Natural hazards as a system

Typhoon as a example

Overview

- System
- Typhoon events as a example of a system
- represent a system in a model
- Improve a model with empirical data
 - By conditioning
 - By updating

System

System is natural or manmade construct of elements which interact together in a way that a entity emerges which achieves a task or has a logical relation

System

- System is a part of the reality which has to be investigated
- How a system should be defined is depending on which problem has to be solved

Defining a system

- Top down vs. bottom up
- Different approaches:
 - Integrate as much components as possible
 - Integrate as less components as necessary
- But it has to be possible to model the system

Model a system

- Represent some parts of the reality which was defined as a system in a model
- A model is a virtual representative of a system
- A model can be used to investigate a system

Analysis of a system

- Define the system
- Build a model of the system
- Compare the model to the reality
- Improving model
- Analyze the model

Typhoon

- Global weather and wind system as system
- metrological environment of the area of interest as a system Equilibrium disturbed
 → typhoon
- Single Typhoon as system

Typhoon

- Typhoon as a system
- Components are the clouds, water in the air or even air particle itself. The meteorological surroundings like high and low pressure zone are the boundaries of the system
- Attribute of typhoon are location, speed, transition angle and central pressure...

Yearly losses estimation

Parts of a typhoon risk model

Typhoon model

How to build a model

- What Information/data is available
- Empirical analyze of historical data
- Incorporating physical facts
- Example occurrence model

Establishing occurrence model

Typhoon normally occurs only on a location which has minimum sea surface temperature of 26.5° C

Establishing occurrence model

Establishing transition model

Movement of typhoon

Establishing transition model

Structure of transition model

Limitations of establishing a model

- Conditional probability table (CPT) size
 - Accuracy vs. program limitations
- Calculation time
 - Interaction with Hugin and other programs is slow (because of the Hugin ActiveX server)
- Can only reach predetermined states
 Everything has to be preprogrammed

Improve a model with empirical data

- Utilize data in the same rate as they are available
- Conditioning the model with actual information
- Represent the actual state of the real system

Conitioning

- If a typhoon occurs
 - Location,
 - Speed
 - transition angle
 - pressure
 - Can be conditioned

Conditioning

Improve a model with empirical data

Integrating more data which are measured in the real world helps to represent the system more accurate with the model.

- Standard approach:
- Only joint observations of hazard index and damage utilized
- Hazard index = point estimation based on joint observations

Standard approach

extended by uncertainty of wind estimation

• Converging of parameter λ

• Converging of parameter ξ

 Influence of different hazard index uncertainties on the vulnerability curve

extended by model uncertainty ϵ

 Influence of different ratios between model and hazard index estimation

• Using measured data to reduce model uncertainty ε ε σ_{s} λ ζ

Limitation of updating

Calculation time increases exponential with number of records in the dataset which is used to update.