Formulation and calculation of isoparametric finite element matrixes

1. Numerical integration

2. Implementation of a finite element computer code

Gilles Richner

20.12.06

Finite Element Method and the Analysis of Systems with Uncertain Properties

Numerical integration

Goal: Integration of the matrix F(r)

Numerical integration

$$\int_{a}^{b} F(r)dr = \sum_{i} \alpha_{i} F(r_{i})$$

With a=-1 and b=1 (isoparametric elements)

Approximation of F(r) with $\psi(r)$

Polynomial: Lagragian interp.: $\psi(r) = a_0 + a_1 r + a_2 r^2 + ... + a_n r^n$ $\psi(r) = F_0 l_0(r) + F_1 l_1(r) + F_2 l_2(r) + ... + F_n l_n(r)$

With
$$l_j(r) = \frac{(r-r_0)(r-r_1)\cdots(r-r_{j-1})(r-r_{j+1})\cdots(r-r_n)}{(r_j-r_0)(r_j-r_1)\cdots(r_j-r_{j-1})(r_j-r_{j+1})\cdots(r_j-r_n)}$$

Numerical integration II

Netwon: equally spaced sampling points

$$\int_{a}^{b} F(r)dr = (b-a)\sum_{i=0}^{n} C_{i}^{n}F(r_{i})$$
 With C_iⁿ=Newton-Cotes constant

Gauss: variation of sampling interval

$$\int_{a}^{b} F(r)dr = \sum_{i} \alpha_{i} F(r_{i}) \qquad \text{With} \qquad \alpha_{i} = \int_{-1}^{1} l_{j}(r)dr$$

Multidimensional integration

$$\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} F(r,s,t) \, dr \, ds \, dt = \sum_{i,j,k} \alpha_i \alpha_j \alpha_k F(r_i,s_j,t_k)$$

Numerical integration III

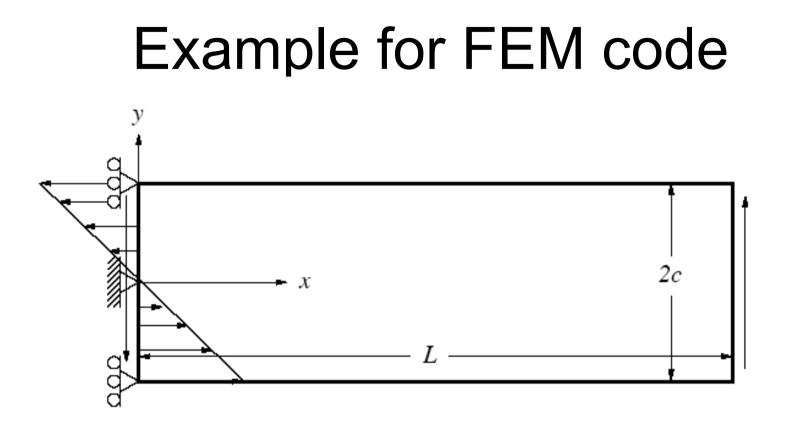
Kind and order of integration

- => cost of analysis, errors, degree of local variables, linearity, ...
- => For displacement matrix => full integration

Reduced and Selective

- => Improving overall results by reducing the order of certain matrix evaluation
- => Different strains terms integrated with different orders

=> Stability and convergence

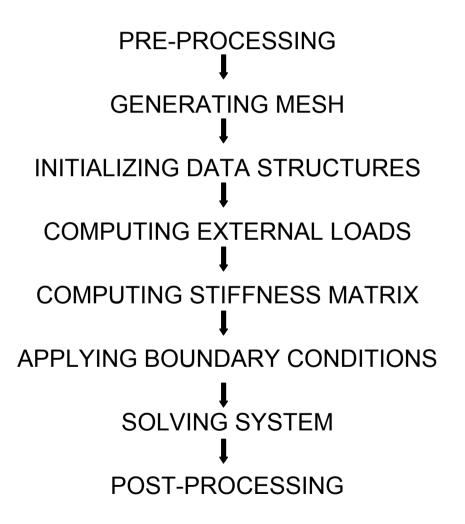


Displacement boundary conditions:

 $u_x = 0 @ (0; c), (0,0) and (0; -c), u_y = 0 @ (0; 0).$

Traction boundary conditions: $t_x = y \text{ on } x = 0 \text{ and } t_y = P(x^2-c^2) \text{ on } x = L.$

Implementation of computer code



Implementation of computer code II

PRE-PROCESSING

GENERATING MESH

INITIALIZING DATA STRUCTURES

COMPUTING EXTERNAL LOADS

COMPUTING STIFFNESS MATRIX

APPLYING BOUNDARY CONDITIONS

SOLVING SYSTEM

- Material properties
- Beam properties
- > Mesh properties
- Model assumption

Implementation of computer code III

Element connectivity matrix: Node pattern

PRE-PROCESSING

GENERATING MESH

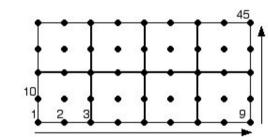
INITIALIZING DATA STRUCTURES

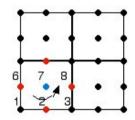
COMPUTING EXTERNAL LOADS

COMPUTING STIFFNESS MATRIX

APPLYING BOUNDARY CONDITIONS

SOLVING SYSTEM





- Boundary node pattern
- Displacement boundary

Implementation of computer code IV

Nodal displacement vector

U=zeros(2*numnode,1);

External load vector

f=zeros(2*numnode,1);

Stiffness matrix

K=sparse(2*numnode,2*numnode);

With numnode = total # nodes

PRE-PROCESSING

GENERATING MESH

INITIALIZING DATA STRUCTURES

COMPUTING EXTERNAL LOADS

COMPUTING STIFFNESS MATRIX

APPLYING BOUNDARY CONDITIONS

SOLVING SYSTEM

Implementation of computer code V

Gaussian quadrature

[W,Q]=quadrature(4, 'GAUSS', 1);

Where W and Q are the sampling points and weights

Shape function

[N,dNdxi]=lagrange_basis(edgeElemType,pt);

Integration of the tractions on the left and right edges

f(sctrx)=N*fxPt*detJ0*wt

With fxPt = x traction at quadrature point

PRE-PROCESSING

GENERATING MESH

INITIALIZING DATA STRUCTURES

COMPUTING EXTERNAL LOADS

COMPUTING STIFFNESS MATRIX

APPLYING BOUNDARY CONDITIONS

SOLVING SYSTEM

Implementation of computer code VI

Shape function

[W,Q]=quadrature(4, 'GAUSS', 2);

[N,dNdxi]=lagrange_basis(edgeElemType,pt);

J0=node(sctr,:)'*dNdxi;

dNdx=dNdxi*invJ0;

Compute Element Stiffness at quadrature point

K(sctrB,sctrB)=B'*C*B*W(q)*det(J0)

PRE-PROCESSING

GENERATING MESH

INITIALIZING DATA STRUCTURES

COMPUTING EXTERNAL LOADS

COMPUTING STIFFNESS MATRIX

APPLYING BOUNDARY CONDITIONS

SOLVING SYSTEM

Implementation of computer code VII

PRE-PROCESSING

GENERATING MESH

INITIALIZING DATA STRUCTURES

COMPUTING EXTERNAL LOADS

COMPUTING STIFFNESS MATRIX

APPLYING BOUNDARY CONDITIONS

SOLVING SYSTEM

POST-PROCESSING

Enforcement of the essential boundary conditions

Modifying the system but keeping it symmetric so that the boundary condition are satisfied according to the applied mapping.

Implementation of computer code VIII

Solving system

PRE-PROCESSING

GENERATING MESH

INITIALIZING DATA STRUCTURES

COMPUTING EXTERNAL LOADS

COMPUTING STIFFNESS MATRIX

APPLYING BOUNDARY CONDITIONS

SOLVING SYSTEM

POST-PROCESSING

U=K\f

Compute Element strain and stress at the stress point

strain=B*U(sctrB);
stress(e,q,:)=C*strain;

Literature

Code: http://www.tam.northwestern.edu/jfc795/Matlab/

The finite element method, O.C. Zienkiewicz, R.L. Taylor - Butterworth Heinemann (2000) Vol.1-3

Additional: Matlab guide to finite elements: an interactive approach, (2005) P.I. Kattan

Introduction to finite and spectral element methoads using Matlab,(2003) C. Pozrikidis

The finite element method using Matlab (2000), Y.W. Kwon, H. Bang