., ]nP X X X

Only few parametric families of multivariate distributions are 
known, e.g., multivariate Normal distribution, Dirichlet
distribution  They are often less flexible; consider the case distribution. They are often less flexible; consider the case 
X1 is continuous and X2 is discrete.

Quite lots of information are required for characterizing 
the multivariate distributions; (n2 + n) values are required for 
the multivariate Normal distribution. Also, think of a 

10.10.2007

the multivariate Normal distribution. Also, think of a 
multivariate discrete distribution!
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12/32Conditional probability 12/32Conditional probability

An efficient (compact) way of characterizing joint probabilities 
is to employ conditional probabilities.

Any joint probability can be built up with conditional 
probabilities:

1 2
1

[ , ,..., ] [ | ( )]
n

n i i
i

P X X X P X pa X=∏
where pa(Xi) represents the parents of Xi (which will be later 
explained in the context of Bayesian probabilistic networks.)

1i=
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13/32Conditional probability 13/32Conditional probability

Example

Assume two situations where the joint probability of discrete 
random variables X1, X2 and X3, each of which can take 5 
possible values, are modeled in two different ways:p y

Thi  di t t ti  i  53 125 l  t  d ib  th

1 2 3[ , , ]P X X X
This direct representation requires 53=125 values to describe the
joint probability.

[ ] [ | ] [ | ] [ ]P X X X P X X P X X P X=

This conditional independence representation requires only
5 52 52 55 l  l h h hi  i  i  l  fl ibl

1 2 3 3 2 2 1 1[ , , ] [ | ] [ | ] [ ]P X X X P X X P X X P X=

10.10.2007

5+52+52=55 values, although this representation is less flexible
than the above one.
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14/32Marginal probability 14/32Marginal probability

Any marginal probability can be calculated from joint 
probabilities for discrete cases as:

1 2
1 2 1 1

[ ] [ , .., ]i n
i i n

P X P X X X
− +

=∑∑ ∑∑ ∑" "

For continuous cases the summations may be replaced by 
appropriate integrals

1 2 1 1i i n+

appropriate integrals.
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15/32Marginal probability 15/32Marginal probability

Example

Consider a Bernoulli trial – throwing a coin 10 times. However, 
the probability that a head comes out is not known. Assume that 
X1 represents the number that the head comes out in the 10 X1 represents the number that the head comes out in the 10 
trials, and X2 represents the probability that the head comes out 
in each trial and follows the uniform distribution [0,1]. 
Calculate P[X1].
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16/32Marginal probability 16/32Marginal probability

Example (solution)
Joint probability

1 2 1 2 2

10

[ , ] [ | ] [ ]
10 i i

P X i X p P X i X p P X p= = = = = ⋅ =

⎛ ⎞ 1010
(1 ) 1i ip p

i
−⎛ ⎞

= − ⋅⎜ ⎟
⎝ ⎠

Marginal probability
1 1 10

1 1 2

10
[ ] [ , ] (1 )i iP X i P X i X p dp p p dp−⎛ ⎞

= = = = = −⎜ ⎟∫ ∫1 1 20 0
[ ] [ , ] (1 )

10! !(10 ) 1

P X i P X i X p dp p p dp
i

i i

⎜ ⎟
⎝ ⎠

−

∫ ∫
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( )
(10 )! ! 11! 11i i

= =
−



Eidgenossische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zürich

Institute of Structural Engineering
Group Risk and Safety  

17/32Prior/posterior probability 17/32Prior/posterior probability

According to the Bayes’ theorem the following relation holds:

[ | ]P X x X=1 1 2
2 1 1 2

1 1

[ | ][ | ] [ ]
[ ]

P X x XP X X x P X
P X x

=
= =

=

Consider special cases where X2 represents the parameter of 
the probability of X1. In such cases, the relation above 
provides a rationale how the probability of X may be updatedprovides a rationale how the probability of X2may be updated
with the observed data (X1 =x1). Thereby,

: prior probability (distribution)

 i b bili  (di ib i )

2[ ]P X

[ | ]P X X

10.10.2007

: posterior probability (distribution).2 1 1[ | ]P X X x=
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18/32Prior/posterior probability 18/32Prior/posterior probability

Example

Consider again the Bernoulli trial – throwing a coin. Assume that 
5 heads came out after 10 trials, i.e., X1=5. 
Calculate P[X2|X1=5]  the posterior probability of X2Calculate P[X2|X1=5], the posterior probability of X2.

10.10.2007
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19/32Prior/posterior probability 19/32Prior/posterior probability

Example

Posterior probability

1 2[ 5 | ][ | 5] [ ]P X X pP X p X P X p= =
= = = =2 1 2

1
5 5

[ | 5] [ ]
[ 5]

(1 )

P X p X P X p
P X

p p

=

∝ −

Thus,

(1 )p p

5 5
2 1

(12)[ | 5] (1 )
(6) (6)

P X p X p pΓ
= = = −

Γ Γ
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20/32Predictive probability 20/32Predictive probability

Predictive probability is an alias of the marginal probability 
when the joint probabilities are marginalized in regards to the 
parameters of the probabilities:parameters of the probabilities:

1 1 2 1 2 2[ ] [ , ] [ | ] [ ]P X P X X P X X P X= =∑ ∑

where X is the parameter of the probability of X

1 1 2 1 2 2
2 2

[ ] [ , ] [ | ] [ ]∑ ∑

where X2 is the parameter of the probability of X1.

: Predictive probability1[ ]P X : Predictive probability1[ ]

10.10.2007
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21/32Predictive probability 21/32Predictive probability

Example

Consider again the Bernoulli trial – throwing the coin. Calculate 
the predictive probability P[X1], using the updated (posterior) 
probability of X2  probability of X2. 

10.10.2007
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22/32Predictive probability 22/32Predictive probability

Example (solution)
1

1 1 2[ ] [ ]P X i P X i X p dp= = = =∫1 1 20

1

1 2 20

[ ] [ , ]

[ | ] [ ]

P X i P X i X p dp

P X i X p P X p dp= = = =

∫
∫ 1 2 20

1 10 5 5

[ | ] [ ]

10 (12)(1 ) (1 )
( ) ( )

i i

p p p

p p p p dp−⎛ ⎞ Γ
= − −⎜ ⎟

⎝ ⎠

∫

∫0
1 5 15

( ) ( )
(6) (6)

10 (12) (1 )i i

p p p p p
i

d+ −

⎜ ⎟ Γ Γ⎝ ⎠
⎛ ⎞ Γ
⎜ ⎟

∫

∫ 5 15

0

( ) (1 )
(6) (6)
(11) (12) ( 6) (16 )

i ip p dp
i

i i

+= −⎜ ⎟ Γ Γ⎝ ⎠
Γ Γ Γ + Γ

∫
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(11) (12) ( 6) (16 )
( 1) (11 ) (6) (6) (22)

i i
i i
Γ Γ Γ + Γ −

=
Γ + Γ − Γ Γ Γ
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23/32Predictive probability 23/32Predictive probability

Example (solution)
0.2

Predictive with prior
Predictive with posterior

0.15ty

0.1ba
bi

lit

0.05

Pr
o

0
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24/32Bayesian probabilistic networks 24/32Bayesian probabilistic networks

DAG (Directed Acyclic Graph)
Conditional probability (tables)

10.10.2007
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25/32Bayesian probabilistic networks 25/32Bayesian probabilistic networks

Example of DAG (Directed Acyclic Graph)

X1

XX2

2 1 1[ | ] [ ]P X X P X

10.10.2007
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26/32Bayesian probabilistic networks 26/32Bayesian probabilistic networks

Example of DAG (Directed Acyclic Graph)

X1 X2

XX3

3 1 2 1 2[ | , ] [ ] [ ]P X X X P X P X

10.10.2007
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27/32Bayesian probabilistic networks 27/32Bayesian probabilistic networks

Example of DAG (Directed Acyclic Graph)

X1

XX X3X2

2 1 3 1 1[ | ] [ | ] [ ]P X X P X X P X

10.10.2007
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28/32Bayesian probabilistic networks 28/32Bayesian probabilistic networks

Example of DAG (Directed Acyclic Graph)

X1 X2

XX3

X4

4 3 3 1 2 1 2[ | ] [ | , ] [ ] [ ]P X X P X X X P X P X

10.10.2007
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29/32Bayesian probabilistic networks 29/32Bayesian probabilistic networks

Counter-example of DAG (Directed Acyclic Graph)

X1 X2

X3

10.10.2007
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30/32Why are BPNs useful? 30/32Why are BPNs useful?

Easy way of mind mapping.

Platform for integrating all relevant aspectsPlatform for integrating all relevant aspects.

Generic algorithms as well as software tools are available for Generic algorithms as well as software tools are available for 
- creating BPNs
- calculating probabilities of interest.

10.10.2007
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31/32Bayesian probabilistic networks 31/32Bayesian probabilistic networks

Example

Consider the Bernoulli trial – throwing a coin 10 times.

X1_before: number of heads at first trial
X1 after: number of heads at second trialX1_after: number of heads at second trial
X2: the probability that a head comes out

Will be demonstrated.  

10.10.2007
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32/32Modeling with BPNs 32/32Modeling with BPNs

Bottom-up approach

Th  t  f  BPN  b ilt  b  t k l d  d The components of a BPN are built up by expert knowledge and 
analyses and are integrated into the BPN.

Top-down approach

The interrelation between the components in a BPN are fixed  but the The interrelation between the components in a BPN are fixed, but the 
probabilistic (quantitative) relations are estimated from observed 
data.

Let’s see these approaches with application examples later.
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