Basic Statistics and Probability Theory

in
Civil, Surveying and Environmental
Engineering

Prof. Dr. Michael Havbro Faber
Swiss Federal Institute of Technology
ETH Zürich, Switzerland

Interpretation of Probability

States of nature of which we have interest such as:

- a bridge failing due to excessive traffic loads
- a water reservoir being over-filled
- an electricity distribution system "falling out"
- a project being delayed
are in the following denoted "events"
we are generally interested in quantifying the probability that such events take place within a given "time frame"

Interpretation of Probability

- There are in principle three different interpretations of probability
- Frequentistic

$$
P(A)=\lim \frac{N_{A}}{n_{\text {exp }}} \quad \text { for } \quad n_{\text {exp }} \rightarrow \infty
$$

- Classical

$$
P(A)=\frac{n_{A}}{n_{t o t}}
$$

- Bayesian
$P(A)=$ degree of belief that A will occur

Interpretation of Probability

Consider the probability of getting a "head" when flipping a coin

- Frequentistic

$$
P(A)=\frac{510}{1000}=0.51
$$

- Classical

$$
P(A)=\frac{1}{2}
$$

- Bayesian

$$
P(A)=0.5
$$

Sample Space and Events

The set of all possible outcomes of the state of nature e.g. concrete compressive strength test results is called the sample space Ω. For concrete compressive strength test results the sample space can be written as $\Omega=] 0 ; \infty[$

A sample space can be continuous or discrete.

Typically we illustrate the sample space and events using Venn diagrams

ㅋTㅍ․ Swiss Federal Institute of Technology

Sample Space and Events

An event is a sub-set of the sample space

- if the sub-set is empty the event is impossible
- if the sub-set contains all of the sample space the event is certain
Consider the two events E_{1} and E_{2} :
The sub-set of sample points belonging to the event E_{1} and/or the event E_{2} is called the union of E_{1} and E_{2} and is written as : $\quad E_{1} \cup E_{2}$

ㅍㅍ Swiss Federal Institute of Technology

Sample Space and Events

An event is a sub-set of the sample space

- if the sub-set is empty the event is impossible
- if the sub-set contains all of the sample space the event is certain
Consider the two events E_{1} and E_{2} :
The sub-set of sample points belonging to the event E_{1} and the event E_{2} is called the intersection of E_{1} and E_{2} and is written as: $E_{1} \cap E_{2}$

ㅍㅍ Swiss Federal Institute of Technology

Sample Space and Events

The event containing all sample points in Ω not included in the event E is called the complementary event to E and written as : \bar{E}

It follows that $E \cup \bar{E}=\Omega$
and $\quad E \cap \bar{E}=\varnothing$

ㅋㅍㅍ․ Swiss Federal Institute of Technology

Sample Space and Events

It can be show that the intersection and union operations obey the following commutative, associative and distributive laws:

$$
\left.\begin{array}{l}
E_{1} \cap E_{2}=E_{2} \cap E_{1} \\
E_{1} \cap\left(E_{2} \cap E_{3}\right)=\left(E_{1} \cap E_{2}\right) \cap E_{3} \\
E_{1} \cup\left(E_{2} \cup E_{3}\right)=\left(E_{l} \cup E_{2}\right) \cup E_{3} \\
E_{1} \cap\left(E_{2} \cup E_{3}\right)=\left(E_{l} \cap E_{2}\right) \cup\left(E_{1} \cap E_{3}\right) \\
E_{1} \cup\left(E_{2} \cap E_{3}\right)=\left(E_{l} \cup E_{2}\right) \cap\left(E_{l} \cup E_{3}\right)
\end{array}\right\} \text { Associative law }
$$

ㄱㅍㅍ Swiss Federal Institute of Technology

Sample Space and Events

From the commutative, associative and distributive laws the so-called De Morgan's laws may be derived:

$$
\begin{aligned}
& E_{l}^{\cap} \cap E_{2}=E_{2} \cap E_{1} \\
& E_{1} \cap\left(E_{2} \cap E_{3}\right)=\left(E_{1} \cap E_{2}\right) \cap E_{3} \\
& E_{1} \cup\left(E_{2} \cup E_{3}\right)=\left(E_{1} \cup E_{2}\right) \cup E_{3} \\
& E_{1} \cap\left(E_{2} \cup E_{3}\right)=\left(E_{1} \cap E_{2}\right) \cup\left(E_{1} \cap E_{3}\right) \\
& E_{1} \cup\left(E_{2} \cap E_{3}\right)=\left(E_{l} \cup E_{2}\right) \cap\left(E_{l} \cup E_{3}\right)
\end{aligned}
$$

패 Swiss Federal Institute of Technology

The Three Axioms of Probability Theory

The probability theory is built up on - only - three axioms due to Kolmogorov:

Axiom 1:

$$
0 \leq P(E) \leq 1
$$

Axiom 2: $\quad P(\Omega)=1$

Axiom 3: $\quad P\left(\bigcup_{\mathrm{i}=1}^{\mathrm{n}} E_{i}\right)=\sum_{\mathrm{i}=1}^{\mathrm{n}} P\left(E_{i}\right)$

When E_{1}, E_{2}, \ldots are mutually exclusive

Conditional Probability and Bayes's Rule

Conditional probabilities are of special interest as they provide the basis for utilizing new information in decision making.

The conditional probability of an event E_{1} given that event E_{2} has occured is written as:

$$
P\left(E_{1} \mid E_{2}\right)=\frac{P\left(E_{1} \cap E_{2}\right)}{P\left(E_{2}\right)} \quad \text { Not defined if } P\left(E_{2}\right)=0
$$

The events E_{1} and E_{2} are said to be statistically independent if:

$$
P\left(E_{1} \mid E_{2}\right)=P\left(E_{1}\right)
$$

ㄱㅍㅍ Swiss Federal Institute of Technology

Conditional Probability and Bayes's Rule

From $P\left(E_{1} \mid E_{2}\right)=\frac{P\left(E_{1} \cap E_{2}\right)}{P\left(E_{2}\right)}$
it follows that $P\left(E_{1} \cap E_{2}\right)=P\left(E_{2}\right) P\left(E_{1} \mid E_{2}\right)$
and when E_{1} and E_{2} are statistically independent there is

$$
P\left(E_{1} \cap E_{2}\right)=P\left(E_{2}\right) P\left(E_{1}\right)
$$

Conditional Probability and Bayes's Rule

Consider the sample space Ω divided up into n mutually exclusive events $E_{1}, E_{2}, \ldots, E_{n}$

$$
\begin{aligned}
& P(A)=P\left(A \cap E_{1}\right)+P\left(A \cap E_{2}\right)+\ldots+P\left(A \cap E_{n}\right) \\
& P\left(A \mid E_{1}\right) P\left(E_{1}\right)+P\left(A \mid E_{2}\right) P\left(E_{2}\right)+\ldots+P\left(A \mid E_{n}\right) P\left(E_{n}\right)= \\
& \sum_{\mathrm{i}=1}^{\mathrm{n}} P\left(A \mid E_{i}\right) P\left(E_{i}\right)
\end{aligned}
$$

ㄱㅍㅍ Swiss Federal Institute of Technology

Conditional Probability and Bayes's Rule

as there is $P\left(A \cap E_{i}\right)=P\left(A \mid E_{i}\right) P\left(E_{i}\right)=P\left(E_{i} \mid A\right) P(A)$

Bayes Rule

Reverend Thomas
Bayes
(1702-1764)

Uncertainties in Engineering Problems

Different types of uncertainties influence decision making

- Inherent natural variability - aleatory uncertainty
- result of throwing dices
- variations in material properties
- variations of wind loads
- variations in rain fall
- Model uncertainty - epistemic uncertainty
- lack of knowledge (future developments)
- inadequate/imprecise models (simplistic physical modelling)
- Statistical uncertainties - epistemic uncertainty
- sparse information/small number of data

Uncertainties in Engineering Problems

- Consider as an example a dike structure
- the design (height) of the dike will be determining the frequency of floods
- if exact models are available for the prediction of future water levels and our knowledge about the input parameters is perfect then we can calculate the frequency of floods (per year) - a deterministic world!
- even if the world would be deterministic - we would not have perfect information about it - so we might as well consider the world as random

Uncertainties in Engineering Problems

In principle the so-called
inherent physical uncertainty (aleatory - Type I)
is the uncertainty caused by the fact that the world is random, however, another pragmatic viewpoint is to define this type of uncertainty as
any uncertainty which cannot be reduced by means of collection of additional information
the uncertainty which can be reduced is then the model and statistical uncertainties (epistemic - Type II)

Uncertainties in Engineering Problems

Uncertainties in Engineering Problems

The relative contribution of aleatory and epistemic uncertainty to the prediction of future water levels is thus influenced directly by the applied models
refining a model might reduce the epistemic uncertainty - but in general also changes the contribution of aleatory uncertainty
the uncertainty structure of a problem can thus be said to be scale dependent!

Uncertainties in Engineering Problems

The uncertainty structure changes also as function of time - is thus time dependent!

Random Variables

- Probability distribution and density functions

A random variable is denoted with capital letters: X
A realization of a random variable is denoted with small letters: x

We distinguish between

- continuous random variables : can take any value in a given range
- discrete random variables :
can take only discrete values

Random Variables

- Probability distribution and density functions

The probability that the outcome of a discrete random variable X is smaller than x is denoted the cumulative distribution function

$$
P_{X}(x)=\sum_{x_{i}<x} p_{X}\left(x_{i}\right)
$$

The probability density function for a discrete random variable is defined by

$$
p_{X}\left(x_{i}\right)=P\left(X=x_{i}\right)
$$

ㄱㅍㅍ Swiss Federal Institute of Technology

Random Variables

- Probability distribution and density functions The probability that the outcome of a continuous random variable X is smaller than x is denoted the cumulative distribution function
$F_{X}(x)=P(X<x)$

The probability density function for a continuous random variable is defined by
$f_{X}(x)=\frac{\partial F_{X}(x)}{\partial x}$

Integral of this must equal 1
패 Swiss Federal Institute of Technology

Random Variables

- Moments of random variables and the expectation operator

Cumulative distributions and density functions can be described in terms of their paramaters \mathbf{p} or their moments

Often we write

The parameters can be related to the moments and visa versa

Random Variables

- Moments of random variables and the expectation operator

The i^{\prime} th moment m_{i} for a continuous random variable X is defined through

$$
m_{i}=\int_{-\infty}^{\infty} x^{i} \cdot f_{X}(x) d x
$$

The expected value $E[X]$ of a continuous random variable X is defined accordingly as the first moment

$$
\mu_{X}=E[X]=\int_{-\infty}^{\infty} x \cdot f_{X}(x) d x
$$

캐표 Swiss Federal Institute of Technology

Random Variables

- Moments of random variables and the expectation operator

The i^{\prime} th moment m_{i} for a discrete random variable X is defined through

$$
m_{i}=\sum_{j=1}^{n} x_{j}^{i} \cdot p_{X}\left(x_{j}\right)
$$

The expected value $E[X]$ of a discrete random variable X is defined accordingly as the first moment

$$
\mu_{X}=E[X]=\sum_{j=1}^{n} x_{j} \cdot p_{X}\left(x_{j}\right)
$$

Random Variables

- Moments of random variables and the expectation operator

The standard deviation σ_{X} of a continuous random variable is defined as the second central moment i.e. for a continuous random variable X we have

$$
\sigma_{X}^{2}=\underset{\text { Variance }}{\operatorname{Var}}[\mathrm{X}]=E\left[\left(X-\mu_{X}\right)^{2}\right]=\int_{-\infty}^{\infty}\left(x-\mu_{X}\right)^{2} \cdot f_{X}(x) d x
$$

for a discrete random variable we have correspondingly

$$
\sigma_{X}^{2}=\operatorname{Var}[X]=\sum_{j=1}^{n}\left(x_{j}-\mu_{X}\right)^{2} \cdot p_{X}\left(x_{j}\right)
$$

패 Swiss Federal Institute of Technology

Random Variables

- Moments of random variables and the expectation operator

The ratio between the standard deviation and the expected value of a random variable is called the Coefficient of Variation CoV and is defined as

a useful characteristic to indicate the variability of the random variable around its expected value

Random Variables

- Random vectors and joint moments

Now we consider not just one continuous random variable but a vector of continuous random variables

$$
\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T}
$$

The joint cumulative distribution function is given by

$$
F_{\mathbf{x}}(\mathbf{x})=P\left(X_{1} \leq x_{1} \cap X_{2} \leq x_{2} \cap \ldots \cap X_{n} \leq x_{n}\right)
$$

and the joint probability density function is given by

$$
f_{\mathbf{X}}(\mathbf{x})=\frac{\partial^{n}}{\partial z_{1} \partial z_{2} \ldots \partial z_{n}} F_{\mathbf{x}}(\mathbf{x})
$$

ㄱㅍㅍㅛ Swiss Federal Institute of Technology

Random Variables

- Random vectors and joint moments

The marginal probability density function of a random variable X_{i} is defined by

$$
f_{X_{i}}(x)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(n-1 \text { fold }) f_{\mathbf{x}}(\mathbf{x}) d x_{1} . . d x_{i-1} d x_{i+1} . . d x_{n}
$$

Random Variables

- Random vectors and joint moments

The covariance between the i^{\prime} th and the j^{\prime} th component of the random vector of continuous random variables is defined as the joint central moment i.e. by
$C_{X_{i} X_{j}}=E\left[\left(X_{i}-\mu_{X_{i}}\right)\left(X_{j}-\mu_{X_{j}}\right)\right]=\int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x_{i}-\mu_{X_{i}}\right)\left(x_{j}-\mu_{X_{j}}\right) f_{X_{i} X_{j}}\left(x_{i}, x_{j}\right) d x_{i} d x_{j}$
$C_{X_{i} X_{i}}=\operatorname{Var}\left[X_{i}\right]$
From where we see that for $i=j$ we get the variance for X_{i}
Correlation coefficient $\quad \rho_{X_{i} X_{j}}=\frac{C_{X_{i} X_{j}}}{\sigma_{X_{\mathrm{i}}} \sigma_{X_{j}}} \quad \rho_{X_{i} X_{i}}=1$
ㅍㅍ Swiss Federal Institute of Technology

Random Variables

- Random vectors and joint moments

The expected value and the variance of a linear function

$$
Y=a_{0}+\sum_{i=1}^{n} a_{i} X_{i}
$$

are given by
$E[Y]=a_{0}+\sum_{i=1}^{n} a_{i} E\left[X_{i}\right]$
$\operatorname{Var}[Y]=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left[X_{i}\right]+\sum_{\substack{i, j=1 \\ i \neq j}}^{n} a_{i} a_{j} C_{X_{i} X_{j}}$

Random Variables

- Conditional distributions and conditional moments

The conditional probability density function for the random variable X_{1} given the outcome of the random variable X_{2} is given by

$$
f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=\frac{f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{2}}\left(x_{2}\right)}
$$

where if X_{1} and X_{2} are independent

$$
f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=f_{X_{1}}\left(x_{1}\right)
$$

The conditional cumulative distribution function is obtained by integration as

$$
F_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=\frac{\int_{-\infty}^{x_{1}} f_{X_{1}, X_{2}}\left(z, x_{2}\right) d z}{f_{X_{2}}\left(x_{2}\right)}
$$

ㅍㅍ Swiss Federal Institute of Technology

Random Variables

- Conditional distributions and conditional moments

The un-conditional cumulative distribution function for the random variable X_{1} can be derived from the conditional comulative distribution function by use of the total probability theorem

$$
F_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} F_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right) f_{X_{2}}\left(x_{2}\right) d x_{2}
$$

The conditional expected value is defined by

$$
\mu_{X_{1} \mid X_{2}}=E\left[X_{1} \mid X_{2}=x_{2}\right]=\int_{-\infty}^{\infty} x_{1} f_{X_{1} \mid X_{2}}\left(x \mid x_{2}\right) d x_{1}
$$

Random Variables

- The Normal distribution:

In the case where the mean value is equal to zero and the standard deviation is equal to 1 the random variable is said to be standardized.
$Y=\frac{X-\mu_{X}}{\sigma_{X}} \quad$ Standardized random variable

ㄱㅍㅍ Swiss Federal Institute of Technology

Random Variables

- The Normal distribution:

In the case where the mean value is equal to zero and the standard deviation is equal to 1 the random variable is said to be standardized. $Y=\frac{X-\mu_{X}}{\sigma_{X}} \quad$ Standardized random variable

$$
f_{Y}(y)=\varphi(y)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} y^{2}\right)
$$

Standard normal

$F_{Y}(y)=\Phi(y)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} \exp \left(-\frac{1}{2} x^{2}\right) d x \quad$

ㅋTㅍN Swiss Federal Institute of Technology

Random Variables

Where the normal distribution follows from the sum of random variables - Central Limit Theorem
the log-normal distribution follows from the product of random variables
$Y=X_{1} \cdot X_{2} \cdots X_{n}$
\Downarrow
$\ln (Y)=\ln \left(\prod_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \ln \left(X_{i}\right)$
\uparrow
Normal distributed $\quad \Rightarrow Y$ is Lognormal distributed

Random Variables

When the logarithm of a random variable X i.e.

$$
Y=\ln (X), \quad Y: N\left(\mu_{y}, \sigma_{y}\right)
$$

is normal distributed the random variable X is said to be lognormal distributed

$$
\begin{array}{cl}
\mathrm{X}: \mathrm{LN}(\lambda, \zeta) & \\
f_{X}(x)=\frac{1}{x \zeta \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{\ln (x)-\lambda}{\zeta}\right)^{2}\right) & \mu_{X}=\exp \left(\lambda+\frac{\zeta^{2}}{2}\right) \\
F_{X}(x)=\Phi\left(\frac{\ln (x)-\lambda}{\zeta}\right) & \sigma_{X}=\exp \left(\lambda+\frac{\zeta^{2}}{2}\right) \sqrt{\exp \left(\zeta^{2}\right)-1}
\end{array}
$$

Random Variables

There exist a large number of different cumulative probability functions:

Uniform
Normal
Log-normal
Exponential
Beta
Gamma

Distribution type	Parameters	Moments
Uniform, $a \leq x \leq b$ $\begin{aligned} & f_{X}(x)=\frac{1}{b-a} \\ & F_{X}(x)=\frac{x-a}{b-a} \end{aligned}$	$\begin{aligned} & a \\ & b \end{aligned}$	$\begin{aligned} & \mu=\frac{a+b}{2} \\ & \sigma=\frac{b-a}{\sqrt{12}} \end{aligned}$
Normal $\begin{aligned} & f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right) \\ & F_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left(-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^{2}\right) d t \end{aligned}$	$\sigma>0$	$\begin{gathered} \mu \\ \sigma \end{gathered}$
Shifted Lognormal, $x>\varepsilon$ $\begin{aligned} & f_{X}(x)=\frac{1}{(x-\varepsilon) \zeta \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{\ln (x-\varepsilon)-\lambda}{\zeta}\right)^{2}\right) \\ & F_{X}(x)=\Phi\left(\frac{\ln (x-\varepsilon)-\lambda}{\zeta}\right) \end{aligned}$	$\begin{aligned} & \lambda \\ & \zeta>0 \\ & \varepsilon \end{aligned}$	$\begin{aligned} & \mu=\varepsilon+\exp \left(\lambda+\frac{\zeta^{2}}{2}\right) \\ & \sigma=\exp \left(\lambda+\frac{\zeta^{2}}{2}\right) \sqrt{\exp \left(\zeta^{2}\right)-1} \end{aligned}$
Shifted Exponential, $x \geq \varepsilon$ $\begin{aligned} & f_{X}(x)=\lambda \exp (-\lambda(x-\varepsilon)) \\ & F_{X}(x)=1-\exp (-\lambda(x-\varepsilon)) \end{aligned}$	$\begin{aligned} & \varepsilon \\ & \lambda>0 \end{aligned}$	$\begin{aligned} & \mu=\varepsilon+\frac{1}{\lambda} \\ & \sigma=\frac{1}{\lambda} \end{aligned}$
Gamma, $x \geq 0$ $\begin{aligned} & f_{X}(x)=\frac{b^{p}}{\Gamma(p)} \exp (-b x) x^{p-1} \\ & F_{X}(x)=\frac{\Gamma(b x, p)}{\Gamma(p)} \end{aligned}$	$\begin{aligned} & p>0 \\ & b>0 \end{aligned}$	$\begin{aligned} \mu & =\frac{p}{b} \\ \sigma & =\frac{\sqrt{p}}{b} \end{aligned}$

=Пム Swiss Federal Institute of Technology

Stochastic Processes and Extremes

- Random quantities may be "time variant" in the sense that they take new values at different times or at new trials.
- If the new realizations occur at discrete times and have discrete values the random quantity is called a random sequence
failure events, traffic congestions,...
- If the new realizations occur continuously in time and take continues values the random quantity is called a random process or stochastic process
wind velocity, wave heights,...

Stochastic Processes and Extremes

- Random sequences
- A sequence of experiments with only two possible and mutually exclusive outcomes is called a Bernoulli trial
- Typically the outcomes of Bernoulli trials are denoted successes or failures

If the probability of success in one trial is constant and equal to p the probability density of Y successes in n trials, i.e. $p_{Y}(y)$ is given by:
$p_{Y}(y)=\binom{n}{y} p^{y}(1-p)^{n-y}, \quad y=0,1,2 \ldots n \quad\binom{n}{y}=\frac{n!}{y!(n-y)!}$
Binomial probability
${ }_{\text {Binomial operator }}^{\uparrow}$ density function
ㅍI Swiss Federal Institute of Technology

Stochastic Processes and Extremes

- Random sequences
- A sequence of experiments with only two possible and mutually exclusive outcomes is called a Bernoulli trial

The Binomial probability distribution function then follows as:

$$
P_{Y}(y)=\sum_{i=0}^{y}\binom{y}{i} p^{i}(1-p)^{n-i}, \quad y=0,1,2, \ldots n
$$

Stochastic Processes and Extremes

- Random sequences
- A sequence of experiments with only two possible and mutually exclusive outcomes is called a Bernoulli trial

Illustration:

Binomial probability density function for $n=5$ and $p=0.15$ and $p=0.5$

패 Swiss Federal Institute of Technology

Stochastic Processes and Extremes

- Random sequences

The expected value and the variance of a binomially distributed random variable Y is given by:

$$
E[Y]=n p
$$

$\operatorname{Var}[Y]=n p(1-p)$

Random Sequences

- The Poisson counting process was originally invented by Poisson

Poisson, Siméon-Denis (1781-1840)
Student of Laplace
Former law clerk
"life is only good for two things: to do mathematics and to teach it" (Boyer 1968, p. 569)

Poisson was originally interested in applying probability theory for the improvement of procedures of law

Random Sequences

- The Poisson counting process is one of the most commonly applied families of probability distributions applied in reliability theory

The Poisson process provides a model for representing rare events - counting the number of events over time

[^0]
Random Sequences

- The Poisson counting process is one of the most commonly applied families of probability distributions applied in reliability theory

The process $N(t)$ denoting the number of events in a (time) interval ($t, t+\Delta t$ [is called a Poisson process if the following conditions are fulfilled:

1) the probability of one event in the interval ($t, t+\Delta t[$ is asymptotically proportional to Δt.
2) the probability of more than one event in the interval ($t, t+\Delta t$ [is a function of higher order of Δt for $\Delta t \rightarrow 0$.
3) events in disjoint intervals are mutually independent.

Random Sequences

- The Poisson process can be described completely by its intensity $v(t)$
$v(t)=\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t} P($ one event in $[t, t+\Delta t[)$
if $v(t)=$ constant, the Poisson process is said to be homogeneous, otherwise it is inhomogeneous.

The probability of \boldsymbol{n} events in the time interval ($0, \boldsymbol{t}[$ is:

$$
P_{n}(t)=\frac{\left(\int_{0}^{t} v(\tau) d \tau\right)^{n}}{n!} \exp \left(-\int_{0}^{t} v(\tau) d \tau\right)
$$

$$
P_{n}(t)=\frac{(v t)^{n}}{n!} \exp (-v t)
$$

Homogeneous case !

Random Sequences

- Early applications include the studies by:

Ladislaus Bortkiewicz (1868-1931)

- horse kick death in the Prussian cavalry
- child suicide

William Sealy Gosset ("Student") (1876-1937)

- small sample testing of beer productions (Guinness)

RD Clarke

- study of distribution of V1/V2 hits under the London Raid

Random Sequences

- The mean value and variance of the random variable describing the number of events \boldsymbol{N} in a given time interval ($0, t$ [are given as:

$$
\begin{array}{ll}
E[N(t)]=\operatorname{Var}[N(t)]=\int_{0}^{t} v(\tau) d \tau & \text { Inhomogeneous case ! } \\
E[N(t)]=\operatorname{Var}[N(t)]=v t & \text { Homogeneous case ! }
\end{array}
$$

Random Sequences

- The Exponential distribution

The probability of no events ($N=0$) in a given time interval ($0, \mathrm{t}[$ is often of special interest in engineering problems

- no severe storms in 10 years
- no failure of a structure in $\mathbf{1 0 0}$ years
- no earthquake next year
-

This probability is directly achieved as:

$$
\begin{aligned}
P_{0}(t) & =\frac{\left(\int_{0}^{t} v(\tau) d \tau\right)^{0}}{0!} \exp \left(-\int_{0}^{t} v(\tau) d \tau\right) \\
& =\exp \left(-\int_{0}^{t} v(\tau) d \tau\right)
\end{aligned}
$$

$$
P_{0}(t)=\exp (-v t)
$$

Homogeneous case !
=【П Swiss Federal Institute of Technology

Random Sequences

- The probability distribution function of the (waiting) time till the first event T_{1} is now easily derived recognizing that the probability of $T_{1}>t$ is equal to $P_{0}(t)$ we get:

Homogeneous case !

$$
\begin{gathered}
F_{T_{1}}\left(t_{1}\right)=1-\exp (-v t) \\
\uparrow
\end{gathered}
$$

Exponential cumulative distribution
Exponential probability density

패 Swiss Federal Institute of Technology

Random Sequences

The Exponential probability density and cumulative distribution functions

$$
v=2
$$

$$
\begin{aligned}
& f_{T}(t) \\
& F_{T}(t)
\end{aligned}
$$

ㅍI Swiss Federal Institute of Technology

Random Sequences

- The exponential distribution is frequently applied in the modeling of waiting times
- time till failure
- time till next earthquake

$$
f_{T_{1}}\left(t_{1}\right)=v \exp (-v t)
$$

- time till traffic accident
-

The expected value and variance of an exponentially distributed random variable T_{1} are:

$$
E\left[T_{1}\right]=\sqrt{\operatorname{Var}\left[T_{1}\right]}=1 / v
$$

Random Sequences

- Sometimes also the time T till the n^{\prime} th event is of interest in engineering modeling:
- repair events
- flood events
- arrival of cars at a roadway crossing

If $T_{i r} \mathbf{i}=1,2, . . \mathrm{n}$ are independent exponentially distributed waiting times, then the sum T i.e.:

$$
T=T_{1}+T_{2}+\ldots+T_{n-1}+T_{n}
$$

follows a Gamma distribution:

$$
f_{T}(t)=\frac{v(v t)^{(n-1)} \exp (-v t)}{(n-1)!}
$$

This follows from repeated use of the result of the distribution of the sum of two random variables

Random Sequences

The Gamma probability density function

ㅍI Swiss Federal Institute of Technology

Random Processes

- Continuous random processes

A continuous random process is a random process which has realizations continuously over time and for which the realizations belong to a continuous sample space.

Variations of; water levels wind speed rain fall

Realization of continuous scalar valued random process
패 Swiss Federal Institute of Technology

Random Processes

- Continuous random processes

The mean value of the possible realizations of a random process is given as:

$$
\mu_{X}(t)=E[X(t)]=\int_{-\infty}^{\infty} x f_{X}(x ; t) d x
$$

Function of time !
The correlation between realizations at any two points in time is given as:

$$
R_{X X}\left(t_{1}, t_{2}\right)=E\left[X\left(t_{1}\right) X\left(t_{2}\right)\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1} x_{2} f_{X X}\left(x_{1}, x_{2} ; t_{1}, t_{2}\right) d x_{1} d x_{2}
$$

Auto-correlation function - refers to a scalar valued random process

Random Processes

- Continuous random processes

The auto-covariance function is defined as:

$$
\begin{aligned}
& C_{X X}\left(t_{1}, t_{2}\right)=E\left[\left(X\left(t_{1}\right)-\mu_{X}\left(t_{1}\right)\right)\left(X\left(t_{2}\right)-\mu_{X}\left(t_{2}\right)\right)\right] \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(x_{1}-\mu_{X}\left(t_{1}\right)\right)\left(x_{2}-\mu_{X}\left(t_{2}\right)\right) f_{X X}\left(x_{1}, x_{2} ; t_{1}, t_{2}\right) d x_{1} d x_{2}
\end{aligned}
$$

for $t_{1}=t_{2}=t$ the auto-covariance function becomes the covariance function:

$$
\begin{aligned}
& \sigma_{X}^{2}(t)=C_{X X}(t, t)=R_{X X}(t, t)-\mu_{X}^{2}(t) \\
& \sigma_{X}(t) \quad \text { Standard deviation function }
\end{aligned}
$$

Random Processes

- Continuous random processes

A vector valued random process is a random process with two or more components:

$$
\mathbf{X}(t)=\left(X_{1}(t), X_{2}(t), . ., X_{n}(t)\right)^{T}
$$

with covariance functions:
$C_{X_{i} X_{j}}\left(t_{1}, t_{2}\right)=\quad i=j \quad$ auto-covariance functions
$E\left[\left(X_{i}\left(t_{1}\right)-\mu_{X_{i}}\left(t_{1}\right)\right)\left(X_{j}\left(t_{2}\right)-\mu_{X_{j}}\left(t_{2}\right)\right)\right] \quad i \neq j \quad$ cross-covariance functions
The correlation coefficient function is defined as:
$\rho\left[X_{i}\left(t_{1}\right), X_{j}\left(t_{2}\right)\right]=\frac{C_{X_{i} X_{j}}\left(t_{1}, t_{2}\right)}{\sigma_{X_{i}}\left(t_{1}\right) \cdot \sigma_{X_{j}}\left(t_{2}\right)}$

Random Processes

- Normal or Gauss process

A random process $X(t)$ is said to be Normal if:
for any set; $\quad X\left(t_{1}\right), X\left(t_{2}\right), \ldots, X\left(t_{j}\right)$
the joint probability distribution of $X\left(t_{1}\right), X\left(t_{2}\right), \ldots, X\left(t_{j}\right)$
is the Normal distribution.

Random Processes

- Stationarity and ergodicity

A random process is said to be strictly stationary if all its moments are invariant to a shift in time.

A random process is said to be weakly stationary if the first two moments i.e. the mean value function and the auto-correlation function are invariant to a shift in time

$$
\left.\begin{array}{l}
\mu_{X}(t)=c s t \\
R_{X X}\left(t_{1}, t_{2}\right)=f\left(t_{2}-t_{1}\right)
\end{array}\right\} \quad \text { Weakly stationary }
$$

Random Processes

- Stationarity and ergodicity
- A random process is said to be strictly ergodic if it is strictly stationary and in addition all its moments may be determined on the basis of one realization of the process.
- A random process is said to be weakly ergodic if it is weakly stationary and in addition its first two moments may be determined on the basis of one realization of the process.
- The assumptions in regard to stationarity and ergodicity are often very useful in engineering applications.
- If a random process is ergodic we can extrapolate probabilistic models of extreme events within short reference periods to any longer reference period.

Random Processes

- Markov Process

Discrete case
A discrete Markov process (Markov chain) is sequence of random variables $X_{1}, X_{2}, \ldots, X_{n}$ satisfying:

$$
\operatorname{Pr}\left(X_{n+1}=x \mid X_{n}=x_{n}, \ldots, X_{1}=x_{1}\right)=\operatorname{Pr}\left(X_{n+1}=x \mid X_{n}=x_{n}\right)
$$

The possible values of X_{1} form a countable set S - state space

Continuous Markov process have a continuous index

Random Processes

- Markov Process

Time homogeneous Markov chains:

$$
\operatorname{Pr}\left(X_{n+1}=x \mid X_{n}=y\right)=\operatorname{Pr}\left(X_{n+1}=x \mid X_{n-1}=y\right), \text { for all } n
$$

A Markov chain of \boldsymbol{m}^{\prime} 'th order:

$$
\begin{aligned}
& \operatorname{Pr}\left(X_{n+1}=x \mid X_{n-1}=x_{n-1}, X_{n-2}=x_{n-2}, \ldots\right)= \\
& \operatorname{Pr}\left(X_{n}=x_{n} \| X_{n-1}=x_{n-1}, X_{n-2}=x_{n-2}, . ., X_{n-m}=x_{n-m}\right)
\end{aligned}
$$

Random Processes

- Markov Process

Some properties of Markov chains
The probability to go from state \boldsymbol{i} to \boldsymbol{j} in \boldsymbol{n} steps is:
$p_{i j}^{(n)}=\operatorname{Pr}\left(X_{n}=j \mid X_{0}=i\right)$
satisfying:
$p_{i j}^{(n)}=\sum_{r \in S} p_{i r}^{(k)} p_{r j}^{(n-k)} \quad$ Chapman-Kolmogorov equation

Random Processes

- Markov Process

Some properties of Markov chains
Reducibility:

$$
\operatorname{Pr}\left(X_{n+1}=j \mid X_{0}=i\right)>0 \quad \text { accessible }
$$

State $\boldsymbol{i}, \boldsymbol{j}$ communicate $i f$ it is possible to come from state \boldsymbol{i} to \boldsymbol{j} and from \boldsymbol{j} to \boldsymbol{i}.

A set of states C is a communicating class if every pair of states in C communicate.

A communicating class is closed if the probability of leaving the class is zero

[^1]
Random Processes

- Markov Process

Some properties of Markov chains
Recurrence:
$T_{i}=\min \left\{n: X_{n}=i \mid X_{0}=i\right\}$

A state is transient if there exists a finite $\boldsymbol{T}_{\boldsymbol{i}}$ such that:

$$
\operatorname{Pr}\left(T_{i}<\infty\right)<1
$$

Random Processes

- Markov Process

If the state space is finite the probability distribution can be represented by a transition matrix P with elements:

$$
p_{i j}=\operatorname{Pr}\left(X_{n+1}=j \mid X_{n}=i\right)
$$

For a homogeneous Markov process \mathbf{P} is independent of \boldsymbol{n} and can be calculated from Pn^{n}.
$\operatorname{Pr}\left(T_{i}<\infty\right)<1$

[^0]: ㅋㅍ Swiss Federal Institute of Technology

[^1]:

