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Interpretation of Probability
States of nature of which we have interest such as:States of nature of which we have interest such as:

- a bridge failing due to excessive traffic loads

- a water reservoir being over-filled

- an electricity distribution system falling out“an electricity distribution system „falling out

- a project being delayed

are in the following denoted „events“

we are generally interested in quantifying the probability 
that such events take place within a given „time frame“   
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Interpretation of Probability

Th   i  i i l  th  diff t i t t ti  f • There are in principle three different interpretations of 
probability

- Frequentistic ∞→= for                               explim)( nNAP Aq exp
exp

)(
n

- Classical A

n
nAP =)(
totn

- Bayesian occur    will  that  belief of  degree   )( AAP =
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Interpretation of Probability

Consider the probability of getting a „head“ when flipping a coin

- Frequentistic 0.51510)( ==APq 0.51
1000

)(AP

- Classical
2
1)( =AP
2

- Bayesian 0.5  )( =AP
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Sample Space and Events
Th  s t f ll p ssibl  utc m s f th  st t  f n tur  The set of all possible outcomes of the state of nature 
e.g. concrete compressive strength test results is called 
the sample space   . For concrete compressive strength 

 l  h  l    b    
Ω

test results the sample space can be written as 

A sample space can be continuous or discrete

]0; [Ω = ∞

A sample space can be continuous or discrete.

Typically we illustrate the sample space and events using 
V  di   Venn diagrams  

Event

Ω
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Sample Space and Events

An event is a sub-set of the sample space

- if the sub-set is empty the event is impossiblep y p
- if the sub-set contains all of the sample space the   

event is certain
Consider the two events    and  :E EConsider the two events    and  : 
The sub-set of sample points belonging to the event   
and/or the event    is called the union of    and    and is 
written as :   U

1E
1E

2E

2E 2E1E
written as :   

1 2E EU

1 2E EU

E1 E2

1 2U
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Sample Space and Events

An event is a sub-set of the sample space

- if the sub-set is empty the event is impossiblep y p
- if the sub-set contains all of the sample space the event  
is certain

Consider the two events    and    :E EConsider the two events    and    : 
The sub-set of sample points belonging to the event    and
the event    is called the intersection of    and    and is 

itt  I

1E 2E
1E

1E 2E2E
written as: 1 2E EI

1 2E EI

E1 E2

1 2I
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Sample Space and Events
Th  v nt c nt inin  ll s mpl  p ints in     n t includ d ΩThe event containing all sample points in     not included 
in the event    is called the complementary event to
and written as : E

Ω
E E

It follows that E E =ΩUIt follows that

and E E =∅I

E
ΩΩ

EE
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Sample Space and Events
It c n b  sh  th t th  int rs cti n nd uni n p r ti ns It can be show that the intersection and union operations 
obey the following commutative, associative and 
distributive laws: 

1 2 2 1E E E E=I I Commutative law

( ) ( )1 2 3 1 2 3E E E E E E=I I I I
Associative law

( ) ( )1 2 3 1 2 3E E E E E E=U U U U

( ) ( ) ( )E E E E E E E=I U I U I( ) ( ) ( )1 2 3 1 2 1 3E E E E E E E=I U I U I

( ) ( ) ( )1 2 3 1 2 1 3E E E E E E E=U I U I U
Distributive law
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Sample Space and Events
Fr m th  c mmut tiv  ss ci tiv  nd distributiv  l s From the commutative, associative and distributive laws 
the so-called De Morgan‘s laws may be derived: 

1 2 2 1E E E E=I I

( ) ( )1 2 3 1 2 3E E E E E E=I I I I
1 21 2E E E E=I U

( ) ( )1 2 3 1 2 3E E E E E E=U U U U

( ) ( ) ( )E E E E E E E=I U I U I

1 21 2E E E E=U I

( ) ( ) ( )1 2 3 1 2 1 3E E E E E E E=I U I U I

( ) ( ) ( )1 2 3 1 2 1 3E E E E E E E=U I U I U
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The Three Axioms of Probability Theory
The probability theory is built up on – only – three axioms The probability theory is built up on only three axioms 
due to Kolmogorov:

Axiom 1: ( )0 1P E≤ ≤Axiom 1:

A i  2

( )0 1P E≤ ≤

( ) 1P ΩAxiom 2: ( ) 1P Ω =

n n⎛ ⎞ ∑UAxiom 3:
i 1i 1

( )i iP E P E
==

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑U

2E1EWhen   ,    ,.. are mutually exclusive 
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Conditional Probability and Bayes‘s Rule

C diti l b biliti   f i l i t t  th  Conditional probabilities are of special interest as they 
provide the basis for utilizing new information in decision 
making.

The conditional probability of an event    given that 
event     has occured is written as:E

1E
event     has occured is written as:

1 2
1 2

( )( ) P E EP E E =
I Not defined if 2( ) 0P E =

2E

Th  t      d      id t  b  t ti ti ll  

1 2
2

( )
( )P E

E EThe events     and     are said to be statistically 
independent if:

( ) ( )P E E P E

1E 2E
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Conditional Probability and Bayes‘s Rule
Fr m 1 2( )( ) P E EP E E IFrom

 f ll  h

1 2
1 2

2

( )( )
( )

P E EP E E
P E

=
I

it follows that 1 2 2 1 2( ) ( ) ( )P E E P E P E E=I

and when    and    are statistically independent there is2E1E

1 2 2 1( ) ( ) ( )P E E P E P E=I
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Conditional Probability and Bayes‘s Rule

C id  th  l      di id d  i t    t ll  ΩConsider the sample space    divided up into   mutually 
exclusive events   ,   , …, 

Ω

Ω
nE

n
2E1E

Ω

E1 E2 E3 E4 A

E5 E6 E7 E8

( ) ( ) ( ) ( )P A P A E P A E P A E= + + +I I I( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

n

...

...

1 2 n

1 1 2 2 n n

P A P A E P A E P A E

P A E P E P A E P E P A E P E

= + + +

+ + + =

∑

I I I
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Conditional Probability and Bayes‘s Rule
s th r  is ( ) ( ) ( ) ( ) ( )P A E P A E P E P E A P AIas there is 

 h   

( ) ( ) ( ) ( ) ( )i i i iP A E P A E P E P E A P A= =I

we have  Likelihood Prior

( ) ( ) ( ) ( )
( )

( ) ( ) ( )

i i i i
i n

i i

P A E P E P A E P E
P E A

P A P A E P E
= =

∑
1

( ) ( )i i
i
P A E P E

=
∑

P t iPosterior
Bayes Rule

Reverend Thomas
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Uncertainties in Engineering Problems

Diff t t  f t i ti  i fl  d i i  kiDifferent types of uncertainties influence decision making

• Inherent natural variability – aleatory uncertaintyy y y
- result of throwing dices
- variations in material properties
- variations of wind loads
- variations in rain fall

• Model uncertainty – epistemic uncertaintyM y p m y
- lack of knowledge (future developments)
- inadequate/imprecise models (simplistic physical modelling)

• Statistical uncertainties – epistemic uncertainty 
- sparse information/small number of data
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Uncertainties in Engineering Problems

C id    l   dik  t t  • Consider as an example a dike structure 

- the design (height) of the dike will be determining the 
frequency of floodsfrequency of floods

- if exact models are available for the prediction of future 
water levels and our knowledge about the input parameters water levels and our knowledge about the input parameters 
is perfect then we can calculate the frequency of floods (per 
year) - a deterministic world !

- even if the world would be deterministic – we would not 
have perfect information about it – so we might as well 
consider the world as random   consider the world as random   
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Uncertainties in Engineering Problems

I  i i l  th  ll d In principle the so-called 

inherent physical uncertainty (aleatory – Type I)

is the uncertainty caused by the fact that the world is random, 
however, another pragmatic viewpoint is to define this type of 
uncertainty asuncertainty as

any uncertainty which cannot be reduced by means of collection of 
additional informationadditional information

the uncertainty which can be reduced is then the 

model and statistical uncertainties (epistemic – Type II) 

Swiss Federal Institute of Technology



Uncertainties in Engineering Problems

Observed annual 
extreme water levels

Model for annual 
extremes

Aleatory 
Uncertainty

Observed annual 
extreme water levels

Model for annual 
extremes

Aleatory 
Uncertainty

Epistemic 
Uncertainty
Epistemic 
Uncertainty

Regression model to
predict future extremes
Regression model to

predict future extremes

Predicted future Predicted future 
extreme water levelextreme water level
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Uncertainties in Engineering Problems

Th  l ti  t ib ti  f l t  d i t i  t i t  t  The relative contribution of aleatory and epistemic uncertainty to 
the prediction of future water levels is thus influenced directly by 
the applied models 

refining a model might reduce the epistemic uncertainty – but in 
general also changes the contribution of aleatory uncertainty

the uncertainty structure of a problem can thus be said to be scale 
d d t !dependent !
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Uncertainties in Engineering Problems
Prediction
Prediction

Observation
Observation

Knowledge

e
Future

100%

Knowledge

e
Future

100%
Time

Past

ent

100%
Time

Past

ent

100%

PresentPresent

The uncertainty structure changes also as function of time – is 
thus time dependent !
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Random Variables

P b bilit  di t ib ti  d d it  f ti• Probability distribution and density functions

A random variable is denoted with capital letters : X

A realization of a random variable is denoted with small letters : x 

We distinguish between 

- continuous random variables : can take any value in a given 
range

- discrete random variables : can take only discrete values
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Random Variables

P b bilit  di t ib ti  d d it  f ti• Probability distribution and density functions

The probability that the outcome of a discrete 
random variable X is smaller than x is denoted APx (x)random variable X is smaller than x is denoted 
the cumulative distribution function

( ) ( )P x p x= ∑

A

1

x

The probability density function for a discrete

( ) ( )
i

X X i
x x

P x p x
<

= ∑
x

The probability density function for a discrete
random variable is defined by

( ) ( )

px (x) B

( ) ( )X i ip x P X x= =
x

Swiss Federal Institute of Technology
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Random Variables

P b bilit  di t ib ti  d d it  f ti• Probability distribution and density functions

The probability that the outcome of a 
continuous random variable X is smaller 

Fx (x) A

continuous random variable X is smaller 
than x is denoted the 
cumulative distribution function

1

( ) ( )XF x P X x= < x

fx (x) B

The probability density function for a 
continuous random variable is defined by 

fx ( ) B

( ) ( )X
X

F xf x
x

∂
=

∂ x

Swiss Federal Institute of Technology
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Random Variables

M t  f d  i bl  d th  t ti  t• Moments of random variables and the expectation operator

Cumulative distributions and density functions can be described in 
terms of their paramaters    or their moments pterms of their paramaters    or their moments 

Often we write 

p

),( pxFX ),( pxfX
Parameters

The parameters can be related to the moments and visa versa
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Random Variables

M t  f d  i bl  d th  t ti  t• Moments of random variables and the expectation operator

The i‘th moment mi for a continuous random variable X is defined 
throughthrough

∫
∞

d)(fi∫
∞−

⋅= dx)x(fxm X
i

i

The expected value E[X] of a continuous random variable X is 
defined accordingly as the first moment defined accordingly as the first moment 

[ ] ( )dxxfxXE XX ∫
∞

⋅==μ
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Random Variables

M t  f d  i bl  d th  t ti  t• Moments of random variables and the expectation operator

The i‘th moment mi for a discrete random variable X is defined 
throughthrough

( )
n

i
i j X jm x p x= ⋅∑

1

( )i j X j
j

p
=
∑

The expected value E[X] of a discrete random variable X is defined 
accordingly as the first moment accordingly as the first moment 

[ ]
1

( )
n

X j X j
j

E X x p xμ = = ⋅∑

Swiss Federal Institute of Technology
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Random Variables

M t  f d  i bl  d th  t ti  t• Moments of random variables and the expectation operator

The standard deviation of a continuous random variable is 
defined as the second central moment i e  for a continuous random 

Xσ
defined as the second central moment i.e. for a continuous random 
variable X we have

[ ] [ ] ( ) ( )dxxfxXE ∫
∞

⋅−=−== 222 )(XVar μμσ [ ] [ ] ( ) ( )dxxfxXE XXXX ∫
∞−

=== )(XVar μμσ

Variance Mean value

for a discrete random variable we have correspondingly

[ ]2 2( ) ( )
n

X j X X jVar X x p xσ μ= = − ⋅∑
Swiss Federal Institute of Technology
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Random Variables

M t  f d  i bl  d th  t ti  t• Moments of random variables and the expectation operator

The ratio between the standard deviation and the expected value of 
a random variable is called the Coefficient of Variation CoV and is 
defined asdefined as

[ ] XCoV X σ
μ

=
Xμ

Dimensionless

a useful characteristic to indicate the variability of the random 

Swiss Federal Institute of Technology
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Random Variables

R d  t  d j i t t• Random vectors and joint moments

Now we consider not just one continuous random variable but 
a vector of continuous random variables

( )1 2, , , T
nX X X=X K

The joint cumulative distribution function is given by

( )1 2 n

( ) ( )

and the joint probability density function is given by  

( ) ( )1 1 2 2 n nF P X x X x X x= ≤ ≤ ≤X x I IKI

and the joint probability density function is given by  

( ) ( )
n

f F∂
∂ ∂ ∂

=X Xx x

Swiss Federal Institute of Technology
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Random Variables

R d  t  d j i t t• Random vectors and joint moments

The marginal probability density function of a random 
variable Xi is defined by

( ) ( )( 1 fold)f x n f dx dx dx dx
∞ ∞

∫ ∫ x( ) ( ) 1 1 1( 1  fold) .. ..
iX i i nf x n f dx dx dx dx− +

−∞ −∞

= −∫ ∫ X x
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Random Variables

R d  t  d j i t t• Random vectors and joint moments

The covariance between the i‘th and the j‘th component of 
the random vector of continuous random variables is defined 
as the joint central moment i.e. by j y

[ ] ( )( ) ( ) jijiXXXjXiXjXiXX dxdxx,xfxx)X)(X(EC
jijijiji ∫ ∫

∞ ∞

−−=−−= μμμμ
∞− ∞−

[ ]
i iX X iC Var X=

From where we see that for i = j we get the variance for Xi

ji XX
C

1C l ti ffi i t

Swiss Federal Institute of Technology
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Random Variables

R d  t  d j i t t• Random vectors and joint moments

The expected value and the variance of a linear function 

0
1

n

i i
i

Y a a X= +∑

are given by

1i=

n

[ ] [ ]0
1

i i
i

n n

E Y a a E X
=

= +∑

[ ] [ ]2

1 , 1
 

i ji i i j X X
i i j

i j

Var Y a Var X a a C
= =

≠

= +∑ ∑
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Random Variables

• C diti l di t ib ti  d diti l t• Conditional distributions and conditional moments

The conditional probability density function for the random 
variable X given the outcome of the random variable X is variable X1 given the outcome of the random variable X2 is 
given by

)(f
)x,x(f

)xx(f X,X
XX

21
21

21

21
=

where if X1 and X2 are independent 

)x(fX
XX

22

21

The conditional cumulative distribution function is obtained by 

11 2 1 2 1( ) ( )XX Xf x x f x=

The conditional cumulative distribution function is obtained by 
integration as 1

1 2, 2( , )
x

X Xf z x dz∫

Swiss Federal Institute of Technology
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( )
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X
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Random Variables

C diti l di t ib ti  d diti l t• Conditional distributions and conditional moments

The un-conditional cumulative distribution function for the 
random variable X1 can be derived from the conditional 
comulative distribution function by use of the total 
probability theoremp y

1 21 21 1 2 2 2( ) ( ) ( )X XX XF x F x x f x dx
∞

= ∫

The conditional expected value is defined by

1 21 21 1 2 2 2X XX X f
−∞
∫

The conditional expected value is defined by

( )
1 2 1 21 2 2 1 2 1X X X XE X X x x f x x dxμ

∞

= ⎡ = ⎤ =⎣ ⎦ ∫

Swiss Federal Institute of Technology
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Random Variables

Th  N l di t ib ti• The Normal distribution:

In the case where the mean value is equal to zero and the standard 
deviation is equal to 1 the random variable is said to be deviation is equal to 1 the random variable is said to be 
standardized.

XXY μ−
= Standardized random variable

X

Y
σ

= Standardized random variable

 

Standard Normal

Normal
S li

0
1

Yμ
σ

=

Standard Normal

Normal
S li

0
1

Yμ
σ

=

Scaling1Yσ = Scaling1Yσ =
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Random Variables

Th  N l di t ib ti• The Normal distribution:

In the case where the mean value is equal to zero and the standard 
deviation is equal to 1 the random variable is said to be deviation is equal to 1 the random variable is said to be 
standardized.

XXY μ−
= Standardized random variable

⎛ ⎞

X

Y
σ

=

0.3

0.35

0.4

0.45

fX(x)

Standardized random variable

21 1( ) ( ) exp
22Yf y y yϕ

π
⎛ ⎞= = −⎜ ⎟
⎝ ⎠ 0

0.05

0.1

0.15

0.2

0.25

-3 -2 -1 0 1 2 3

x

Standard normal 
21 1( ) ( ) exp

22

y

YF y y x dx
π −∞

⎛ ⎞=Φ = −⎜ ⎟
⎝ ⎠∫

0.4

0.5

0.6

0.7

0.8

0.9

1
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Random Variables

Where the normal distribution follows from the sum of random 
variables – Central Limit Theorem

the log-normal distribution follows from the product of random 
variables 

1 2 nY X X X= ⋅

⇓

L

11

ln( ) ln( ) ln( )
n n

i i
ii

Y X X
==

= =∑∏

Normal distributed  is Lognormal distributedY⇒

Swiss Federal Institute of Technology
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Random Variables

Wh  th  l ith  f  d  i bl  X i  When the logarithm of a random variable X i.e. 

Y = ln(X),     Y : N(μY,σY)

is normal distributed the random variable X is said to be log-
normal distributednormal distributed

X : LN(λ,ζ) 

⎟
⎟
⎞

⎜
⎜
⎛

⎟⎟
⎞

⎜⎜
⎛ −

−=
2

)ln(1exp1)( λxxf X ⎟⎟
⎞

⎜⎜
⎛

+=exp
2ζλμX⎟

⎠
⎜
⎝

⎟⎟
⎠

⎜⎜
⎝2

exp
2

)(
ζπζx

xf X ⎟⎟
⎠

⎜⎜
⎝ 2

pμX

1)exp(exp 2
2

⎟⎟
⎞

⎜⎜
⎛

+ ζζλσ⎟⎟
⎞

⎜⎜
⎛ −

Φ
λ)ln()( xF
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1)exp(
2

exp −⎟⎟
⎠

⎜⎜
⎝

+= ζζλσX⎟⎟
⎠

⎜⎜
⎝

Φ=
ζ
)()(xFX



Random Variables

Th  i t  l  

Distribution type Parameters Moments 

Uniform, a x b≤ ≤  

1( )Xf x
b a

=
−

 

 

a  

b  

2
a bμ +

=  

b aσ −

There exist a large 
number of different 
cumulative probability 

( )X
x aF x
b a
−

=
−

 
12

σ =

Normal 

21 1 x μ⎛ ⎞⎛ ⎞

 

μ  

 

μ  

functions:

Uniform

1 1( ) exp
22X
xf x μ
σσ π

⎛ ⎞−⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

21 1( ) exp
22

x

X
tF x dtμ
σσ π −∞

⎛ ⎞−⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫  

0σ >  σ  

f
Normal
Log-normal
Exponential

Shifted Lognormal, x ε>  

2
1 1 ln( )( ) exp

2( ) 2X
xf x

x
ε λ
ζε ζ π

⎛ ⎞⎛ ⎞− −
= ⎜− ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

ln( )( ) x ε λ⎛ ⎞− −

 

λ  

> 0ζ  

ε  

2

exp
2
ζμ ε λ

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
 

2
2exp exp( ) 1

2
ζσ λ ζ

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠Exponential
Beta
Gamma

ln( )( ) ΦX
xF x ε λ
ζ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
⎝ ⎠

 

Shifted Exponential, x ε≥  

( ) exp( ( ))Xf x xλ λ ε= − −  

 

ε  

0λ >

1μ ε
λ

= +  

1…
…  

( )( )( ) 1 expXF x xλ ε= − − −  
0λ > 1σ

λ
=  

Gamma, 0x ≥  

1( ) exp( )
( )

p
p

X
bf x bx x −= −
Γ

 

 

0p >  

0b >

p
b

μ =  

Swiss Federal Institute of Technology

( )pΓ

( ),
( )

( )X

bx p
F x

p
Γ

=
Γ

 

0b > p
b

σ =  



Stochastic Processes and Extremes

R d titi b “ti i t” i th th t th t k• Random quantities may be “time variant” in the sense that they take 
new values at different times or at new trials.

If the ne reali ations occ r at discrete times and ha e discrete- If the new realizations occur at discrete times and have discrete 
values the random quantity is called a random sequence

failure events, traffic congestions,…

- If the new realizations occur continuously in time and take continues 
values the random quantity is called a random process or stochastic 
processprocess

wind velocity, wave heights,…
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Stochastic Processes and Extremes

R d• Random sequences

- A sequence of experiments with only two possible and mutually 
e cl si e o tcomes is called a Berno lli trialexclusive outcomes is called a Bernoulli trial

Typically the outcomes of Bernoulli trials are denoted successes or- Typically the outcomes of Bernoulli trials are denoted successes or
failures

If the probability of success in one trial is constant and equal to p theIf the probability of success in one trial is constant and equal to p the 
probability density of Y successes in n trials, i.e.             is given by:)(ypY

...n,,ypp
n

yp yny
Y 210    ,)1()( =−⎟⎟

⎞
⎜⎜
⎛

= − !nn
=⎟⎟

⎞
⎜⎜
⎛,,ypp

y
ypY ,)()( ⎟

⎠
⎜
⎝ )!(! ynyy −⎟⎟

⎠
⎜⎜
⎝

Binomial operatorBinomial probability
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Stochastic Processes and Extremes

R d• Random sequences

- A sequence of experiments with only two possible and mutually 
e cl si e o tcomes is called a Berno lli trialexclusive outcomes is called a Bernoulli trial

The Binomial probability distribution function then follows as:The Binomial probability distribution function then follows as:

yy

⎟
⎞

⎜
⎛∑ ,...n,,ypp
i
y

yP ini

i
Y 210     ,)1()(

0
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⎛
= −
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Stochastic Processes and Extremes

R d• Random sequences

- A sequence of experiments with only two possible and mutually 
e cl si e o tcomes is called a Berno lli trialexclusive outcomes is called a Bernoulli trial

Illustration: 

Binomial probability density function for n=5 and p=0.15 and p=0.5 

p = 0.15 p = 0.50 
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Stochastic Processes and Extremes

R d• Random sequences

The expected value and the variance of a binomially distributed
random variable Y is given by:random variable Y is given by:

[ ] npYE =

[ ] (1 )Var Y np p= −
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Random Sequences

Th  P i  ti    i i ll  i t d b  • The Poisson counting process was originally invented by 
Poisson

“life is only good for two things: 
to do mathematics and to teach it” 
(Boyer 1968, p. 569)

Poisson was originally interested in 
applying probability theory for the 

Poisson, Siméon-Denis 
(1781-1840) 
Student of Laplace

improvement of procedures of law

Former law clerk
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Random Sequences

• The Poisson counting process is one of the most commonly 
applied families of probability distributions applied in 
reliability theory

The Poisson process provides a model for representing rare 
events – counting the number of events over time
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Random Sequences

Th  P i  ti  i   f th  t l  • The Poisson counting process is one of the most commonly 
applied families of probability distributions applied in 
reliability theory

The process N(t) denoting the number of events in a (time) 
interval (t,t+Δt[ is called a Poisson process if the following 
conditions are fulfilled:conditions are fulfilled:

1) the probability of one event in the interval (t,t+Δt[ is 
asymptotically proportional to Δtasymptotically proportional to Δt.

2) the probability of more than one event in the interval 
(t,t+Δt[ is a function of higher order of Δt for Δt→0.(t,t+Δt[ is a function of higher order of Δt for Δt→0.

3) events in disjoint intervals are mutually independent.
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Random Sequences

Th  P i    b  d ib d l t l  b  it  • The Poisson process can be described completely by its 
intensity ν(t)  

[ [1( ) li ( t i )P Δ

if ν(t) = constant  the Poisson process is said to be 

[ [
0

( ) lim (one event in , )
t

t P t t t
t

ν
Δ→

= +Δ
Δ

if ν(t) = constant, the Poisson process is said to be 
homogeneous, otherwise it is inhomogeneous.

The probability of n events in the time interval (0 t[ is:The probability of n events in the time interval (0,t[ is:

( )
nt

t
dν τ τ

⎛ ⎞
⎜ ⎟

⎛ ⎞⎝ ⎠
∫ ( ) ( )( )ntν

Homogeneous case !
( ) 0

0

exp ( )
!

t

nP t d
n

ν τ τ
⎛ ⎞⎝ ⎠= −⎜ ⎟
⎝ ⎠

∫
∫ ( ) ( )( ) exp

!n
tP t t
n
ν ν= −
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Random Sequences

E l  li ti  i l d  th  t di  b• Early applications include the studies by:

Ladislaus Bortkiewicz (1868-1931)
horse kick death in the Prussian cavalry- horse kick death in the Prussian cavalry

- child suicide

William Sealy Gosset (“Student”) (1876-1937)William Sealy Gosset ( Student ) (1876-1937)
- small sample testing of beer productions (Guinness)

RD ClarkeRD Clarke
- study of distribution of V1/V2 hits under the London Raid
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Random Sequences

Th   l d i f th  d  i bl  • The mean value and variance of the random variable 
describing the number of events N in a given time 
interval (0,t[ are given as:

[ ] [ ]
t

E N t Var N t dν τ τ= = ∫( ) ( ) ( ) Inhomogeneous case ![ ] [ ]
0
∫

[ ] [ ]E N t V N t t( ) ( ) !

g

[ ] [ ]E N t Var N t tν= =( ) ( ) Homogeneous case !
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Random Sequences

Th  E ti l di t ib ti• The Exponential distribution

The probability of no events (N=0) in a given time 
interval (0 t[ is often of special interest in engineering interval (0,t[ is often of special interest in engineering 
problems

- no severe storms in 10 years- no severe storms in 10 years
- no failure of a structure in 100 years
- no earthquake next year
- …….
This probability is directly achieved as:

0

( )
t

dν τ τ
⎛ ⎞
⎜ ⎟

⎛ ⎞∫
( ) 0

0
0

( )
exp ( )

0!

t
d

P t d
ν τ τ

ν τ τ
⎜ ⎟

⎛ ⎞⎝ ⎠= −⎜ ⎟
⎝ ⎠

⎛ ⎞

∫
∫

( ) ( )0 expP t tν= −
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Random Sequences

Th  b bilit  di t ib ti  f ti  f th  ( iti ) ti• The probability distribution function of the (waiting) time
till the first event T1 is now easily derived recognizing 
that the probability of T1 >t is equal to P0(t) we get:

Homogeneous case !

1 1 0 1( ) 1 ( )TF t P t= −
1 1( ) 1 exp( )TF t tν= − −

1 1 0 1( ) ( )

1 exp( ( ) )

T

t

dν τ τ= − −∫

1 1( ) p( )T

Exponential cumulative distribution0
∫
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Random Sequences

The Exponential probability density and cumulative 
distribution functions
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Random Sequences

Th  ti l di t ib ti i  f tl  li d i  th  • The exponential distribution is frequently applied in the 
modeling of waiting times

time till failure- time till failure
- time till next earthquake
- time till traffic accident
-

1 1( ) exp( )Tf t tν ν= −

- ….

The expected value and variance of an exponentially 
distributed random variable T are:distributed random variable T1 are:

[ ] [ ]1 1 1E T Var T ν= = /
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Random Sequences

S ti  l  th  ti  T till th  ’th t i  f i t t i  • Sometimes also the time T till the n’th event is of interest in 
engineering modeling:

repair events- repair events
- flood events
- arrival of cars at a roadway crossing

If Ti, i=1,2,..n are independent exponentially distributed 
waiting times, then the sum T i.e.:

follows a Gamma distribution:

1 2 1... n nT T T T T−= + + + +

( -1)( ) exp( )( )
( 1)!

n

T
t tf t
n

ν ν ν−
=

−
This follows from repeated use 
of the result of the distribution 
of the sum of two random variables 
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Random Sequences

The Gamma probability density function

2 5 n=1( )Tf t
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Random Processes

• Continuous random processes

A continuous random process is a random process which 
h  li ti  ti l   ti  d f  hi h th  has realizations continuously over time and for which the 
realizations belong to a continuous sample space.
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Random Processes

C ti  d  • Continuous random processes

The mean value of the possible realizations of a random 
process is given as:process is given as:

[ ]( ) ( ) ( ; )X Xt E X t x f x t dxμ
∞

∞

= = ∫
−∞

Function of time !

The correlation between realizations at any two points in 
time is given as:

[ ]
∞ ∞

∫ ∫[ ]1 2 1 2 1 2 1 2 1 2 1 2( , ) ( ) ( ) ( , ; , )XX XXR t t E X t X t x x f x x t t dx dx
−∞−∞

= = ∫ ∫
Auto-correlation function – refers to a scalar valued random process
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Random Processes

• Continuous random processes

The auto-covariance function is defined as:

[ ]1 2 1 1 2 2( , ) ( ( ) ( ))( ( ) ( ))XX X XC t t E X t t X t tμ μ
∞ ∞

= − −

∫ ∫

for t =t =t the auto-covariance function becomes the 

1 1 2 2 1 2 1 2 1 2( ( )) ( ( )) ( , ; , )X X XXx t x t f x x t t dxdxμ μ
−∞−∞

= − −∫ ∫

for t1=t2=t the auto-covariance function becomes the 
covariance function:

)t()t,t(R)t,t(C)t( XXXXXX
22 μσ −== )(),(),()( XXXXXX μ

( )X tσ Standard deviation function

Swiss Federal Institute of Technology



Random Processes

• Continuous random processes

A vector valued random process is a random process 
ith t    twith two or more components:

with covariance functions:

T
n tXtXtXt ))(),..,(),(()( 21=X

with covariance functions:

1 2( , )
i jX XC t t =

⎡ ⎤

ji = auto-covariance functions

The correlation coefficient function is defined as:

1 1 2 2( ( ) ( ))( ( ) ( ))
i ji X j XE X t t X t tμ μ⎡ ⎤− −⎣ ⎦ ji ≠ cross-covariance functions

The correlation coefficient function is defined as:

1 2
1 2

1 2

( , )
( ), ( )

( ) ( )
i jX X

i j
X X

C t t
X t X t

t t
ρ

σ σ
⎡ ⎤ =⎣ ⎦ ⋅

Swiss Federal Institute of Technology

1 2( ) ( )
i jX Xt tσ σ



Random Processes

• Normal or Gauss process

A random process X(t) is said to be Normal if: 

for any set; X(t1), X(t2),…,X(tj) 

the joint probability distribution of X(t1), X(t2),…,X(tj)  

is the Normal distributionis the Normal distribution.

Swiss Federal Institute of Technology



Random Processes

• Stationarity and ergodicity

A random process is said to be strictly stationary if all its 
t   i i t t   hift i  timoments are invariant to a shift in time.

A random process is said to be weakly stationary if the 
first two moments i e  the mean value function and the first two moments i.e. the mean value function and the 
auto-correlation function are invariant to a shift in time  

( )X t cstμ =
Weakly stationary

1 2 2 1( , ) ( )XXR t t f t t= −
Weakly stationary
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Random Processes

• Stationarity and ergodicity

- A random process is said to be strictly ergodic if it is 
t i tl  t ti  d i  dditi  ll it  t   strictly stationary and in addition all its moments may 

be determined on the basis of one realization of the process.
- A random process is said to be weakly ergodic if it is weakly 
stationary and in addition its first two moments may be stationary and in addition its first two moments may be 
determined on the basis of one realization of the process.  

• The assumptions in regard to stationarity and ergodicity are 
often very useful in engineering applications. 

If  d   i  di    t l t  - If a random process is ergodic we can extrapolate 
probabilistic models of extreme events within short reference 
periods to any longer reference period.
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Random Processes

• Markov Process

Discrete case

A discrete Markov process (Markov chain) is sequence of 
random variables X1,X2,…Xn satisfying:

1 1 1 1Pr( ,..., ) Pr( )n n n n n nX x X x X x X x X x+ += = = = = =

The possible values of X1 form a countable set S – state space

Continuous Markov process have a continuous index
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Random Processes

• Markov Process

Time homogeneous Markov chains:

1 1 1Pr( ) Pr( ), for all n n n nX x X y X x X y n+ + −= = = = =

A Markov chain of m’th order:

1 1 1 2 2Pr( , ,...)n n n n nX x X x X x+ − − − −= = = =

1 1 2 2Pr( , ,.., )                          n n n n n n n m n mX x X x X x X x− − − − − −= = = =
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Random Processes

• Markov Process

Some properties of Markov chains

The probability to go from state i to j in n steps is:

( ) P ( )n X j X i

satisfying:

( )
0Pr( )n

ij np X j X i= = =

satisfying:

( ) ( ) ( )n k n k
ij i jp p p −=∑ Chapman-Kolmogorov equationij ir rj

r S
p p p

∈
∑ Chapman Kolmogorov equation
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Random Processes

• Markov Process

Some properties of Markov chains

Reducibility:

P ( ) 0X j X i ibl

State i  j communicate if it is possible to come from state i to j

1 0Pr( ) 0nX j X i+ = = > accessible

State i, j communicate if it is possible to come from state i to j
and from j to i .

A set of states C is a communicating class if every pair of A set of states C is a communicating class if every pair of 
states in C communicate.

A communicating class is closed if the probability of leaving 

Swiss Federal Institute of Technology

A communicating class is closed if the probability of leaving 
the class is zero



Random Processes

• Markov Process

Some properties of Markov chains

Recurrence:

{ }min :T X i X i

A state is transient if there exists a finite T such that:

{ }0min :i nT n X i X i= = =

A state is transient if there exists a finite Ti such that:

Pr( ) 1iT < ∞ <
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Random Processes

• Markov Process

If the state space is finite the probability distribution can be 
t d b   t iti  t i  P ith l trepresented by a transition matrix P with elements:

1Pr( )ij n np X j X i+= = =

For a homogeneous Markov process P is independent of n and 
can be calculated from Pncan be calculated from Pn.

Pr( ) 1iT < ∞ <
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