

Eidgenossische Technische Hochschule Zürich Swiss Federal Institute of Technology Zürich

PhD Seminar Probabilistic Approach to Natural Hazards Assessment

Institute of Structural Engineering Group Risk and Safety

Typhoon risk modeling for north west pacific

Mathias Graf

Institute of Structural Engineering, ETH Zurich

Typhoon model

Institute of Structural Engineering Group Risk and Safety

Typhoon model

Occurrence model

x 10⁻⁴

60

50

30

20

10

20

30

Institute of Structural Engineering Group Risk and Safety

3/18

x 10[°]

• Number and locations of occurrence p(occurence|SST,Latitude,Longitude)

50

40

30

20

10

10 20

Typhoon occourencerate Map (whole Year)

Latitude Month SST Occurance Longitude

Structure of Bayesian network which represents occurrence model. ^{100+x = Longitude in 1°} Spatial distribution of historical typhoon occurrences.

60

70 80

^{100+x = Longitude in 1°} Spatial distribution of typhoon occurrences using the the model.

70

80

60

Typhoon occourencerate Map (whole Year)

• Initial parameters:

Translation speed and angle, central pressure

- **Occurence model**
 - Historical occurrence locations (Defined when the central pressure of a storm goes first time below 1000hPa)

1.10.2008

Transition model

Estimation of the position of the typhoon at time step i+1:

$$\Delta \ln V_i = a_1 + a_2 \ln V_i + a_3 \Phi_i + \varepsilon_V$$

$$\Delta \Phi_i = b_1 + b_2 V_i + b_3 \Phi_i + b_4 \Phi_{i-1} + \varepsilon_{\Phi}$$

 V_i = translation speed [m / s] at time step *i* Φ = translation angle [°] at time step *i*

 Φ_i = translation angle [°] at time step *i*

Best track data was used to establish for each month and for each 5° by 5° grid the coefficients

Transition model

ibk

Institute of Structural Engineering Group Risk and Safety

Map of the north west pacific

1.10.2008

Transition model

ibk

Institute of Structural Engineering Group Risk and Safety

Map of the north west pacific with 30 tracks (August)

1.10.2008

Transition model (Pressure)

8/18

The central pressure at time step i+1 is estimated from:

At sea:

$P_{i+1} = c_1 + c_2 P_i + c_3 P_{i-1} + c_4 P_{i-2} + c_5 T_i + c_6 \Delta T_i + \varepsilon_P$

 P_i = Central pressure [*hPa*] at time step *i* T_i = Sea surface temperature [°] at time step *i*

Transition model (Pressure)

9/18

The central pressure at time step i+1 is estimated from:

At land (filling model):

$$\Delta P_t = \Delta P_0 \cdot \exp\left(-\left(d_1 + d_2 \Delta P_o\right)t\right)$$

 ΔP_t = Peripheral pressure (1013 hPa) - central pressure at time t [h] after landfall ΔP_0 = Peripheral pressure (1013 hPa) - central pressure at landfall

Wind field model

Institute of Structural Engineering Group Risk and Safety

Pressure field (Schloemer):

$$p(r) = p_C + \Delta p \cdot \exp\left(-\frac{r_M}{r}\right)$$

 r_M = Radius of maximum wind speed

r = Distance

p(r) = Pressure at distance r

 p_C = Central pressure

 Δp = Peripheral pressure (1013 hPa) - central pressure

Wind field model

Institute of Structural Engineering

Group Risk and Safety

Surface friction model

Converting wind speed at gradient u_g height to wind speed at surface u(z) $x \uparrow$

 $\alpha = 0.27 + 0.09 \log z_0 + 0.018 (\log z_0)^2 + 0.0016 (\log z_0)^3$ z₀ = rougness lenght

13/18

Surface friction model

Identification of the rougness leght z_0

Roughness category	Terrain type	Roughness length [m]
Ι	Very flat terrain	0.003
II	Open terrain (grassland, few trees)	0.03
III	Suburban terrain (buildings, 3-5 [m])	0.3
IV	Dense urban (buildings, 10-30 [m])	3

Surface friction model

- ----- Reproduced wind speeds at gradient height
- Reproduced wind speeds converted at the height of the location of the measurement device at each station
- Observed wind speeds

Vulnerability model

15/18

Relation between wind speed and damage

 Combining loss data from insurance companies with reproduced wind speed from historical data

16/18

Vulnerability model

Risk assessment for portfolios losses

• Transform real loss to insurance payment

Application for portfolio risk assessment

17/18

Disaggregation of portfolios

18/18

