FEM course – lecture 7

- 1. Element matrices in global coordinates
- 2. <u>Displacement / pressure related elements for incompressible media</u>

Repetition: General Solution of the Problem

Static solution of problem	$\mathbf{K}\mathbf{U} = \mathbf{R}$	(global coordinates)		
Displacement ansatz	$\mathbf{K} = \int_{V} \mathbf{B}^{T} \mathbf{C} \mathbf{B} dV$			
Integration over natural vol.	$dV = \det \mathbf{J} dr ds dt$	(natural coordinates)		
Connection between natural and global coordinates	$\frac{\partial}{\partial \mathbf{r}} = \mathbf{J} \frac{\partial}{\partial \mathbf{x}}$	e.g. $ \begin{bmatrix} \frac{\partial}{\partial r} \\ \frac{\partial}{\partial r} \\ \frac{\partial}{\partial s} \\ \frac{\partial}{\partial t} \end{bmatrix} = \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} & \frac{\partial z}{\partial r} \\ \frac{\partial x}{\partial s} & \frac{\partial y}{\partial s} & \frac{\partial z}{\partial s} \\ \frac{\partial x}{\partial t} & \frac{\partial y}{\partial t} & \frac{\partial z}{\partial t} \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{bmatrix} $		
Accordingly	$\mathbf{K} = \int_{V} \mathbf{F} d\mathbf{r} d\mathbf{s} dt$	with $\mathbf{F} = \mathbf{B}^T \mathbf{C} \mathbf{B} \det \mathbf{J}$		
Numerical integration	$\mathbf{K} = \sum_{i, j, k} \alpha_{ijk} \mathbf{F}_{ijk}$	where \mathbf{F}_{ijk} evaluation of \mathbf{F} at point (r_i, s_j, t_k)		

Repetition: General Solution of the Problem

How to get the strain-displacement matrix B?

$$\Rightarrow \text{ basically from:} \quad \mathbf{e} = \mathbf{B} \mathbf{\hat{u}} \qquad \text{where:} \qquad \mathbf{\hat{u}}^{T} = \begin{bmatrix} u_{1} v_{1} w_{1} & \dots & u_{N} v_{N} w_{N} \end{bmatrix} \\ \varepsilon^{T} = \begin{bmatrix} \varepsilon_{xx} \varepsilon_{yy} \varepsilon_{zz} \gamma_{xy} \gamma_{xz} \gamma_{yz} \end{bmatrix} \\ \varepsilon_{xx} = \frac{\partial u}{\partial x}, \quad \varepsilon_{yy} = \frac{\partial v}{\partial x}, \quad \varepsilon_{zz} = \frac{\partial w}{\partial x}, \\ \gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}, \quad \gamma_{xz} = \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z}, \quad \gamma_{yz} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \end{cases}$$

with

 \rightarrow Problem: u, v, w in natural coordinates!

Relation via
$$\frac{\partial}{\partial \mathbf{x}} = \mathbf{J}^{-1} \frac{\partial}{\partial \mathbf{r}}$$

where: $\mathbf{r}^{T} = [r \ s \ t]$ $\mathbf{x}^{T} = [x \ y \ z]$

 \rightarrow since we have ϵ and \hat{u} we get B

(if J⁻¹ exists)

Integration of

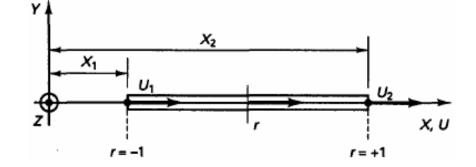
$$K = \int_{V} B^{T} C B \det J dr \, ds \, dt$$

with
$$\mathbf{C} = \mathbf{E}$$

 $u = h_i u_i, \quad v = h_i v_i, \quad w = h_i w_i$

Example: Derivation of stiffness matrix K for bar element

Bar element in global and natural coordinate system



Natural coordinates: $-1 \le r \le 1$

Interpolation functions: $h_1 = \frac{1}{2}(r-1), \qquad h_2 = \frac{1}{2}(r+1)$

Displacement:

$$U = h_i U_i = \frac{1}{2} (r-1) U_1 + \frac{1}{2} (r+1) U_2$$
 (natural coordinates)

$$X = \frac{1}{2}(r-1)X_1 + \frac{1}{2}(r+1)X_2 \qquad (\text{global coordinates})$$

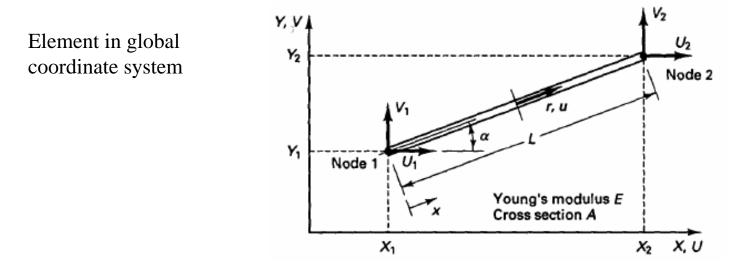
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Natural vs. global coordinate system

Element strains	$\varepsilon = \frac{\mathrm{d}U}{\mathrm{d}X} = J^{-1}\frac{\mathrm{d}U}{\mathrm{d}r}$	with	$J = \frac{\mathrm{d}X}{\mathrm{d}r}$
resulting	$\boldsymbol{\epsilon} = \frac{U_2 - U_1}{L}$	since	$\frac{dU}{dr} = \frac{U_2 - U_1}{2}$ $\frac{dX}{dr} = \frac{X_2 - X_1}{2} = \frac{L}{2}$
Strain-displacement matrix	$\mathbf{B} = \frac{1}{L} \begin{bmatrix} -1 & 1 \end{bmatrix}$	from	$\varepsilon = B\hat{U}$ $\hat{U}^{T} = \begin{bmatrix} U_1 & U_2 \end{bmatrix}$
Stiffness matrix of the bar eleme	ent $\mathbf{K} = \int_{V} \mathbf{B}^{T} \mathbf{C} \mathbf{B} dV$		
Replacing B, C and dV one gets after integration	$\mathbf{K} = \frac{AE}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$	having	$dV = \frac{AL}{2} dr$ $C = E$

STARE ROST

Arbitrary position in X, Y - plane



1."

Displacement:
$$u = [\cos \alpha \quad \sin \alpha] \begin{bmatrix} \frac{1}{2}(1-r)U_1 + \frac{1}{2}(1+r)U_2 \\ \frac{1}{2}(1-r)V_1 + \frac{1}{2}(1+r)V_2 \end{bmatrix}$$

with
$$\varepsilon = \frac{\mathrm{d}u}{\mathrm{d}X} = J^{-1}\frac{\mathrm{d}u}{\mathrm{d}r} = \frac{2}{L}\frac{\mathrm{d}u}{\mathrm{d}r}$$

and
$$\mathbf{U}^T = \begin{bmatrix} U_1 & V_1 & U_2 & V_2 \end{bmatrix}$$

Strain-displacement matrix

$$\mathbf{B} = \frac{1}{L} [\cos \alpha \ \sin \alpha \ \cos \alpha \ \sin \alpha] \begin{bmatrix} -1 & & \\ & -1 & \text{zeros} \\ & & 1 \\ \text{zeros} & & 1 \end{bmatrix}$$

Replacing B, C and dV one gets after integration

$$\mathbf{K} = \frac{AE}{L} \begin{bmatrix} \cos^2 \alpha & \cos \alpha \sin \alpha & -\cos^2 \alpha & -\cos \alpha \sin \alpha \\ \sin \alpha \cos \alpha & \sin^2 \alpha & -\sin \alpha \cos \alpha & -\sin^2 \alpha \\ -\cos^2 \alpha & -\cos \alpha \sin \alpha & \cos^2 \alpha & \cos \alpha \sin \alpha \\ -\sin \alpha \cos \alpha & -\sin^2 \alpha & \sin \alpha \cos \alpha & \sin^2 \alpha \end{bmatrix}$$

Take home messages:

 Expression of displacements easier in natural coordinates (integration can be as well)

- Connection between natural an global coordinates by

$$\frac{\partial}{\partial \mathbf{r}} = \mathbf{J} \, \frac{\partial}{\partial \mathbf{x}}$$

Problem: displacement-based finite elements not sufficiently effective for analysis of (almost) incompressible media and plates, shells

Solution: mixed interpolation e.g. displacement and pressure

Principle of virtual work in terms of \mathbf{u} and p

$$\int_{V} \overline{\boldsymbol{\epsilon}}'^{T} \mathbf{S} \, dV - \int_{V} \overline{\boldsymbol{\epsilon}}_{V} p \, dV = \mathcal{R}$$

Deviatoric stress
$$\mathbf{S} = \mathbf{\tau} + p \mathbf{\delta}$$

Deviatoric strain $\mathbf{\epsilon}' = \mathbf{\epsilon} - \frac{1}{3} \mathbf{\epsilon}_{V} \mathbf{\delta}$
Volumetric strain $\mathbf{\epsilon}_{V} = \mathbf{\epsilon}_{kk} = \frac{\Delta V}{V}$
 $(= \mathbf{\epsilon}_{xx} + \mathbf{\epsilon}_{yy} + \mathbf{\epsilon}_{zz} \text{ in Cartesian coordinates})$

For almost incompressible materials

$$\tau_{ij} = \kappa \epsilon_{\nu} \delta_{ij} + 2G \epsilon'_{ij} \qquad \text{where} \qquad \kappa = \frac{E}{3(1 - 2\nu)} \qquad (\text{bulk modulus})$$

$$G = \frac{E}{2(1 + \nu)} \qquad (\text{shear modulus})$$

$$\delta_{ij} \begin{cases} = 1; & i = j \\ = 0; & i \neq j \end{cases} \qquad (\text{Kronecker delta})$$
for the pressure in the body holds
$$p = -\kappa \epsilon_{\nu}$$

$$\tau_{ij} = -p \delta_{ij} + 2G \epsilon'_{ij} \qquad \qquad p = -\frac{\tau_{ik}}{3}$$

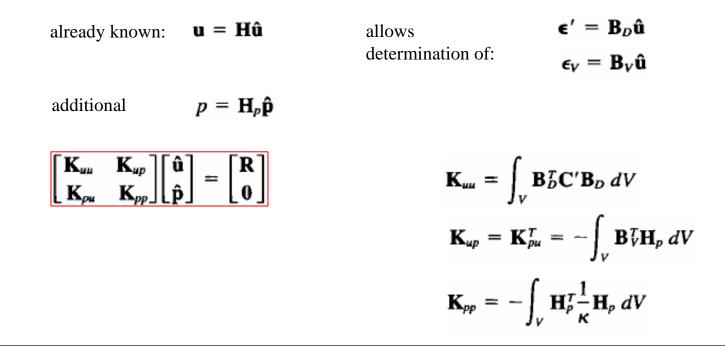
$$\left(= -\frac{\tau_{ix} + \tau_{yy} + \tau_{zz}}{3} \text{ in Cartesian coordinates} \right)$$

STAFE ROS

For totally incompressible materials

$$\begin{array}{ccc} v \to 0.5, \\ \varepsilon_V \to 0 \end{array} \qquad \longrightarrow \qquad \int_V \epsilon_V \overline{p} \, dV = 0 \end{array}$$

Solution for almost incompressible conditions:



Solution for totally incompressible conditions:

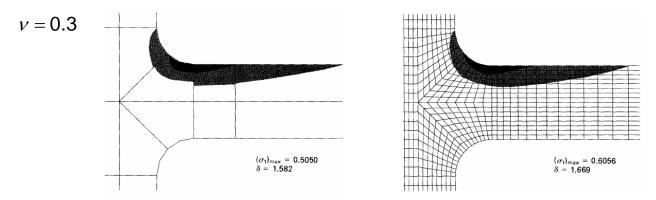
 $\kappa \rightarrow \infty$

$$\begin{bmatrix} \mathbf{K}_{uu} & \mathbf{K}_{up} \\ \mathbf{K}_{pu} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{u}} \\ \hat{\mathbf{p}} \end{bmatrix} = \begin{bmatrix} \mathbf{R} \\ \mathbf{0} \end{bmatrix}$$

 \rightarrow evaluation needs special considerations because of "0" in main diagonal

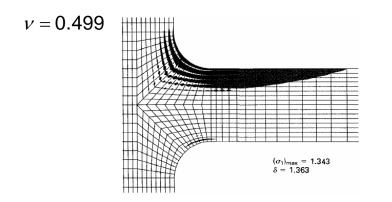
Examples for almost incompressible conditions

<u>pure displacement-based FEM analysis</u>



 \rightarrow possible for not too much incompressible media

 \rightarrow requires very fine discretization



- \rightarrow fails for highly incompressible media
- \rightarrow "locking" behavior

"Non-locking" behavior due to interpolation of p

Displacement/pressure formulation u/p

• u/p formulation:

pressure variables belong to the specific element only

continuity of pressure is not enforced between elements but results from fine mesh

•u/p-c formulation

element pressure is defined b nodal pressure variables

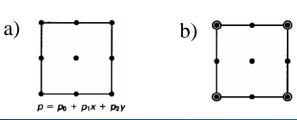
continuity of pressure between elements is directly enforced

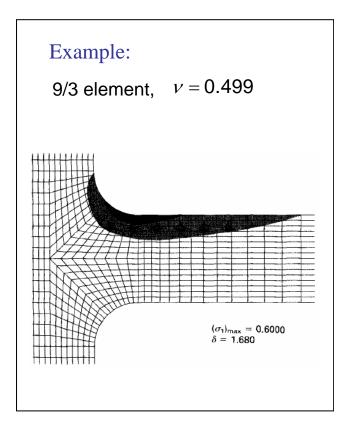
Typical pressure interpolations

- constant: $p = p_0$, (9/1 element)
- linear: $p = p_0 + p_1 x + p_2 y$, (9/3 element)
- bilinear: $p = p_0 + p_1 x + p_2 y + p_3 xy$, (9/4 element)

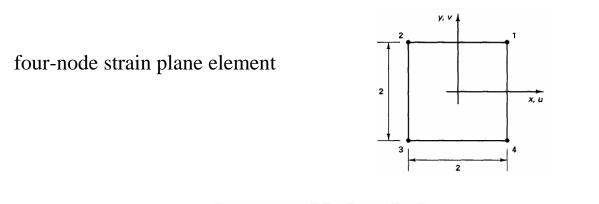
Typical elements

- a) 9/3 element
- b) 9/4-c element





Example for almost incompressible case with u/p = 4/1 element



thus, we need $\mathbf{B}_{\mathbf{D}}$ and $\mathbf{B}_{\mathbf{v}}$

we know
$$\mathbf{\epsilon}' = \mathbf{B}_{D}\hat{\mathbf{u}}$$

 $\mathbf{\epsilon}_{V} = \mathbf{B}_{V}\hat{\mathbf{u}}$

$$\mathbf{\epsilon}' = \begin{bmatrix} \mathbf{\epsilon}_{xx} - \frac{1}{3}(\mathbf{\epsilon}_{xx} + \mathbf{\epsilon}_{yy}) \\ \mathbf{\epsilon}_{yy} - \frac{1}{3}(\mathbf{\epsilon}_{xx} + \mathbf{\epsilon}_{yy}) \\ \gamma_{xy} \\ -\frac{1}{3}(\mathbf{\epsilon}_{xx} + \mathbf{\epsilon}_{yy}) \end{bmatrix} = \begin{bmatrix} \frac{2}{3}\frac{\partial u}{\partial x} - \frac{1}{3}\frac{\partial v}{\partial y} \\ \frac{2}{3}\frac{\partial v}{\partial y} - \frac{1}{3}\frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \\ -\frac{1}{3}\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) \end{bmatrix}; \quad \mathbf{\epsilon}_{V} = \mathbf{\epsilon}_{xx} + \mathbf{\epsilon}_{yy}$$

Example for almost incompressible case with u/p = 4/1 element

we get
$$\mathbf{u} = \mathbf{H}\hat{\mathbf{u}}$$
 from
 $\hat{\mathbf{u}}^T = \begin{bmatrix} u_1 & u_2 & u_3 & u_4 & \vdots & v_1 & v_2 & v_3 & v_4 \end{bmatrix}$
 $\mathbf{H} = \begin{bmatrix} h_1 & h_2 & h_3 & h_4 & \vdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \vdots & h_1 & h_2 & h_3 & h_4 \end{bmatrix}$
 $h_1 = \frac{1}{4}(1 + x)(1 + y);$ $h_2 = \frac{1}{4}(1 - x)(1 + y)$
 $h_3 = \frac{1}{4}(1 - x)(1 - y);$ $h_4 = \frac{1}{4}(1 + x)(1 - y)$
 $\begin{bmatrix} \frac{2}{3}h_{1,x} & \frac{2}{3}h_{2,x} & \dots & \vdots & -\frac{1}{3}h_{1,y} & -\frac{1}{3}h_{2,y} & \dots \end{bmatrix}$

 $\mathbf{B}_{D} = \begin{bmatrix} -\frac{1}{3}h_{1,x} & -\frac{1}{3}h_{2,x} & \cdots & \vdots & \frac{2}{3}h_{1,y} & \frac{2}{3}h_{2,y} & \cdots \\ h_{1,y} & h_{2,y} & \cdots & \vdots & h_{1,x} & h_{2,x} & \cdots \\ -\frac{1}{3}h_{1,x} & -\frac{1}{3}h_{2,x} & \cdots & \vdots & -\frac{1}{3}h_{1,y} & -\frac{1}{3}h_{2,y} & \cdots \end{bmatrix}$ straindisplacement matices $\mathbf{B}_{V} = [h_{1,x} \quad h_{2,x} \quad \dots \quad \vdots \quad h_{1,y} \quad h_{2,y} \quad \dots]$ $\mathbf{C}' = \begin{bmatrix} 2G & 0 & 0 & 0 \\ 0 & 2G & 0 & 0 \\ 0 & 0 & G & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} ; \qquad G = \frac{E}{2(1+\nu)}$ material matrix

• <u>Take home messages:</u>

• for little compressible media ($v \rightarrow 0.5$) pure displacement interpolation is not sufficient to obtain correct stress distribution

1 1

 among the displacement/pressure formulations, the 9/3 element is a good example (in 2D) for non-locking elements (has high order of convergence and no "over-interpolation" of *p*)