Formulation and calculation of isoparametric finite element matrixes:

- Truss elements
- Continuum elements - triangular elements

Today ${ }^{\text {l }}$ lesson:
-Short: properties of truss and triangular elements
-Coordinate systems

- Isoparametric derivation of bar element stiffness matrix
- Form functions and their properties
- Jacobian operator
-Triangular elements
- Illustration of use

Some terms

Truss element

- displacement only in longitudinal axis; no moments, nodes are flexible
- widely used in structural engineering for ex. bridges

Triangular elements in plane strain elements

- two-dimensional stress in a xy plane with the stresses $\tau_{z z}, \tau_{y z}$, and $\tau_{z x}=0$

Coordinate systems

Global coordinate system = Cartesian coordinates: xyz
Local element coordinate sytem (natural coordinate system): rst

Isoparametric derivation of bar element stiffness matrix:

 Transformation

Transformation: how to express CSnatural in CSglobal

$$
\begin{aligned}
& X=\frac{1}{2}(1-r) X_{1}+\frac{1}{2}(1+r) X_{2} \\
& h_{1}=\frac{1}{2}(1-r) \text { and } h_{2}=\frac{1}{2}(1+r) \quad \text { Shape (or interpolation) functions } \\
& \text { At free nodal points = value } 1 \\
& X=\sum_{i=1}^{2} h_{i} X_{i} \\
& U=\sum_{i=1}^{2} h_{i} U_{i} \\
& \text { Bar global displacement, expressed in same way as } \\
& \text { global coordinates }=\text { Basis of isoparametric finite } \\
& \text { element formulation }
\end{aligned}
$$

Isoparametric derivation of bar element stiffness matrix: Matrix

1. Element strains $\epsilon=d U / d X$.

$$
\begin{aligned}
\epsilon & =\frac{d U}{d r} \frac{d r}{d X} \\
U=\sum_{i=1}^{2} h_{i} U_{i} \longrightarrow \frac{d U}{d r} & =\frac{U_{2}-U_{1}}{2} \\
X=\sum_{i=1}^{2} h_{i} X_{i} \longrightarrow \frac{d X}{d r} & =\frac{X_{2}-X_{1}}{2}=\frac{L}{2} \\
\epsilon & =\frac{U_{2}-U_{1}}{L}
\end{aligned}
$$

Isoparametric derivation of bar element stiffness matrix: Matrix

2. Strain displacement transformation matrix

$$
\begin{gathered}
\mathrm{\epsilon}=\mathbf{B} \hat{\mathbf{u}} \\
\mathbf{B}=\frac{1}{L}\left[\begin{array}{ll}
-1 & 1
\end{array}\right]
\end{gathered}
$$

3. Obtain K with volume integral (not necessary in this case, but for demo)

$$
\mathbf{K}=\frac{A E}{L^{2}} \int_{-1}^{1}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]\left[\begin{array}{ll}
-1 & 1
\end{array}\right] J d r \quad \begin{array}{r}
\text { Where A }=\text { bar area and } E=\text { Modulus of } \\
\text { elasticity are taken as constant; } \\
\mathrm{J}=\text { Jacobian Operator }
\end{array}
$$

J is the Jacobian Operator relating an element length in $\mathrm{CS}_{\text {global }}$ to an element length in $\mathrm{CS}_{\text {natural }}$
Here: $d X=J d r \rightarrow$ we know it already: $J=L / 2 \longrightarrow \mathbf{K}=\frac{A E}{L}\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right]$

Isoparametric derivation of bar element stiffness matrix: Excursion on Jacobian operator

$J=$ Jacobian Operator relating element length in $\mathrm{CS}_{\text {global }}$ to element length in $\mathrm{CS}_{\text {natural }}$

For stiffness matrix, strain-displacement transformation matrix has to be calculated Element strains are obtained by derivates of element displacements, with respect to local coordinates

It is: $\quad x=f_{1}(r, s, t) ; \quad y=f_{2}(r, s, t) ; \quad z=f_{3}(r, s, t)$
And: $\quad r=f_{4}(x, y, z) ; \quad s=f_{5}(x, y, z) ; \quad t=f_{6}(x, y, z)$
We need: $\partial / \partial x, \partial / \partial y$, and $\partial / \partial z \rightarrow$ chain rule $\frac{\partial}{\partial x}=\frac{\partial}{\partial r} \frac{\partial r}{\partial x}+\frac{\partial}{\partial s} \frac{\partial s}{\partial x}+\frac{\partial}{\partial t} \frac{\partial t}{\partial x}$

$$
\begin{gathered}
{\left[\begin{array}{c}
\frac{\partial}{\partial r} \\
\frac{\partial}{\partial s} \\
\frac{\partial}{\partial t}
\end{array}\right]=\left[\begin{array}{lll}
\frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} & \frac{\partial z}{\partial r} \\
\frac{\partial x}{\partial s} & \frac{\partial y}{\partial s} & \frac{\partial z}{\partial s} \\
\frac{\partial x}{\partial t} & \frac{\partial y}{\partial t} & \frac{\partial z}{\partial t}
\end{array}\right]\left[\begin{array}{c}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y} \\
\frac{\partial}{\partial z}
\end{array}\right]} \\
\frac{\partial}{\partial \mathbf{r}}=\mathbf{J} \frac{\partial}{\partial \mathbf{x}}
\end{gathered}
$$

Isoparametric derivation of bar element stiffness matrix: Matrix

4. In generalized coordinates

$$
\begin{gathered}
r=\frac{X-\left[\left(X_{1}+X_{2}\right) / 2\right]}{L / 2} \\
U=\alpha_{0}+\alpha_{1} X \\
\alpha_{0}=\frac{1}{2}\left(U_{1}+U_{2}\right)-\frac{X_{1}+X_{2}}{2 L}\left(U_{2}-U_{1}\right) \\
\alpha_{1}=\frac{1}{L}\left(U_{2}-U_{1}\right) \\
\boldsymbol{\alpha}=\left[\begin{array}{cc}
\frac{1}{2}+\frac{X_{1}+X_{2}}{2 L} & \frac{1}{2}-\frac{X_{1}+X_{2}}{2 L} \\
-\frac{1}{L} & \frac{1}{L}
\end{array}\right] \mathbf{U} \\
\boldsymbol{\alpha}^{T}=\left[\begin{array}{ll}
\alpha_{0} & \alpha_{1}
\end{array}\right] ; \quad \mathbf{U}^{T}=\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]
\end{gathered}
$$

Formulation of continuum elements: Straight truss and cable elements
Unknown in $x=\sum_{i=1}^{q} h_{i} x_{i}$ is the interpolation function h_{i}
Remember: node $i=1$, other nodes $=0$

Formulation of continuum elements: Straight truss and cable elements

(a) 2 to 4 variable-number-nodes truss element

(b) Interpolation functions

Formulation of continuum elements:

Triangular elements by collapsing quadrilateral elements

Collapsing any one side of a four-node element will always result in a constant strain triangle (Dreieck konstanter Verzerrung)

(a) 4 to 9 variable-number-nodes two-dimensional element

	Include only if node i is defined				
	$i=5$	$i=6$	$i=7$	$i=8$	$i=9$
$h_{1}=\left\lvert\, \frac{1}{4}(1+r)(1+s)\right.$	$-\frac{1}{2} h_{5}$			$-\frac{1}{2} h_{8}$	$-\frac{1}{4} h_{9}$
$h_{2}=\frac{1}{4}(1-r)(1+s)$	$-\frac{1}{2} h_{5}$	$-\frac{1}{2} h_{6}$			$-\frac{1}{4} h_{9}$
$h_{3}=\frac{1}{4}(1-r)(1-s)$		$-\frac{1}{2} h_{6}$	$-\frac{1}{2} h_{7}$		$-\frac{1}{4} h_{9}$
$h_{4}=\frac{1}{4}(1+r)(1-s)$			$-\frac{1}{2} h_{7}$	$-\frac{1}{2} h_{8}$	$-\frac{1}{4} h_{9}$
$h_{5}=\frac{1}{2}\left(1-r^{2}\right)(1+s)$					$-\frac{1}{2} h_{9}$
$h_{6}=\frac{1}{2}\left(1-s^{2}\right)(1-n)$					$-\frac{1}{2} h_{9}$
$h_{7}=\frac{1}{2}\left(1-r^{2}\right)(1-s)$					$-\frac{1}{2} h_{9}$
					$-\frac{1}{2} h_{9}$

Formulation of continuum elements:

Triangular elements by collapsing quadrilateral elements

-use interpolation function
-collapse the 2 nodes: $x_{2}=x_{3}$ and $y_{2}=x_{3}$

- express x and y with r and s :

-calculate J and J^{-1} for r and s
-use the same interpolation functions for u and v
-(isoparametric concept)
-evaluate derivates fo the displacements u and v to r and

$$
\boldsymbol{\epsilon}=\left[\begin{array}{rrrrrr}
0 & 0 & -\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 \\
\frac{1}{2} & 0 & -\frac{1}{2} & -\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
u_{2} \\
v_{2} \\
u_{3} \\
v_{3} \\
u_{4} \\
v_{4}
\end{array}\right]
$$

Formulation of continuum elements:

Triangular elements by area coordinates

$$
\left.\begin{array}{l}
\text { Cartesian coordinates } \\
L_{1}=\frac{A_{1}}{A} ; \quad L_{2}=\frac{A_{2}}{A} ; \quad L_{3}=\frac{A_{3}}{A} \\
L_{i}=\frac{1}{2 A}\left(a_{i}+b_{i} x+c_{i} y\right) ; \quad i=1,2,3 \\
y \\
y
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right]\left[\begin{array}{l}
L_{1} \\
L_{2} \\
L_{3}
\end{array}\right]
$$

expressing area in terms of x and y :

$$
\begin{aligned}
& x=L_{1} x_{1}+L_{2} x_{2}+L_{3} x_{3} \\
& y=L_{1} y_{1}+L_{2} y_{2}+L_{3} y_{3}
\end{aligned}
$$

$$
\begin{array}{lll}
a_{1}=x_{2} y_{3}-x_{3} y_{2} ; & a_{2}=x_{3} y_{1}-x_{1} y_{3} ; & a_{3}=x_{1} y_{2}-x_{2} y_{1} \\
b_{1}=y_{2}-y_{3} ; & b_{2}=y_{3}-y_{1} ; & b_{3}=y_{1}-y_{2} \\
c_{1}=x_{3}-x_{2} ; & c_{2}=x_{1}-x_{3} ; & c_{3}=x_{2}-x_{1}
\end{array}
$$

Formulation of continuum elements:

Triangular elements by area coordinates

Following procedure is the same: with

$$
\begin{array}{ll}
u=\sum_{i=1}^{3} h_{i} u_{i} ; & x \equiv \sum_{i=1}^{3} h_{i} x_{i} \\
v=\sum_{i=1}^{3} h_{i} v_{i} ; & y \equiv \sum_{i=1}^{3} h_{i} y_{i}
\end{array}
$$

The finite element matrixes can be evaluated
For natural CS we use Jacobian operator
Integrations are made over natural coordinates

$$
\begin{array}{r}
\mathbf{K}=\int_{V} \mathbf{B}^{T} \mathbf{C B} d V \\
d V=\operatorname{det} \mathbf{J} d r d s d t \\
\mathbf{K}=\int_{V} \mathbf{F} d r d s d t \\
\mathbf{K}=\sum_{i, j, k} \alpha_{i j k} \mathbf{F}_{i j k} \\
\mathbf{u}(r, s, t)=\mathbf{H} \hat{\mathbf{u}} \\
\mathbf{M}=\int_{V} \rho \mathbf{H}^{\tau} \mathbf{H} d V \\
\mathbf{R}_{B}=\int_{V} \mathbf{H}^{T} \mathbf{f}^{B} d V \\
\mathbf{R}_{s}=\int_{S} \mathbf{H}^{s^{T} \mathbf{f}^{s} d S} \\
\mathbf{R}_{I}=\int_{V} \mathbf{B}^{T} \boldsymbol{\tau}^{I} d V
\end{array}
$$

Illustration of use: example

Load-strain relationships obtained from the displacements of the measurement net.

Illustration of use: example

$$
\begin{gathered}
u=\alpha_{1}+\alpha_{2} x+\alpha_{3} y \\
v=\alpha_{4}+\alpha_{5} x+\alpha_{6} y \\
\mathbf{u}=\mathbf{N} \boldsymbol{\alpha} \\
\mathbf{u}=\left\{\begin{array}{l}
\mathrm{u} \\
\mathrm{v}
\end{array}\right\}, \quad \mathbf{N}=\left[\begin{array}{llll}
1 & \mathrm{x} & \mathrm{y} & 0
\end{array} 0\right. \\
0
\end{gathered} 0
$$

$$
\begin{gathered}
\mathbf{a}=\mathbf{T} \boldsymbol{\alpha} \\
\mathbf{a}=\left\{\begin{array}{c}
u_{1} \\
\mathrm{v}_{1} \\
\mathbf{u}_{2} \\
\mathrm{v}_{2} \\
\mathbf{u}_{3} \\
\mathrm{v}_{3}
\end{array}\right\} \quad \mathbf{T}=\left[\begin{array}{cccccc}
1 & x_{1} & \mathrm{y}_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & x_{1} & y_{1} \\
1 & x_{2} & y_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & x_{2} & y_{2} \\
1 & x_{3} & y_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & x_{3} & y_{3}
\end{array}\right] \\
\boldsymbol{\alpha}=\mathbf{T}^{-1} \mathbf{a} \\
\mathbf{u}=\mathbf{N T}^{-1} \mathbf{a}=\mathbf{H a} .
\end{gathered}
$$

Illustration of use: example

$$
\begin{gathered}
\varepsilon=\mathbf{L u}=\mathbf{L H a}=\mathbf{B a} \\
\mathbf{L}=\left[\begin{array}{cc}
\frac{\partial}{\partial \mathrm{x}} & 0 \\
0 & \frac{\partial}{\partial \mathrm{y}} \\
\frac{\partial}{\partial \mathrm{y}} & \frac{\partial}{\partial \mathrm{x}}
\end{array}\right], \quad \boldsymbol{\varepsilon}=\left\{\begin{array}{c}
\varepsilon_{\mathrm{x}} \\
\varepsilon_{\mathrm{y}} \\
\gamma_{\mathrm{xy}}
\end{array}\right] . \\
\mathbf{B}=\frac{1}{\Delta}\left[\begin{array}{cccccc}
\beta_{1} & 0 & \beta_{2} & 0 & \beta_{3} & 0 \\
0 & \gamma_{1} & 0 & \gamma_{2} & 0 & \gamma_{3} \\
\gamma_{1} & \beta_{1} & \gamma_{2} & \beta_{2} & \gamma_{3} & \beta_{3}
\end{array}\right],
\end{gathered}
$$

$$
\begin{aligned}
& \Delta=\left|\begin{array}{ccc}
1 & x_{1} & y_{1} \\
1 & x_{2} & \mathrm{y}_{2} \\
1 & \mathrm{x}_{3} & \mathrm{y}_{3}
\end{array}\right| \\
& \beta_{\mathrm{i}}=\mathrm{y}_{\mathrm{j}}-\mathrm{y}_{\mathrm{k}} \quad \begin{array}{l}
\mathrm{i}, \mathrm{j}, \mathrm{k}=1,2,3 \\
\gamma_{\mathrm{i}}=\mathrm{x}_{\mathrm{k}}-\mathrm{x}_{\mathrm{j}}
\end{array}
\end{aligned}
$$

Thanks!

Literature:
Bathe, K.-J. (1990): Finite-Elemente-Methoden. Springer Verlag
Fröhlicher, P. (2005): FEM Anwendungspraxis. Deutsch-englische Ausgabe. Vieweg
Verlag
Nebojsa Mojsilovic (1994): Versuche an kombiniert beanspruchten
Mauerwerkswänden. IBK, ETH Zürich
Zahlten, W.: Lineare Finite-Elemente-Methoden. Skript RWTH Aachen

