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Uncertainties and Engineering Models

In Quantitative Risk Analysis (QRA) and
Structural Reliability Analysis (SRA):

• Uncertainties included
• Uncertainties differentiated according to type and origin

• Natural variability (aleatory, type 1)
• Model uncertainties (epistemic, type 2)
• Statistical uncertainties (epistemic, type 2)

Uncertainty is scale and time dependent.

ALL UNCERTAINTIES HAVE TO BE TAKEN INTO ACCOUNT!

2



Uncertainties and Engineering Models

Example:  Engineering model for free gap decision problem
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Framework for Risk Based Decision Making

Risk = main ingredient for utility function

Engineering decision making = game

Goal of game = optimizing the benefits

Opponents = nature, people

Rules = success or acceptance criteria,

system, system boundaries,

possible consequences,

influences

Decisions: based on anticipated behavior of nature & people

Playing: “buying” physical changes of system & knowledge

System

World

decisions criteria

collection of 

information

actions

system boundaries

Constituents of engineering decision analysis,

Faber (2002)
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Framework for Risk Based Decision Making

Ingredients of risk assessment:

Framework for risk assessment, Faber (2005)
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Decision Theoretical Basis

Basis: Optimal decisions = maximum expected utility

Prior decision analysis: statistical information, probabilistic modeling
Prior to any decision or activity. Simple comparison of utilities. 

Posterior decision analysis: changes are introduced, additional 
information has been collected.
Basis for assessment of benefit of future risk mitigation measures or 
information gathering.

U: utility

a: decision

X: vector of all random variables

Decision/event tree for prior and posterior

decision analysis, Faber (2005)
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Decision Theoretical Basis

Pre-posterior decision analysis: basis for assessment of benefits of 
future risk mitigation measures or information gathering.
Decision rules specify future actions, based on outcomes of planned 
activities

U: utility

a(.): set of possible different action

z: outcome of considered investigations

E[ ]: expected value operator

‘: events based on prior information

‘’: events based on posterior information

Informal decision analysis: simplified (e.g. not including all 
uncertainties)
Quality of informal analyses can be doubtful & hard to judge.

Decision tree for pre-posterior decision analysis, Faber (2005)
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Optimal System Choice

Correct System?
s: possible systems

σ: actual system

a: course of action (dependent on system choice)

x: outcome (dependent on all previous choices)

U: utility

Yes (s = σ): Optimal action based on prior decision analysis

No (s ≠ σ): Optimal system choice s* and action a* subject to an 
expectation operation over the possible systems 

Decision/event tree for optimal choice of system in a prior analysis context, 

Faber (2005)

utility term

(corresponding to real outcome of system)
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Example: Optimal Design

Problem: Optimizing design variable a (out of a set of possible values)
Goal: achievement of a required reliability β of a structural component 
with material characteristics r subjected to loading l (both uncertain)

System known but parameters subject to uncertainty:
r and l modeled by R (aleatory and epistemic (μR)) and L (aleatory);
Limit state function: g(a, r, l) = a*r – l

Optimal choice for minimized expected costs:
C(a) = Cf(a) + CD(a) Cf: cost of failure, CD: cost of design

Illustration of optimal design decision/event tree, Faber (2005) 9



Example: Optimal Design

Informal prior decision analysis for design:
• Disregarding epistemic uncertainty (μR)
•Taking epistemic uncertainty into account indirectly (probability 

density function to identify probability of failure on a certain 
fractile value)

Probability density function for the probability of failure, Faber (2005)
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Example: Optimal Design

Formal prior decision analysis for design:
Takes into account the epistemic uncertainty directly, together with 
aleatoric uncertainty (failure probability has to take into account μR

which changes the possible choices for a)
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Example: Optimal Design

Formal prior decision analysis for system choice:

Problem: selection of a system out of:
system 1;  s1=N(400,10), p(σ1)=0.6
system 2;  s2=N(350,10), p(σ2)=0.4

Decision/event tree for the optimal system choice decision problem

Faber (2005)

Choice of system Realization

of system

Choice of design

(given chosen system)

State of nature

(given real system

and design)

Utility
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Example: Optimal Design

System assumption in repair decision problem:

Consultant A: system 1 (RSR = 1.4), repair will increase RSR to 2.0
Consultant B: system 2 (RSR =2.0), repair has no effect on RSR

Which consultant to trust?
Repair or not?

Structural collapse: g(x) = r – b*h2

r: resistance, 

b: load scale parameter,

h: normalized wave height,

modeled by R, B, H

Collapse failure probability pf

can be found by FORM analysis,
Cf and Cr have to be defined, and
the degree of believe P(σ1) and
P(σ2) assigned

 Optimal System and action
can be determined

Decision tree for the repair decision problem

Faber (2005)
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Conclusions of the Paper

• Bayesian approaches allow for the integration of frequentistic and 
subjective information

• Uncertainties are time and space  dependent

• Only epistemic component of uncertainty is subject to updating

• Simplification and omissions = informal decision analysis

• Quality of informal decision analyses is difficult to judge

• Understanding and adequate representation of system are 
prerequisite for the identification of rational decisions

• System representation also involves the choice of prior probability 
distributions

• Where different system representations are considered: Bayesian 
decision theory provides a solid basis for optimal choice
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Conclusions of the Paper (cont.)

• It is important to consider all uncertainties in informal and formal 
decision analyses

• Results of informal decision analyses can differ significantly from 
formal analyses

• With the derived decision theoretical formulation  the optimal 
system may be identified (even for different systems with different 
prior probabilistic models)
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Rockfall Example
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Rockfall Example

Road or railway in rockfall area:
What can happen (risk analysis)?
What is OK to happen (risk assessment)?

Swiss protection goals:

Low intensity;

E<30kJ

Medium intensity;

30<E<300kJ
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Rockfall Example

Hazard maps show the 
endangered areas

Where protection goal is not met:
Protection measures like nets or galleries

Length and strength of net?
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Rockfall Example

Decision problem: 
System/model definition
Scale?
Exposure?
Vulnerability?
Robustness?

Model definition

model ?

life-time max.

intensity

uncertainties?

significant 

intensity

uncertainties?

Uncertainties?

significant 

measure?

uncertainties?

Include all uncertainties!

System

World

decisions criteria

collection of 

information

actions

system boundaries
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